
Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd Int’l Workshop on Search-Oriented Conversational AI, pages 81–86
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

ISBN 978-1-948087-75-9

81

Why are Sequence-to-Sequence Models So Dull?
Understanding the Low-Diversity Problem of Chatbots

Shaojie Jiang
University of Amsterdam

Amsterdam, The Netherlands
s.jiang@uva.nl

Maarten de Rijke
University of Amsterdam

Amsterdam, The Netherlands
m.derijke@uva.nl

Abstract
Diversity is a long-studied topic in information
retrieval that usually refers to the requirement
that retrieved results should be non-repetitive
and cover different aspects. In a conversational
setting, an additional dimension of diversity
matters: an engaging response generation sys-
tem should be able to output responses that are
diverse and interesting. Sequence-to-sequence
(Seq2Seq) models have been shown to be very
effective for response generation. However, di-
alogue responses generated by Seq2Seq mod-
els tend to have low diversity. In this pa-
per, we review known sources and existing ap-
proaches to this low-diversity problem. We
also identify a source of low diversity that
has been little studied so far, namely model
over-confidence. We sketch several direc-
tions for tackling model over-confidence and,
hence, the low-diversity problem, including
confidence penalties and label smoothing.

1 Introduction

Sequence-to-sequence (Seq2Seq) models
(Sutskever et al., 2014) have been designed for
sequence learning. Generally, a Seq2Seq model
consists of two recurrent neural networks (RNN)
as its encoder and decoder, respectively, through
which the model cannot only deal with inputs
and outputs with variable lengths separately, but
also be trained end-to-end. Seq2Seq models can
use different settings for the encoder and decoder
networks, such as the number of input/output units,
ways of stacking layers, dictionary, etc. After
showing promising results in machine translation
(MT) tasks (Sutskever et al., 2014; Wu et al.,
2016), Seq2Seq models also proved to be effective
for tasks like question answering (Yin et al., 2015),
dialogue response generation (Vinyals and Le,
2015), text summarization (Nallapati et al., 2016),
constituency parsing (Vinyals et al., 2015a), image
captioning (Vinyals et al., 2015b), and so on.

Seq2Seq models form the cornerstone of modern
response generation models (Vinyals and Le, 2015;
Li et al., 2015; Serban et al., 2016, 2017; Zhao et al.,
2017). Although Seq2Seq models can generate
grammatical and fluent responses, it has also been
reported that the corpus-level diversity of Seq2Seq
models is usually low, as many responses are trivial
or non-committal, like “I don’t know”, “I’m sorry”
or “I’m OK” (Vinyals and Le, 2015; Sordoni et al.,
2015; Serban et al., 2016; Li et al., 2015). We refer
to this problem as the low-diversity problem.

In recent years, there have been several types
of approach to diagnosing and addressing the low-
diversity problem. The purpose of this paper is
to understand the low-diversity problem, to un-
derstand what diagnoses and solutions have been
proposed so far, and to explore possible new ap-
proaches. We first review the theory of Seq2Seq
models, then we give an overview of known causes
and existing solutions to the low-diversity problem.
We then connect the low-diversity problem to the
concept of model over-confidence, and propose ap-
proaches to address the over-confidence problem
and, hence, the low-diversity problem.

2 Sequence-to-Sequence Response
Generation

Consider a dataset of message-response pairs
(X,Y ), where X = (x1, x2, . . . , x|X|) and Y =
(y1, y2, . . . , y|Y |) are the input and output se-
quences, respectively. During training, the goal is
to learn the relationships between X and Y , which
can be formulated as maximizing the Seq2Seq
model probability of Y given X:

max p(Y |X) = max

|Y |∏
t=1

p(yt|y<t, X), (1)

where y<t = (y1, y2, . . . , yt−1) are the ground-
truth tokens of previous steps.
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Usually, Seq2Seq models employ Long Short-
Term Memory (LSTM) networks as their encoder
and decoder. The way a Seq2Seq models realizes
(1), is to process the training inputs and outputs
separately. On the encoder side, the input sequence
X is encoded step-by-step, e.g., at step t:

henct = fencθ (henct−1, xt), (2)

where henc0 = 0 is the initial hidden state of the
encoder LSTM, and θ is the model parameter. The
hidden state of the last step henc|X| is the vector rep-
resentation of input sequence X .

Then, the decoder LSTM is initialized by hdec0 =
henc|X| so that output tokens can be based on the input:

hdect = fdecθ (hdect−1, yt−1), (3)

with y0 as a special token (e.g., START ) to indi-
cate the decoder to start generation, and yt−1 as the
ground truth token of the last time step. The hidden
state hdect is further used to predict the output dis-
tribution by using a multi-layer perceptron (MLP)
and softmax function:

P (yt|y<t, X) =
exp(cif

MLP
θ (hdect ))∑N

j=1 exp(cjf
MLP
θ (hdect ))

, (4)

where c∗ are possible candidates of yt, which are
usually represented as word embeddings. After
obtaining this distribution, we can calculate the
loss compared with the ground-truth distribution
by using, e.g., the cross-entropy loss function, and
then we can back-propagate the loss to force the
Seq2Seq model to maximize (1).

At test time at t, the step-wise decoder output
distribution is conditioned on the actual model out-
puts ŷ<t and X , and the token with the highest
probability is chosen as the output:

ŷt = argmax
yt

p(yt|ŷ<t, X), (5)

which is known as the maximum a posteriori
(MAP) objective function.

3 Diagnosing the Low-Diversity Problem

In the literature, three dominant viewpoints on the
low-diversity problem have been shared: lack of
variability, improper objective function, and weak
conditional signal. Below, we review these di-
agnoses of the low-diversity problem, with corre-
sponding solutions, and we add a fourth diagnosis:
model over-confidence.

3.1 Lack of variability
Serban et al. (2017); Zhao et al. (2017) trace the
cause of the low-diversity problem in Seq2Seq
models back to the lack of model variability. The
variability of Seq2Seq models is different from that
of retrieval-based chatbots (Fedorenko et al., 2017):
in this study, we focus on the lack of variability of
system responses, while in (Fedorenko et al., 2017),
the authors deal with the low variability between
responses and contexts.

To increase variability, Serban et al. (2017);
Zhao et al. (2017) propose to introduce variational
autoencoders (VAEs) to Seq2Seq models. At gen-
eration time, the latent variable z brought by a
VAE is used as a conditional signal of the decoder
LSTM (Serban et al., 2017):

hdect = fdecθ (hdect−1, yt−1, z), (6)

where we omit the contextual hidden states for
simplicity.

At test time, z is randomly sampled from a prior
distribution. Although being effective, the improve-
ment in the degree of diversity of generated re-
sponses brought by this kind of method is actually
brought by the randomness of z. The underlying
Seq2Seq model remains sub-optimal in terms of
diversity.

3.2 Improper objective function
Li et al. (2015) notice that the MAP objective func-
tion may be the cause of the low-diversity prob-
lem, since it can favor certain responses by only
maximizing p(Y |X). Therefore, they propose to
maximize the mutual information between X , Y
pairs:

log
p(X,Y )

p(X)p(Y )
. (7)

With the help of Bayes’ theorem, they derive two
Maximum Mutual Information (MMI) objective
functions:

Ŷ = argmax
Y

{ log p(Y |X)−

λ log p(Y ) + γ|Y |},
(8)

and

Ŷ = argmax
Y

{(1− λ) log p(Y |X)+

λ log p(X|Y ) + γ|Y |},
(9)

where λ and γ are hyper-parameters. Here,
log p(Y ) and log p(X|Y ) are the language model
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and a reverse model, respectively, with the latter
trained using response-message pairs: (Y,X). Be-
sides the time needed for training a reverse model,
it should be noted that both objective functions
need the length |Y | of candidate responses, which
are maintained in N-best lists generated by beam
search. To obtain N-best lists with enough diver-
sity, Li et al. (2015) use a beam size of 200 during
testing, which is much more time-consuming than
the basic Seq2Seq model.

Influenced by the MMI methods, several beam
search based approaches (Li et al., 2016; Vijayaku-
mar et al., 2016; Shao et al., 2017) focus on im-
proving the diversity of N-best lists, in the hope of
further enhancing the one-best response diversity.
However, there are other faster approaches to the
low-diversity problem without using beam search,
such as the attention-based model that we describe
below.

3.3 Weak conditional signal

Since attention layers (Bahdanau et al., 2014) have
been introduced into Seq2Seq models for the MT
task, they have also been a de facto standard mod-
ule of Seq2Seq models for response generation.
The purpose of Seq2Seq attention layers is differ-
ent from the purpose of the Transformer model
(Vaswani et al., 2017). Transformer proposes to
rely only on self-attention and avoid using rec-
curence or convolutions, while attention layers of
Seq2Seq aim at strengthening the input signal.

Although the introducing of attention layers can
bring improvements to the response generation
task, Tao et al. (2018) argue that the original at-
tention signal often focuses on particular parts of
the input sequence, which is not strong enough for
the Seq2Seq model to generate specific responses,
thus causing the low-diversity problem. The au-
thors propose to use multiple attention heads to
encourage the model to focus on various aspects of
the input, by mapping encoder hidden states to K
different semantic spaces:

henct,k =W k
p · henct , (10)

where W k
p ∈ Rd×d is a learnable projection matrix.

The net effect of the extended attention mechanism
is, indeed, improvements in the diversity of gener-
ated responses. Readers are referred to (Tao et al.,
2018) for more details.

3.4 Model over-confidence

As indicated by Hinton et al. (2015), one can think
of the knowledge captured in conversation model-
ing as a mapping from input sequence X to output
sequence Y , i.e., the distribution P (Y |X). There-
fore, if responses have a low degree of diversity,
the learned distribution P (Y |X) is questionable,
as re-confirmed by Li et al. (2015). According to
(1), the sequence-level distribution P (Y |X) has a
direct relationship with the token-level distribution.
Therefore, we hypothesize that the token-level dis-
tribution P (yt|y<t, X), produced at the decoder
side, may be the culprit.

The decoder LSTM serves as an RNN language
model (RNNLM) conditioned on the input se-
quence (Sutskever et al., 2014). With time steps in-
creasing, the influence of the input sequenceX will
become weaker according to (3), and if the token-
level distribution P (yt|y<t, X) is problematic, it
will have further effects on subsequent outputs (a
“snowball effect”). An attention mechanism (Bah-
danau et al., 2014; Tao et al., 2018) can be used to
reinforce the influence of the input sequence, but
there are still chances that the detrimental effect of
P (yt|y<t, X) is stronger than the input signal.

To analyze the problem of P (yt|y<t, X), we
train a Seq2Seq model1 without attention layer,
and plot the token-level distribution of generic re-
sponses in Figure 1. Interestingly, we find that the
distributions shown signs of model over-confidence
(Pereyra et al., 2017). When an attention mecha-
nism is used, similar distributions can still be ob-
served, as illustrated in Figure 2. From these two
figures, we can see a common trend of growing
confidence: the highest probabilities at each step
keep growing, which confirms our conjecture of a
snowball effect. Due to this effect, the final sev-
eral tokens are of low quality, e.g., the no-attention
model in Figure 1 starts to repeat itself, and the
word “overlapping” in the attention model in Fig-
ure 2 is irrelevant for the user input.

A prediction is confident if the entropy of the
output distribution is low. Over-confidence is often
a symptom of over-fitting (Szegedy et al., 2016),
which suggests that the inputs or outputs share
much similarity from unknown aspects. Although
it is hard to figure out what causes the over-fitting,
maximizing entropy can usually help to regularize
the model, making it generalize better. In (Pereyra
et al., 2017), the authors propose to add the negative

1We are using ParlAI framework (Miller et al., 2017).
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Figure 1: Given the input sequence: how about we
recognize the brilliance in everyone, or in mankind
as a whole., the predicted distribution of model
outputs, and tokens on x axis are MAP predictions.
Note that we kept top-10 probabilities at each pre-
diction step for simplicity and this output was cut
before the EOS token was emitted.
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Figure 2: Predicted distribution of the same input as
in Figure 1 when an attention mechanism is used.

entropy to the negative log-likelihood loss function
during training, which can easily be tailored for
conversation modeling:

L(θ) = −
N∑
i=1

log p(ci|y<t, X)−

βH(p(ci|y<t, X)),

(11)

where β controls the strength of the confidence
penalty, and H(·) is the entropy of the output dis-

tribution:

H(p(ci|y<t, X)) =

−
N∑
i=1

p(ci|y<t, X) log(p(ci|y<t, X)).
(12)

The authors also show that this confidence penalty
method is closely related to label smoothing reg-
ularization (Szegedy et al., 2016), therefore meth-
ods like neighborhood smoothing (Chorowski and
Jaitly, 2016) may be used to solve the low-diversity
problem.

So far, there has been no published work on ana-
lyzing the the effectiveness of correcting for model
over-confidence on the low-diversity problem. It is
important to note the fourth diagnosis of the low-
diversity problem, i.e., that the problem is due to
model over-confidence, is essentially different from
the three types of diagnosis that we described ear-
lier in the section. Among diagnoses and methods
published previously, the VAE-based approaches
actually bypass the low-diversity problem by intro-
ducing randomness; MMI-based methods have an
elegant theoretical basis, yet they end up relying on
many extra modules, like reverse models and beam
search, and the newly-introduced hyper-parameters
were not even learned from training data (Li et al.,
2015); attention-based models offer a complemen-
tary approach, since strengthening the conditional
signal is likely to make the response more specific,
which should in turn improve the corpus-level di-
versity. Model over-confidence may offer a sim-
pler alternative – we believe that methods such as
confidence penalty are likely to alleviate the low-
diversity problem in ways that differ from previous
approaches.

4 Next Steps

In this paper, we described the low-diversity prob-
lem for response generation, which is one of the
main issues faced by current Seq2Seq-based con-
versation models. We reviewed existing diagnoses
and corresponding approaches to this problem and
also added a diagnosis that has not been proposed
or used so far, i.e., model over-confidence.

By using entropy maximizing approaches, such
as confidence penalty (Pereyra et al., 2017) or la-
bel smoothing (Szegedy et al., 2016), we believe
that the low-diversity problem of Seq2Seq mod-
els can be alleviated. Besides, by using entropy
maximizing methods, the self-repeating problem
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(Li et al., 2017) of Seq2Seq models may also be
alleviated since this can reduce the snowball ef-
fect and make later outputs more relevant. We also
noticed that the low-diversity problem resembles
the mode collapse problem of GANs (Goodfellow
et al., 2014), therefore inspirations may be drawn
from the solutions like (Salimans et al., 2016; Metz
et al., 2016).

In addition, since we now have four types of
diagnosis of the low-diversity problem, each of
which is likely to address part of the problem but
not all of the problem, it is natural to systemati-
cally compare and combine approaches based on
the different types of diagnosis. Understanding
how solutions to the low-diversity problem helps to
improve the effectiveness of conversational agents
for search-oriented tasks is another interesting line
of future work.
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