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Abstract

Most of the world’s data is stored in relational
databases. Accessing these requires special-
ized knowledge of the Structured Query Lan-
guage (SQL), putting them out of the reach of
many people. A recent research thread in Nat-
ural Language Processing (NLP) aims to alle-
viate this problem by automatically translating
natural language questions into SQL queries.
While the proposed solutions are a great start,
they lack robustness and do not easily general-
ize: the methods require high quality descrip-
tions of the database table columns, and the
most widely used training dataset, WikiSQL,
is heavily biased towards using those descrip-
tions as part of the questions.

In this work, we propose solutions to both
problems: we entirely eliminate the need
for column descriptions, by relying solely on
their contents, and we augment the WikiSQL
dataset by paraphrasing column names to re-
duce bias. We show that the accuracy of ex-
isting methods drops when trained on our aug-
mented, column-agnostic dataset, and that our
own method reaches state of the art accuracy,
while relying on column contents only.

1 Introduction

Recent developments in Natural Language Under-
standing (NLU) have led to a big proliferation of
text- and speech-based bot interfaces. Home ap-
pliances, such as smart speakers and chatbots, rely
mostly on a well-structured knowledge base or an
external Application Programming Interface (API)
to provide the desired response. This limits the us-
ability of such systems in a context where the data
is stored in a (local) relational database.

This constraint led to the development of text to
Structured Query Language (SQL) systems, also
known as SQL bots. Given a question, in natural
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language, pertaining to a certain database table,
these bots will automatically generate the corre-
sponding SQL query and return the requested data.
Considering the vast usage of relational databases
on the internet and in private companies, SQL
bots are a simple new interface that enables non-
technical people to access data.

The first approaches in the field relied on
parsers and pattern-matching rules to understand
the question and produce appropriate answers
(Androutsopoulos et al., 1995). Later develop-
ments introduced semantic grammar systems and
intermediate language systems (Androutsopoulos
et al., 1995). More recently, new NLU meth-
ods, such as pointer-networks, pushed the state-of-
the-art results in several domains, including pars-
ing (Vinyals et al., 2015). Current state-of-the-art
models are based on sketches and have primarily
two inputs: the question and the descriptions of
the table columns (i.e., the column names).

Relying on the column names is limiting, since
the whole model is based on several strong
premises: (a) the names are high quality and de-
scriptive enough; (b) the names do not change;
(c) the names are known to the user of the bot.
These are very strong assumptions: often, column
names do not even exist (i.e., the generic col1,
col2, etc. are used instead). Moreover, if as we
observe in Figure 1, a column contains the names
of colleges, just changing the column name form
”College” to ”School” does not make the content
any less informative. The expectation from a bot
is that their quality is not sensitive to cosmetic
changes to the underlying table. Finally, users do
not necessarily know the structure of the table, let
alone the column names.

In this paper, we build and present ICE (Indi-
vidual Column Embeddings) – a novel approach
of representing the database table columns, by us-
ing their contents instead of their names. To do so,
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Figure 1: Part of a table from the WikiSQL dataset with the contexts within a relation (table) we can model

we construct a column embedding vector space,
where we embed the columns. This embedding is
then used as a substitute for the encoding of the
column descriptions (headers) in a state of the art
sketch-based model.

In addition, to empirically show the value of
using ICE, we generate a new, column-agnostic
dataset based on the widely used WikiSQL dataset
(Zhong et al., 2017). In WikiSQL, a substantial
bias towards the inclusion in the question of the
column name is built-in. For instance more than
79% of questions contain the name of the column
that needs to be selected. Additionally around
59% contain the names of all columns form the
SQL where clause. With ICE, we are eliminating
the strong assumption that the users have access to
the table structure. Hence, we also need a less bi-
ased dataset to show the value of our method.

We thus create an open source data augmen-
tation tool to paraphrase part of the questions in
WikiSQL: where the column names are present,
we replace them with similar expressions (e.g.,
synonyms), removing some of the built-in bias.

We train and test our ICE-based model on both
the original WikiSQL dataset and our column-
agnostic version of the dataset. We show that we
maintain the same accuracy on both datasets with
all three tasks: aggregation, column-selection and
where clause generation. We also train the orig-
inal SQLNet (Zhong et al., 2017) model on the
column-agnostic dataset and find a 7% accuracy
drop in the where clause generation task.

In a nutshell, the most important contribution
of this work is that we improve the model re-
silience by limiting its reliance on arbitrary de-
scriptions of the data within the tables. In addi-
tion, we expand the applicability of SQL bots
to users who do not know the internal structure of
the databases they are trying to access. By elimi-
nating the need to encode the column headers, we
also reduce the overall complexity of the model.
This is achieved by removing the LSTM networks
used to generate unique column header encodings

for the aggregation prediction, selection prediction
and where clause generation.

The paper is organized as follows: Section 2
presents the related work for translating sentences
to SQL and for vector space embeddings. In Sec-
tion 3, we describe ICE – our method for column
content embeddings. In the next section, we in-
troduce our column-agnostic model for translating
sentences to SQL. We present the evaluation re-
sults in Section 5 and finally conclude in Section 6.

2 Related Work

2.1 Related work in Sentences to SQL

Systems that enable users to use natural language
to interact with a database have been researched
since the early seventies. As summarized in (An-
droutsopoulos et al., 1995) these early approaches
were mostly rule-based. More successful methods
have emerged since the advent of the sequence to
sequence (Sutskever et al., 2014) neural network
architectures and increased availability of training
data in recent years. The first model to leverage
this was SEQ2SQL introduced by (Zhong et al.,
2017) together with their crowdsourced dataset
WikiSQL. SEQ2SQL solves the problem of gen-
erating SQL queries in a three-step approach that
aligns with the structure of an SQL query. First, it
determines the aggregation function for the query
i.e. whether to apply count, average, max etc. This
is performed by a classifier trained on the encod-
ing of the question and the encodings of the ta-
ble headers. In the second step, the model deter-
mines the column on which to perform the selec-
tion, again based on the encoding of the question
and the encodings of the table headers. Finally, in
the last step, the model generates the where clause
of the SQL query. To do so it first determines the
number of conditions in the clause and then pro-
ceeds to generate tuples of a column, comparison
operator and value using a pointer network. Since
the order in the where clause is not important when
there are multiple conditions the model also im-
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plements a reinforcement learning policy to opti-
mize for execution correctness and uses a mixed
loss function.

SQLNet (Xu et al., 2017) improved upon
SEQ2SQL by eliminating the need for reinforce-
ment learning by using a sketch-based approach.
(Bornholt et al., 2016; Solar-Lezama et al., 2006)
In the where clause section SQLNet introduces
a sequence-to-set model. It first picks a set of
columns which will be used in the clause. Subse-
quently, for each column, it determines a compari-
son operator using a classifier and picks a compar-
ison value using a printer network. Additionally,
this model implements a column attention mech-
anism which together with sequence-to-set model
improves the accuracy over SEQ2SQL by 9% to
13%.

2.2 From Word to Table Embeddings

The most basic form of word embeddings is the
bag of words model. It can be augmented by statis-
tics such as TF-IDF, however, such vector space
captures very little of the words semantics, mor-
phology, hierarchy and context. Word2vec, intro-
duced by (Mikolov et al., 2013) is one of the first
popular neural embedding models. It comes in
two general implementations: a continuous bag of
words (order in window irrelevant) and a contin-
uous skip gram (weight in window based on dis-
tance from current word). The objective function
of Word2vec causes words that appear in a simi-
lar context to cluster together in the vector space,
based on cosine distance. This method was mod-
ified by the introduction of global word represen-
tation which aims to capture the meaning of the
word within the whole corpus (Pennington et al.,
2014) and the use of subword information to cap-
ture the morphology of the words (Joulin et al.,
2016).

With the addition of simple techniques, such as
a trained weighted average, word-embedding al-
gorithms were further extended to embed whole
sentences (Pagliardini et al., 2018) and whole doc-
uments (Le and Mikolov, 2014). Such techniques
have also recently been used to get the embedding
of whole tables for the purposes of table classifi-
cation (Ghasemi-Gol and Szekely, 2018).

3 ICE: Individual Column Embeddings

To understand the context and the hierarchy of a
table we will use the formal definition of a rela-

tion: ”a set of tuples (d1, d2, ..., dn), where each
element dj is a member of Dj , the j − th data do-
main.” Tuples, relations and attributes are graphi-
cally depicted in Figure 1. We observe that there
are two contexts in which an element, or cell, dj
appers either within a tuple (row) or within a data
domain (column).

To embed the whole table we need to look at
both contexts. This complexity is not necessary
in the context of individual column embeddings,
where the latter context is sufficient. TabVec uses
deviation from the median for table vectors to cap-
ture the noise (Ghasemi-Gol and Szekely, 2018),
as the final table vector incorporates information
from cells that are not conceptually similar. This
is not the case for individual column embeddings,
as for ICE we assume that the cells within a col-
umn are conceptually similar. For instance, if the
column is about locations, all the cells are likely
to represent location names. This property allows
us to simplify the aggregation and use the median
vector of all cells as the column representation.

Table cells are not semantic atoms and can con-
tain multiple words, for example in Figure 1 all
Team names contain at least two words. Thus,
given a vector space model for words, we compute
the individual cell embedding (ICE) as the average
of the word embeddings and the individual column
embedding as the median of its cells.

To sum up, let a column D contain cells ci ∈
C(D), with each cell consisting of a sequence of
ni words (wi1, ..., wij , ..., wini). Given a function
E that computes a word embedding, the ICE of
the D is defined as:

E(D) = medianci(
1

ni

ni∑
j=0

E(wij)), ci ∈ C(D)

3.1 Table Word Embeddings.

For the ICE to be meaningful, the word embed-
dings need to reflect the table semantics. The way
words are used in tables differs significantly from
the way they appear in normal language. We keep
the intuition that a word can be represented as
an aggretation over all the contexts in which that
word appears. What changes from typical text em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014) is that the context is given by other words
that occur in the same table column. We view col-
umn tables as synthetic sentences that allow us to
learn what the relevant context is. We then use
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Figure 2: The general network architecture of SQLNet. Model A represents the original model, while Model B
represents our model.

SkipGrams with a window of 5 to generate the em-
bedding model.

We first construct a data corpus of synthetic sen-
tences, corresponding to columns. We define a
sentence as all the cells in one table column con-
catenated. Furthermore, we make the assump-
tion that the order of the cells within a column
is not important. For the table in Figure 1, a
sample sentence would be Calgary Stampeders
Ottawa Renegades Toronto Argonauts Hamilton
Tiger-Cats. We generate 10 random cell shuffles
of each column. Using this corpus we train a
word2vec model with the Gensim toolkit (Řehůřek
and Sojka, 2010).

4 Individual Column Embedding for Bot
Resilience

Our work builds upon the SQLNet (Xu et al.,
2017) sketch-based approach. To generate a SQL
statement, each component of the query is gener-
ated individually: the aggregation, the column se-
lection and the where clauses. The task is thus
akin to slot filling (Xu et al., 2017). The process
is graphically depicted in Figure 2. The input or
the SQLNet and previous models (Xu et al., 2017)
consists of a representation of the question and a
representation of each table column header.

We believe this assumption represents one of
the most important drawbacks of the approach, as
knowledge about the column headers may not ex-
ist in real world conditions. The reason this knowl-
edge was used in previous work is that the dataset
itself was biased towards explicitly including the
column names in the question formulation. In this
section we show how to build a dataset that alle-
viates this bias. We then use the new dataset to
create a model that relies on the column content ,
not on the column headers.

Column type Train Test Dev
Selection col. 79.0% 79.0% 79.65%
Where col. >= 1 68.0% 67.6% 68.4%
All where col. 58.9% 58.5% 59.2%

Table 1: The percentages in the table show the pro-
portion of questions that contain the specific column
header in the different data partitions.

4.1 Column-agnostic WikiSQL

The wikiSQL dataset was crowdsourced using ta-
bles from Wikipedia. Workers on Amazon Me-
chanical Turk1 were presented with a table and
a generated SQL query and were asked to ask a
question that matched the query. This method in-
troduces an inherent bias in the dataset as demon-
strated in Table 1. Almost 80% of questions con-
tain the column name that is retrieved in the se-
lection step and 68% of questions contain at least
one of the column names from the where clause.
In total, only 11% of the questions do not contain
exact matches of the column names, as shown in
Figure 1. As the workers were shown the whole ta-
ble with column names, in a large number of cases
they copied the column name in the question.

We paraphrase questions that contain a column
name to make the dataset more realistic, as de-
scribed in Algorithm 1. We create candidate ques-
tions by replacing the names with synonyms that
share the syntactic and semantic properties of the
original names.

The original question and the candidate ques-
tions are then embedded in vector space with
sent2vec (Pagliardini et al., 2018). Using these
vector space representations we compute the co-
sine similarity between the original question and

1https://www.mturk.com/
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the potential replacements and choose the most
similar candidate. This procedure yields a suit-
able rephrasing for 20% of the dataset, as we
did not find synonyms for all questions contain-
ing column names. For instance, the orginal ques-
tions What is the length (miles) of endpoints west-
lake/macarthur park to wilshire/western?, which
contains the column header length (miles), be-
comes What is the distance (miles) of endpoints
westlake/macarthur park to wilshire/western?.

Figure 3: Proportions of the modified dataset

Data: Question and column header
Result: Replacement candidate questions
Tokenize and pos tag question;
for word in column header do

Get word tag in question;
Get word synonyms using tag;
if synonyms list > 0 then

append synonyms to rephrase list;
end

end
for phrase in rephrase list do

if length of phrase == length of header
then

replace column header in question
with phrase;

append new question to candidate list;
end

end
Algorithm 1: Generating replacement candidate
questions

4.2 Integrating Individual Column
Embeddings

We compute the embeddings for the entire table
column corpus as described in chapter 3. This is
necessary since the embeddings are required dur-
ing inference both during training and testing. Due
to model size constraints, we keep the individual

column embeddings constant during both training
and testing. We create a dictionary to link each
column to its embedding vector and feed it to the
model (Model B) in Figure 2. An attention mech-
anism has the embeddings as inputs and the result
contributes to the aggregation, selection and where
clause modules. The column vectors are generated
with the same dimensions that we use for the ques-
tion encoding.

As we replace the column headers with column
content embeddings, our model is completely ag-
nostic to the headers. We thus remove the LSTM
used to encode the column headers in the three
model components: aggregation, selection and
where clause generation. This leads to a signifi-
cant reduction in the complexity of the model.

5 Evaluation

5.1 Original WikiSQL Evaluation

The evaluation on the full original WikiSQL
dataset determines whether the individual column
embeddings are suitable replacements for headers
when the column name appears in the question.
Table 2 summarizes the results of our model SQL-
Net+ICE and compares them with the results of
two baselines: SQLNet and Seq2SQL. We portray
the accuracy values on the development and test
sets for the three slots we fill in the sketch: Ag-
gregation function, Column Selection and Where
clause generation.

We observe that SQLNet+ICE performs simi-
larly to the original SQLNet model in both cases
and superior to Seq2SQL. This result shows that
we can build an equally performing model that is
resilient to changes to the DB schema or complete
absence of knowledge about it.

We note that the accuracy of the aggregation
function also changes. This happens because the
aggregation classifier has either the column or
header embeddings as inputs, as shown in 2. There
is a small decrease of accuracy for the Aggrega-
tion and Where clauses, while the accuracy on the
Column Selection performs slightly better. These
results are expected, as the queries strongly rely
on the direct column names mentions.

5.2 Column-agnostic WikiSQL Evaluation

The second experiment shows the more realistic
results, obtained on the column-agnostic WikiSQL
Dataset. The results in Table 3 show that SQLNet
struggles to predict correctly the column related
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Dev Set Accuracy Test Set Accuracy
Aggregation Selection Where-clause Aggregation Selection Where-clause

Seq2SQL 90.0% 89.6% 62.1% 90.1% 88.9% 60.2%
SQLNet 90.1% 91.5% 74.1% 90.3% 90.9% 71.9%
SQLNet + ICE 89.7 % 92.4 72.2% 89.3 % 91.8 71.1%

Table 2: Model accuracies on the Original WikiSQL Dataset

Dev Set Accuracy Test Set Accuracy
Aggregation Selection Where-clause Aggregation Selection Where-clause

SQLNet 90.1% 87.5% 63.4% 90.3% 87.1% 63.1%
SQLNet + ICE 89.7 % 88.4 70.1% 89.3 % 87.9 69.4%

Table 3: Model accuracies on the Column-agnostic WikiSQL Dataset

Rephrased Test Set Accuracy
Agg. Sel. W.-clause

SQLNet 89.5 % 81.3% 43.2%
SQLNet + ICE 88.9 % 83.2 61.3%

Table 4: Model accuracies on the paraphrased ques-
tions only on Aggreation, Selection and Where-clause
tasks.

parts of the query, especially in the case of the
where clause generation. This drop in the accu-
racy is expected, since the where clause predictor
is the most complex part of the model. Without
the original dataset bias where the column names
were present in the questions, the column names
are not descriptive enough.This leads to a drop of
10.7% on the validation and 8.8% on test dataset.

On the other hand, our model is capable of over-
coming this situation and find the queries with
a much smaller drop of accuracy. Although the
performance is also worse than with the orig-
inal dataset, the accuracy obtained using SQL-
Net with individual column embeddings in the
where clauses is only 2.1% lower in validation and
1.7% in test. Using individual column embeddings
makes the SQLNet model more versatile, as it can
address the scenario where the user is not aware of
the table structure.

Focusing on rephrased questions. To bet-
ter understand our results on the Column-agnostic
WikiSQL dataset we run the evaluation just with
questions that have been rephrased, which repre-
sent around 20% of the whole data set, as shown
in Figure 3. Table 4 summarizes these results, with
SQLNet is the original model described in (Xu
et al., 2017). The previously seen drop in SQL-
Net accuracy on the column selection and where-

clause predictions is exacerbated - showing that
indeed the paraphrasing is indeed the root cause.
This effect is comparatively mild in SQLNet +
ICE.

6 Conclusion and Future Work

In this paper, we proposed a new approach to build
SQL chatbots without relying on the database ta-
ble schema. Previous work built around the Wik-
iSQL dataset take advantage of the dataset bi-
ases and use the column names to improve perfor-
mance. This reliance on the schema inhibits their
generalization capacity to cases where schema
knowledge is absent. Our model, built on SQLNet
by adding Individual Column Embeddings SQL-
Net + ICE, does not suffer from these limitations.

We provide a way to create Individual Col-
umn Embeddings, different from the Column Em-
beddings in prior art (Ghasemi-Gol and Szekely,
2018). Furthermore, we publish a method to para-
phrase WikiSQL questions to alleviate the dataset
bias.

The results of our model on the paraphrased
WikiSQL are very similar to the ones obtained
on the original dataset, while the SQLNet models
struggles to deal with the paraphrasing.

Future Work. Even with these changes, there
is still room for improvement in the SQL chatbot
area. Large scale operations need the support for
multiple tables at the time as well as more opera-
tions such as join. While WikiSQL is a good start-
ing point and our modified version removes some
of the biases present in it, there is a strong need for
more data, both in terms of quantity and diversity.
This new data needs to include more operations, as
well as new ways to collect questions to have more
variety in the structure of the user’s utterances.
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