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Abstract

We present metrics for listwise temporal or-
dering of events in clinical notes, as well as a
baseline listwise temporal ranking model that
generates a timeline of events that can be used
in downstream medical natural language pro-
cessing tasks.

1 Introduction

For medical narratives such as clinical notes, event
and time information can be useful in automated
classification and prediction tasks. For example,
the timeline of a patient’s medical history can be
used to predict whether they will be readmitted to
the hospital within a certain time window. A medi-
cal timeline can also be used for other tasks such as
disease classification, and for summarizing a pa-
tient history for physicians.

Because events are not necessarily mentioned in
chronological order in such documents, once the
individual events are identified, the model needs
to determine the temporal relationships between
them. Temporal relations are categorical labels
that describe how two events are related. These
relations can be binary (related or not) or simple
(BEFORE, AFTER, OVERLAP), or they can capture
more complex relationships such as partial overlap
or adjacency. A popular temporal relation scheme
for clinical notes is the CONTAINS relation, which
specifies whether a time phrase or event subsumes
another event.

However, most temporal relation methods use
pairwise classification, which can result in incon-
sistent relationships and which requires classify-
ing n2 pairs of events, many of which have no de-
fined relation. What is needed is an overall time-
line of medically relevant events that ideally can
capture event duration and overlap. A listwise or-
dering of events inherently captures all pairwise

relationships between events and prevents incon-
sistencies that can arise in pairwise ordering.

While ranking methods have generally been ap-
plied to information retrieval tasks such as search-
ing, we can view temporal ordering as a ranking
task. In this work, we examine a baseline listwise
ranking method for events in clinical notes and we
establish a set of metrics for evaluating listwise
temporal ordering of these events.

1.1 Listwise vs. pairwise ordering

Temporal relation extraction is typically framed
as a pairwise classification problem: generate all
pairs of events in a document, and then deter-
mine what type of temporal relation exists be-
tween them, if any. The major problem with this
approach is that the vast majority of event pairs
have no relationship, or the relation between them
is unknown. This results in an unbalanced clas-
sification problem, and there is no guarantee that
the predicted pairwise relations are consistent with
one another. Because of the sparsity of annotated
long-distance relations, many pairwise classifica-
tion models have been limited to events mentioned
within the same sentence or within some small
window of the text. It is often difficult for humans
to analyze the relations from an entire document
quickly, especially when they are inconsistent.

In contrast, a document-level list inherently
captures pairwise relations between all events in
the document, regardless of whether or not they
appear in the same sentence. Thus, we choose to
represent the events as a temporally ordered list
instead of as pairs of temporal relations.

However, since pairwise relations often capture
relationships that are more complex than just BE-
FORE, AFTER, and OVERLAP, we add time infor-
mation to the events in the reference list when
available. This information includes event start,
end, and overlap times, based on the annotated re-
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lationships to time phrases in the text. For this
work, we sort the list by event start time, but in
principle we could sort by end time or examine
event overlaps. All time information can be either
exact, relative (before or after a certain time), or
unknown.

2 Related work

Most existing work on temporal relation extrac-
tion for clinical text relies on human-labeled spans
and relations. The input to these models is usually
pairs of events (or events and times) that a human
has identified as being related, and all the model
has to do is decide the type of relation. However,
given an unlabeled dataset the task is much more
difficult – the system must first identify the events
and time phrases, decide which pairs are related,
and then determine the type of each relation. Der-
czynski (2017) covers the general topic of tempo-
ral ordering of events in text.

For the medical domain, the Clinical TempEval
task at SemEval (Bethard et al., 2017) has multiple
tasks that involve identification of events, time ex-
pressions, and attributes in clinical notes, as well
as relation classification. SemEval 2015 also had
a task on cross-document event ordering, although
the data was in the news domain (Minard et al.,
2015).

Additionally, most recent work has focused on
small relation sets, such as narrative container re-
lations (CONTAINS, NO-RELATION), which were
originally introduced by Pustejovsky and Stubbs
(2011), or simple relations (BEFORE, AFTER,
OVERLAP, NONE), although some work has at-
tempted to classify with Allen’s complete set of
13 temporal relations (Allen, 1984).

Dligach et al. (2017) and Lin et al. (2017)
achieved state-of-the-art performance on identi-
fying container relations in the THYME corpus
(Styler et al., 2014); however, they considered
only relations in which both entities appear in
the same sentence. This is a limitation in many
temporal relation systems. Since clinical notes
are often long and may refer to distant entities
such as the admission or discharge date, cross-
sentence relations should not be ignored. Tourille
et al. (2017) identified cross-sentence container re-
lations in the THYME corpus, in addition to intra-
sentence relations, using a bi-directional LSTM.
They used word and character embeddings of
gold-standard event attributes and attributes gen-

erated by cTAKES (Savova et al., 2010).
Tannier and Muller (2011) addressed relation

closure in temporal graphs with all 13 Allen rela-
tions. In our current work we deal only with sim-
ple relations, but this is something we would like
to expand in the future.

For our ranking model, we build upon List-
Net (Cao et al., 2007), which describes a listwise
approach to ranking. The ranking function is a
linear neural network which assigns a relevance
score for each document in a set related to a query
(such as in a document retrieval task). The loss
function is typically based on top-k probability,
i.e., the probability of a given document being
ranked among the top k documents with respect to
a query. More recent work such as IntervalRank
(Moon et al., 2010) used isotonic regression with
a maximum margin criteria to optimize for correct
relative rankings.

3 Data

3.1 Dataset

We use the THYME corpus (Styler et al., 2014),
which contains de-identified clinical notes with
human-annotated times, events, and temporal re-
lations, using the TimeML schema (Pustejovsky
et al., 2003). This dataset is publicly available
with a data use agreement. We use the provided
train/dev/test split and the gold-standard EVENT,
TIMEX3, and temporal relation annotations, in-
cluding document creation time (DCT) relations.

For now, our listwise ordering method can rep-
resent only simple relations (BEFORE, AFTER,
OVERLAP), so we map the BEFORE/OVERLAP re-
lation and ENDS-ON relation to BEFORE (since we
are ranking by start time), we transform AFTER

relations to BEFORE, and all other relations in the
THYME dataset to OVERLAP (including the CON-
TAINS relation).

One of the limitations of the annotations in the
THYME dataset is that event annotations are al-
ways applied to just a single word, even though
there are many instances where the event would
be better represented by a phrase. Unfortunately,
this is common in temporally annotated datasets.

3.2 Converting gold-standard pairwise
relations to list representations

In order to evaluate listwise ordering methods,
we need a reference list to compare against. To
our knowledge, all temporally annotated clinical
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fever MRI treatment
BEFORE BEFORE

OVERLAP

Figure 1: Example of the type of cycle in the temporal
graph where the OVERLAP link would be dropped.

datasets have pairwise annotations, so we con-
vert these pairwise relations into reference lists
for training our model. We use the graph of
gold-standard pairwise event relations to extract a
grouped listwise ordering. This is not a straight-
forward process, since not all event pairs are anno-
tated. The vast majority of relations are between
event and the document creation time (DCT),
which makes it difficult to determine how events
are related to each other when there is no explicit
annotation for that pair.

First, we take only the gold-standard event–
event relations and create a directed graph repre-
sentation1. Unfortunately, we find that some of
these graphs have cycles, which indicate incon-
sistent orderings in the gold-standard annotation
(such as A BEFORE B, B BEFORE C, C OVER-
LAP A). We have no choice but to drop some re-
lation links in order to resolve these cycles. We
choose to drop OVERLAP links, since these are
the least specific, as the relation it does not spec-
ify how the events overlap. Since we are order-
ing by start time, for two events to have different
ranks means only that one starts before the other;
it doesn’t mean that they don’t overlap. Therefore
we favor preserving the BEFORE relations. In to-
tal, 30 OVERLAP links were removed from the test
set. See Figure 1 for a fabricated example of the
type of inconsistency where the OVERLAP link is
dropped.

We then augment the graph with transitive and
time-based relations. For annotated event–time re-
lations, we add the associated time information to
the event, along with the part of the interval that
the time specifies (start, end, or overlap). We use
the Python dateparser module to convert the string
representation to an ISO date–time format. We
then compare the time intervals of every pair of
events to discover more BEFORE and AFTER re-

1AFTER relations are inverted to become BEFORE re-
lations, and INITIALIZES and FINISHES are converted to
BEGINS-ON and ENDS-ON respectively.

lations. We compare the start and end times of
events first, and if that information is not available,
we compare the overlap times of the two events.

Lastly, we group the events that all have the
same incoming and outgoing relations and have
either overlap relations or no specified relations
with each other. This results in a number of ‘bins’,
which can each contain one or more events, and
all of the relations from the individual events. We
then order these bins according to the BEFORE

and AFTER relations between bins, which are pre-
served from the individual events. All events in the
same bin are assigned the same rank. The final list
of events, including associated time information,
can be easily viewed and understood by humans.

We verify that the output list preserves the pair-
wise relations by checking that for each event–
event relation in the original set, the events are
ordered correctly in the list. For time–event re-
lations, we check that the associated interval in-
formation is consistent with the time relation. As
discussed above, we are forced to ignore some of
the OVERLAP links and leave the events in sep-
arate bins because combining them would create
conflicts between the merged edges. We also note
that there may be many variants of the listwise or-
dering that are consistent with the pairwise gold-
standard relations.

The list conversion code is available at https:
//github.com/sjeblee/chrononet.

4 Listwise evaluation metrics

Traditional ranking models are usually evaluated
according to normalized discounted cumulative
gain (NDCG) and mean average precision (MAP).
However, both of these metrics are focused on the
top k ranked documents, which makes sense for a
document retrieval task but is not an appropriate
metric for temporal ranking, where we care about
the ordering of all events.

Here we present two listwise ranking metrics, in
addition to the standard pairwise recall:

Mean squared error (MSE)

MSE =
∑y∈Y (rankt(y)− rankp(y))2

|Y |
(1)

where Y is the set of events, rankt is the correct
rank, and rankp is the predicted rank. This is an
absolute metric that measures how correct the rank
score is for each individual event. However, this

https://github.com/sjeblee/chrononet
https://github.com/sjeblee/chrononet
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does not measure how correct the relative rankings
are, so we introduce a second metric:

Pairwise ordering accuracy (POA)

POA =
pO + pE

|LO|+ |LE |
(2)

pO = ∑
u,v∈LO

{
1, if rankp(u)< rankp(v)
0, otherwise

(3)

pE = ∑
u,v∈LE

{
1, if |rankp(u)− rankp(v)| ≤ ε

0, otherwise
(4)

where LO is the set of ordered pairs (u,v) in the
reference list such that rankt(u) < rankt(v) (i.e.,
event u is ranked before event v), and LE is the set
of pairs (u,v) where rankt(u) = rankt(v).

Since the ranking model may output slightly
different rank values for events that are close to-
gether, we consider rank values to be the same if
they are within ε of each other. For this paper we
set ε = 0.01, and rank values are between 0 and 1
inclusive, with 0 being the earliest start time.

Although this metric looks at pairs of events,
it measures the overall accuracy of the whole list.
If two events are swapped but are otherwise in
roughly the correct position in the list, POA will
penalize the model less than it would for an event
that is placed far away from its correct position.

Gold-standard pairwise relation recall (GPR)
From the list output, it is easy to extract all event–
event relation pairs. From these we can compute
the pairwise classification accuracy. Since many
event–event relations are not present in the gold-
standard annotations, we report recall only.

5 Models

For our ranking model we use an open-source im-
plementation of ListNet2, substituting rank MSE
as the loss function.

The model input is the concatenation of an em-
bedding vector and a normalized vector of nu-
merical features. The embedding vector contains
the word embedding of the event text concate-
nated with the word embeddings of the previous
and next 3 words, and the second feature vector
contains the gold-standard event attributes and the

2https://github.com/shiba24/
learning2rank

Model MSE POA GPRB GPRO

Reference list .000 1.000 .844 .246

ListNet .072 .517 .420 .254
Text order .148 .413 .640 .000
Random ordering .170 .366 .485 .000
Pairwise NN – – .186 .624

Table 1: Listwise ordering on the THYME test set.
MSE: mean squared error, POA: list pairwise ordering
accuracy, GPRB: gold-standard pairwise relation recall
of BEFORE relations, GPRO: overlap relations

Model P R F1

Pairwise NN .006 .540 .011
Pairwise NN (no NONE) .841 .851 .825

Table 2: Pairwise relation classification on the
THYME test set. The first pairwise neural network
(NN) model includes all possible pairs, including
NONE relations. The second model is restricted to only
pairs that are known to have a relation. P: precision, R:
recall

span start of the event. We use publicly available
word embeddings trained on Wikipedia, PubMed,
and PMC (Pyysalo et al., 2013). The target rank
of each event is the position in the reference list,
scaled to [0,1]. Any number of events can share
the same rank.

The pairwise classification model is a feed-
forward neural network implemented in PyTorch
(Paszke et al., 2017), with one hidden layer with
256 nodes and ReLU activations, trained for 10
epochs. Each event pair is represented with the
same features as the ranking model, and the scaled
character distance between the two events in the
text. The goal of this classification model is not to
beat the state of the art, but rather to compare the
listwise method to a simple pairwise model.

6 Results

Table 1 shows the accuracy of the ListNet rank-
ing model according to the listwise metrics (MSE
and POA), as well as gold-standard pair relation
recall (GPR). As a baseline, we include the results
from random ranking (every event is randomly as-
signed a ranking value between 0 and 1), and rank-
ing by the order of mention in the text (since many
events are indeed mentioned in chronological or-
der). Scores from random ranking are averaged
over 10 runs. We also include GPR results from
the pairwise classification model for comparison.

https://github.com/shiba24/learning2rank
https://github.com/shiba24/learning2rank
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While the ListNet ranking model has plenty of
room for improvement in terms relative ordering,
it outperforms both the random ordering and the
order of mention in the text.

Table 2 shows the accuracy of the pairwise clas-
sification with respect to the gold-standard annota-
tions. We cannot extract a listwise ordering from
the pairwise model results because the predicted
relations have cycles. In addition, most temporal
relation models using THYME data have used the
full set of relations or only container relations, and
thus are not comparable to this model.

7 Discussion and future work

For many health-related NLP tasks, listwise order-
ing offers several benefits over pairwise ordering.
The list avoids cycles and inconsistent pair rela-
tions, and is also a more compact representation –
all pairwise relations can be inferred from the list.
Moreover, the list of events and associated time
information is easy for humans to review.

Although simple listwise ordering does not cap-
ture more-finely grained interval temporal rela-
tions such as partial event overlap and endpoint
relations, the inclusion of interval time informa-
tion for each event allows us to choose how to or-
der them. For example, we could choose to order
the list by end time instead of start time. In the
future we hope to represent more-complex event
relations and handle relative time phrases.

8 Conclusion

We have shown that events in clinical text can be
ordered in a listwise fashion, which prevents many
of the issues that occur in pairwise classification.
The metrics presented here are an alternative to
pairwise-only metrics, which we hope will serve
as a foundation for further listwise temporal or-
dering work in the medical domain.
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