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Abstract

We compare the use of LSTM-based and
CNN-based character-level word embeddings
in BILSTM-CRF models to approach chem-
ical and disease named entity recognition
(NER) tasks. Empirical results over the
BioCreative V CDR corpus show that the use
of either type of character-level word em-
beddings in conjunction with the BiLSTM-
CRF models leads to comparable state-of-the-
art performance. However, the models using
CNN-based character-level word embeddings
have a computational performance advantage,
increasing training time over word-based mod-
els by 25% while the LSTM-based character-
level word embeddings more than double the
required training time.

1 Introduction

Bi-directional Long-Short Term Memory Condi-
tional Random Field models (BiLSTM-CRF), in
which a BILSTM is coupled with a CRF layer to
connect output tags, have been shown to achieve
state-of-art performance in sequence tagging tasks
including part of speech (POS) tagging, chunking,
and NER (Huang et al., 2015). The combination
of word embeddings and character-level word em-
beddings has been explored in this context, with
Ma and Hovy (2016) using Convolutional Neu-
ral Networks (CNNs) to construct character-level
word embeddings and Lample et al. (2016) apply-
ing LSTM networks. This work showed that the
use of character-level word embeddings improves
the performance of the models, by contributing the
ability to recognize unseen words.

Biomedical Named Entity Recognition (BNER)
is a vital initial step for information extraction
tasks in the biomedical domain, including the
Chemical-Disease Relationship (CDR) extraction
task where both chemical and disease entities must
be identified (Li et al., 2016). Character-level
word embeddings could be particularly signifi-
cant in this context, given that new entity names

are frequently created, and may follow consistent
patterns including productive morphology such as
common prefixes (e.g., di-) or suffixes (e.g., -ase).
Features that capture word-internal characteristics
have been shown to be effective for BNER tasks
in CRF models (Klinger et al., 2008).

Lyuetal. (2017) applied a BILSTM-CRF model
with LSTM-based character-level word embed-
dings to a gene and protein NER task, demonstrat-
ing state-of-art performance that outperformed tra-
ditional feature-based models. Luo et al. (2018)
further improved on this result on a chemical NER
task by adding an attention layer between the BiL-
STM and CREF layers (Att-BiLSTM-CRF).

In an experiment by Reimers and Gurevych
(2017b), optimal hyper-parameters for LSTM net-
works in sequence tagging tasks were explored,
with the finding that incorporation of character-
level word embeddings significantly improved
performance on NER tasks on general datasets
including CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003). However, the choice of
CNN-based (Ma and Hovy, 2016) or LSTM-based
character-level word embeddings (Lample et al.,
2016) did not affect the performance significantly.
Since the CNN has fewer parameters to train than
BiLSTM network, it is better in terms of training
efficiency, and was recommended as the preferred
approach.

In this paper, we implement and compare mod-
els with each type of word embedding to generate
empirical results for the tasks of chemical and dis-
ease NER, using the BioCreative V CDR corpus
(Li et al., 2016). These BNER categories are the
most searched entities in the biomedical literature
(Islamaj Dogan et al., 2009), and hence particu-
larly important to study.

The results show that models with CNN-based
character-level word embeddings achieve state-
of-the-art results comparable to LSTM-based
character-level word embeddings, while having
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the advantage of reduced training complexity,
demonstrating that the prior results also hold for
the BNER task.

2 Experimental methodology

This section presents our empirical approach to
comparing state-of-the-art neural network models
for chemical and disease NER.

2.1 Dataset

In our experiments, we use the BioCreative V
CDR corpus (Li et al., 2016). This corpus pro-
vides a set of 1000 manually-annotated abstracts
(9193 sentences) for training and development,
and another set of 500 manually-annotated ab-
stracts (4840 sentences) for test. In particular, we
used a pre-processed version of the CDR corpus
from Luo et al. (2018),! which provides predicted
POS-, chunking- and gazetteer-based tags:

e POS and chunking tags are predicted by the
GENIA tagger (Tsuruoka et al., 2005).2

e Gazetteer tags are encoded in BIO tagging
scheme based on matching to the external
Jochem chemical dictionary (Hettne et al.,
2009).

Following Luo et al. (2018), we randomly sam-
ple 10% from the set of 1000 abstracts for devel-
opment, and use the remaining for training.

2.2 Models

We use the following BiLSTM-CRF-based se-
quence labeling models:

e Baseline BILSTM model (Schuster and Pali-
wal, 1997; Hochreiter and Schmidhuber,
1997) which uses a softmax layer to predict
NER Iabels of input words.

e BiLSTM-CRF (Huang et al., 2015) extends
the BiILSTM model with a CRF layer which
allows the model to use sentence-level tag in-
formation for sequence prediction.

e BiLSTM-CRF + CNN-char (Ma and Hovy,
2016) extends the BILSTM-CRF model with
character-level word embeddings. For each
word, its character-level word embedding is
derived by applying a CNN to the character
sequence in the word.

"https://github.com/lingluodlut/
Att-ChemdNER

ttp://www.nactem.ac.uk/GENIA/tagger

39

Hyper-para. Value
Optimizer Nadam
Mini-batch size | 32
Clipping T=1
Dropout [0.25, 0.25]

Table 1: Fixed hyper-parameter configurations.

CNN-based LSTM-based
Hyper-para. Value Hyper-para. Value
charEmbedSize | 30 charEmbedSize | 30
Window size 3 BiLSTM layer | 1
# of filters 30 LSTM size 25
# of Params. 2,730 # of Params. 11,200

Table 2: Hyper-parameters for learning character-
level word embedding. ‘“‘charEmbedSize” and “# of
Params.” denote the vector size of character embed-
dings and the total number of parameters, respectively.

e BiLSTM-CRF + LSTM-char also extends
the BILSTM-CRF model with character-level
word embeddings which are derived by ap-
plying a BiLSTM to the character sequence
in each word (Lample et al., 2016).

Following Luo et al. (2018), we also consider
the impact of extra features including syntactic
features such as POS and chunking tags, and a
chemical term feature based on matching to an ex-
ternal gazetteer. Figure 1 illustrates the general
BiLSTM-CRF model architecture with character-
level word embeddings and additional features,
while Figure 2 illustrates CNN-based and LSTM-
based architectures for learning the character-level
word embeddings.

2.3 Implementation details

We used a well-known implementation of
BiLSTM-CRF-based models from Reimers and
Gurevych (2017b).>  We used the training set
to learn model parameters, the development set
to select optimal hyper-parameters, and the test
set to report final results. Here, we tune the
model hyper-parameters using the performance
across both NER categories (“Overall”) on the
development set.

We employed pre-trained 50-dimensional word
vectors from Luo et al. (2018). These pre-trained
vectors were derived by training the Word2Vec
skip-gram model (Mikolov et al., 2013) on a large
text collection of 2 million MEDLINE abstracts.

*https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf


https://github.com/lingluodlut/Att-ChemdNER
https://github.com/lingluodlut/Att-ChemdNER
http://www.nactem.ac.uk/GENIA/tagger
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
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Figure 1: Architecture of BILSTM-CRF models with character-level word representations and additional features.

This figure is adapted from Reimers and Gurevych (2017a).
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Figure 2: Character-level word representations. This figure is also adapted from Reimers and Gurevych (2017a).

Reimers and Gurevych (2017b) showed that the
BiLSTM-CRF model achieved best performance
with 2 BiLSTM layers. Therefore, in our exper-
iment, we only evaluated models up to 2 stacked
BiLSTM layers. The size of LSTM hidden states
in each layer was selected from [100, 150, 200,
250]. We achieved the highest F1 score on the de-
velopment set when using 250-dimensional LSTM
hidden states for all models.

By default, each of the additional features (POS,
chunking tags, gazetteer match tag) was incorpo-
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rated into the model via a 10-dimensional embed-
ding. Other hyper parameters were also fixed as in
Reimers and Gurevych (2017b) during initializa-
tion. See tables 1 and 2 for more details.

In the training process, we used the score on de-
velopment set to assess model improvement. Early
stopping was applied if there was no improvement
after 10 epochs. The threshold for a word that was
not in the word embedding vocabulary to be added
into the embedding was set to 5. The average
training time for each epoch was also recorded.



Model Chemical Disease Overall
P R Fy P R Fq P R Fq

BiLSTM 87.48 91.61 89.50 | 78.22 83.54 80.80 | 83.26 87.97 85.55
BiLSTM + CNN-char 90.65 90.70 90.67 | 79.34 82.66 80.97 | 85.44 87.07 86.25
BiLSTM + LSTM-char 90.47 91.64 91.05 | 79.43 83.97 81.64 | 8537 88.18 86.76
BiLSTM-CRF 90.75 90.96 90.86 | 80.74 83.75 82.21 | 86.15 87.71 86.92
BiLSTM-CRF + CNN-char 91.64 9224 9194 | 81.42 84.67 83.01 | 86.95 88.83 87.88
BiLSTM-CRF + LSTM-char 92.08 91.79 91.94 | 81.48 8422 8283 | 87.20 88.38 87.79
BiLSTM-CRF, Gazetteer 92.26 91.01 91.63 | 81.87 82.19 82.03 | 87.53 87.03 87.28
BiLSTM-CRF, Gazetteer+ CNN-char 92.62 92.03 9232 | 80.72 8528 82.94 | 87.07 88.99 88.02
BiLSTM-CRF, Gazetteer + LSTM-char 92.11 9233 9222 | 82.13 83.66 82.89 | 87.57 88.42 87.99
Att-BiLSTM-CRF (LSTM-char) (Luo et al., 2018) 92.88 91.07 91.96 | - - - - - -
Att'BiLSTM‘CRFPOS+Chunking+Gazelleer (LSTM-char) | 93.49 91.68 92.57 | - - - - - -
TaggerOne (Leaman and Lu, 2016) [é#] 94.2 88.8 914 852 802 826 | - - -
tmChem (Leaman et al., 2015) [#] 932 840 884 |- - - - - -
Dnorm (Leaman et al., 2013) [#] - - - 820 795 807 |- - -

Table 3: Results (in %) on the test set. [#] denotes results reported on a 950/50 training/development split rather
than our 900/100 split. As indicated, Att-BiLSTM-CRF used LSTM-char word embeddings.

3 Main results

3.1 Baseline results

Table 3 presents our empirical results. The first
three rows show the performance of baseline mod-
els without the CRF layer, the next three rows
show the performance of BiLSTM-CRF models
without additional features, and then the next three
rows show the results for BILSTM-CRF models
with additional gazetteer features.

As the empirical results in Table 3 show,
the model with CNN character-level embeddings
(CNN-char) and the model with LSTM character-
level embeddings (LSTM-char) achieved similar
overall F1 scores (87.88% and 87.79%, respec-
tively), outperforming BiLSTM-CRF by approx-
imately 1% in absolute terms. In particular, on
chemical NER, both BiLSTM-CRF-based models
with character-level word embeddings obtained
the same F1 score (91.94%), while on disease
NER the model with CNN-char obtained slightly
higher performance (83.01%) than the model with
LSTM-char (82.83%). All models with the CRF
layer outperformed their respective baseline Bil-
STM models in F1 scores for all entity categories.

3.2 Effect of additional features

When incorporating additional POS and chunking
features into three baseline BiLSTM-CRF-based
models, we found that no performance improve-
ment based on the baseline models was observed.

On chemical NER, the additional gazetteer
feature improved the baseline BiILSTM-CRF by
about 0.8% while it only improved the baselines
BiLSTM-CRF + CNN-char and BiLSTM-CRF +
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LSTM-char by about 0.3%, thus clearly indicat-
ing that character-level word embeddings can cap-
ture unseen word information. Considering both
NER categories together (“Overall”), the best per-
formance was also obtained when the gazetteer
feature was added, reaching overall F1 scores of
88.02% and 87.99%, respectively, for the two
CNN-based and LSTM-based character-level em-
bedding models.

3.3 Comparison with prior work

The performance comparison between our
BiLSTM-CRF-based models and other machine
learning approaches to the two studied NER tasks
is also shown in Table 3. The pattern of chemical
NER outperforming disease NER is consistent
across all tools.

The Att-BiLSTM-CRF model (Luo et al.,
2018) used a BiLSTM-CRF model with LSTM
character-level word embedding and an additional
attention layer. It achieved an F1 score of 91.96%
on chemical NER without additional features. The
positive effect of a gazetteer feature was also ob-
served in their results; the model with syntac-
tic and gazetteer features reached an F1 score of
92.57%. Note that the datasets used in this paper
might not be exactly the same as ours due to ran-
dom sampling.

The last three rows of Table 3 show the re-
sults presented in Leaman and Lu (2016), where
950 of the abstracts were used for training and 50
for development (cf. our 900/100 split). Dnorm
(Leaman et al., 2013) is a model based on pair-
wise learning to rank on disease name normaliza-
tion, which achieved F1 score of 80.7% on disease



NER. The tmChem (Leaman et al., 2015) is based
on CRF; using numerous hand-crafted features it
reached an F1 score of 88.4% on chemical enti-
ties. As a semi-Markov model with a richer set of
features for NER tasks, TaggerOne (Leaman and
Lu, 2016) achieved F1 score of 91.4% and 82.6%
on chemical and disease entities, respectively.

Compared to previous non-deep-learning meth-
ods using CRFs, the BILSTM-CRF models have
significant advantage on F1 score of both chemical
and disease entities, primarily due to improvement
on recall.

3.4 Discussion

In our experiment on the effect of additional fea-
tures, we found that syntactic features such as POS
and chunking information did not have clear pos-
itive effect on the performance. In contrast, the
match/partial match between words and entries in
the chemical gazetteer is a good indicator for the
presence of chemical entities. Since the Jochem
dictionary contains only chemical entities, it is not
surprising that the performance on diseases was
not substantially impacted by adding the gazetteer
feature, although some small variations in perfor-
mance can be observed, likely due to changed in-
fluences from neighboring terms.

The empirical results shown that models using
either CNN-char or LSTM-char achieve a similar
overall F1 score on chemical and disease NER.
The results are further comparable with other
state-of-the-art models. This indicates that these
character-level models have sufficient complexity
to learn the generalizable morphological and lexi-
cal patterns in biomedical named entity terms.

On the other hand, as shown by the substan-
tial differences in the number of parameters in Ta-
ble 2, CNN (LeCun et al., 1989) has the advan-
tage of reduced training complexity as compared
to the LSTM models (Hochreiter and Schmidhu-
ber, 1997) under similar experimental settings. In
our experimental environment, the execution time
of the model with LSTM-char increased 115% rel-
ative to the baseline BILSTM-CRF model, while it
only increased by 25% for with CNN-char, as de-
tailed in Table 4. Therefore, consistent with prior
results on general NER, we conclude that CNN-
based embeddings are preferable to LSTM-based
embeddings for BNER.

We analyzed the error cases of the CNN-char
and LSTM-char models without additional fea-

42

Model Avg. Runtime per | A
Epoch (seconds)
BiLSTM-CRF 106 0
+ CNN-char | 134 +26 %
+ LSTM-char | 229 +115%

Table 4: Training time of best performing models (2
BiLSTM layers and 250 LSTM units), computed on a
Intel Core i5 2.9 GHz PC.

tures: 3326 and 3271 words were incorrectly pre-
dicted using CNN-char and LSTM-char, respec-
tively, with 2138 mistakes in common. In errors
which only was made by one of the two models,
we found that CNN-char made more false posi-
tive predictions and fewer false negative predic-
tions, while LSTM-char made approximately an
even number of the two kinds of false predictions.

The relationship between the length of words
and these errors was also explored. For words less
than 20 characters in length, the distribution of er-
rors is almost identical for the two models. How-
ever, for longer words, the model with LSTM-char
tends to make more mistakes. This supports prior
observations that LSTM can be difficult to apply to
long sequences of input (Bradbury et al., 2017). In
approximately 50% of error cases, the word length
is short, less than 5 characters. Short biomedical
named entities are usually abbreviations and tend
to be out-of-vocabulary terms, and are therefore
particularly difficult for the character-level word
embedding models to capture (Habibi et al., 2017).

4 Conclusion

We compared the performance of BiLSTM-
CRF models with CNN-based and LSTM-based
character-level word embeddings for biomedical
named entity recognition. We confirmed previ-
ously published results on chemical and disease
NER that demonstrate that character-level em-
beddings are helpful. We further show empiri-
cally, generalizing prior results for general NER
to the biomedical context, that there is little differ-
ence between the two approaches: both types of
character-level word embeddings achieved identi-
cal F1 score on the chemical NER task, and simi-
lar performance on disease NER (with CNN-char
showing a slight performance advantage). How-
ever, the CNN embeddings show a substantial ad-
vantage in reduced training complexity.
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