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Abstract

Recently, segment convolutional neural net-

works have been proposed for end-to-end rela-

tion extraction in the clinical domain, achiev-

ing results comparable to or outperforming the

approaches with heavy manual feature engi-

neering. In this paper, we analyze the errors

made by the neural classifier based on confu-

sion matrices, and then investigate three sim-

ple extensions to overcome its limitations. We

find that including ontological association be-

tween drugs and problems, and data-induced

association between medical concepts does

not reliably improve the performance, but that

large gains are obtained by the incorporation

of semantic classes to capture relation triggers.

1 Introduction

The extraction of relations from clinical notes is

a fundamental clinical NLP task, crucial to sup-

port automated health care systems and to enable

secondary use of clinical notes for research (Wang

et al., 2017). In clinical relation extraction, the

2010 i2b2/VA challenge dataset has been by far the

most widely used. Three categories of relations are

annotated in discharge summaries: those between

medical treatments and problems (TrP)1, between

tests and problems (TeP)2 and between pairs of

problems (PP)3 (Uzuner et al., 2011). Many sys-

tems participating in the shared task used carefully

crafted syntactic and semantic features, sometimes

in combination with rules (Grouin et al., 2010; Rink

et al., 2011). Recently, neural network approaches

have been applied to this task, where they serve as

feature extractors, with a softmax layer for classifi-

cation. In this case, human-engineered or external

features are usually not included. Two examples

1Tr[A|C|I|NA|W]P: treatment {administered for, causes,
improves, not administered because of, worsens} a problem.

2Te[C|R]P: test {conducted for, revealed} a problem.
3PIP: problem indicates a medical problem.

on which we base our work are Sahu et al. (2016)

and Luo et al. (2017), who achieve results sim-

ilar to or better than the best-scoring approaches

participating in the i2b2 challenge. They use convo-

lutional neural networks, in which a convolutional

unit processes a piece of text segment (SegCNN) in

a sliding window manner, and then applies a max-

pooling operation to provide the hidden features.

In Sahu et al. (2016), the unit of text is simply a

sentence, and the CNN constructs a global repre-

sentation. On the other hand, Luo et al. (2017)

argue that since multiple relations can occur in a

single sentence, one representation is not sufficient.

Therefore, they break the sentence into segments,

so the encoding and the pooling operations apply

to one segment at a time. Each sentence consists of

five segments: tokens preceding the first concept

c1; c1 itself; tokens between c1 and c2; concept c2;

and the tokens following it. This idea is related to

dynamic pooling, known from previous event ex-

traction work on the ACE 2005 dataset (Chen et al.,

2015). More generally, the extension of neural

networks with background information have been

studied, inter alia, for text categorization, natural

language inference, and entity and event extraction

(K. M. et al., 2018; Yang and Mitchell, 2017).

In our work, we aim to boost the performance of

a SegCNN classifier by first identifying its weak-

est points in a confusion matrix analysis, and then

addressing these with external linguistic and do-

main features. We observe as much as a 6 point

improvement in % F1 by a simple addition of se-

mantic classes; a modest improvement with PMI

features for PP relations; and no effect when adding

association information between drugs and prob-

lems. We make the code, which is a modification of

Luo et al. (2017)’s implementation of segment con-

volutional neural networks, available at https:

//github.com/SimonSuster/seg_cnn.

https://github.com/SimonSuster/seg_cnn
https://github.com/SimonSuster/seg_cnn
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None 980 86 15 3 7 0

TrAP 139 423 5 3 3 0

TrCP 48 27 69 0 0 0

TrIP 11 12 1 16 0 0

TrNAP 11 24 3 0 7 0

TrWP 11 16 5 4 1 4

(a) TrP relations.

g\s None TeCP TeRP

None 575 17 294

TeCP 41 52 36

TeRP 89 9 612

(b) TeP relations.

g\s None PIP

None 2544 135

PIP 122 343

(c) PP relations.

Table 1: Confusion matrices for different relation cat-

egories of the base SegCNN. The first diagonal repre-

sents the number of correctly classified relations, and

is shown in bold. The colored cells highlight low sensi-

tivity (blue), hallucinating relations (green) and confus-

able relations (orange).

2 Analysis of limitations

To better understand the limitations of a SegCNN

extractor, we analyze its results with confusion ma-

trices. In Table 1, we use color coding to point

to three types of challenges: a) poor sensitivity

(blue cells), which are errors due to the classifier’s

conservativeness in proclaiming a relation; b) “hal-

lucinating” relations (green), which are precision

errors where relations should not be identified; and

c) confusable relations (orange), where we see

that the TrCP relation is often classified as TrAP

(27/69 times), and similarly for the other treatment-

problem relations. This is especially true for the

less frequent relations TrNAP and TrWP, where the

correct predictions are outnumbered by the cases

wrongly predicted as TrAP. The TrAP predictions

by the system account for the most mistakes. We

can see from the number of a) and b) errors on

the TrP relations—76% of all mistakes made by

the model—that identifying the presence of a rela-

tion is more challenging than type classification of

relations, cf. Rink et al. (2011). Similar observa-

tions can be made about the test-problem relations.

For example, TeCP is frequently confused with

TeRP (36), and the TeRP type is often hallucinated

(294). Overall, determining the presence of a rela-

tion is more difficult than discriminating between

TeCP and TeRP as 91% of mistakes are only due

to detection. This number is higher here than for

TrP relations since we are dealing with a smaller

number of relation types, which causes less con-

fusion in class assignment. For problem-problem

relations, the matrix shows the model is somewhat

more likely to predict the relation spuriously than

to miss the relation.

In a qualitative analysis, we find that relations

are often unrecognized in sentences with several

(coordinated) concepts:

(1) she also had climbing bilirubin [. . . ] and

was started on zosyntr for suspected biliary

obstruction and ascending cholangitispr
coverage . (gold: TrAP)

Relations can be hallucinated especially when two

concepts may seem to be associated, but the knowl-

edge of syntax or the domain tells us they are not:

(2) the patient was treated with tylenol orallytr
as well as ativan for anxietypr that she had

about going home (gold: none)

Here, medical knowledge of compatibility between

drugs and problems could help, e.g. that tylenol

is not indicated for anxiety, but ativan is. In the

following example, the classifier wrongly predicts

TeCP, although there is a clear cue for the correct

relation TeRP in the predicate (“found”):

(3) during initial evaluationte for a coronary

artery bypass graft , 80% to 90% of the

right coronary artery stenosispr was found

3 Addressing the limitations

To deal with poor sensitivity and hallucinated re-

lations mentioned above, we introduce simple do-

main knowledge in the form of association between

a pair of concepts. We collect the association infor-

mation either from an ontology (§ 3.1) or induce it

from the data (§ 3.2). To increase the discrimina-

tory power of the extractor to differentiate between

the relations, we incorporate a semantic class fea-

ture which could give the classifier an explicit cue

about the presence of a relation (§ 3.3).
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Figure 1: Results per relation category in percentage F1. The reported scores are averaged over 20 runs, and the

95% confidence intervals are shown.

3.1 Drug-problem association (Drugbank)

We use Drugbank (Wishart et al., 2017) to obtain a

compatibility score between a drug treatment and

a problem. We create a mapping from all drug

names, synonyms and product names, to their indi-

cations. We also extract a mapping between drugs

and their adverse reactions. In this way, we obtain

71,683 drug names, 3108 indications and 1163 ad-

verse reactions. If there is a match for an observed

treatment-problem pair in the drug-indication map-

ping, we simply assign a value of 1 (and scale it, as

explained in Appendix) and -1 otherwise. Consider

the example where we consider creating a relation

between neurontintr and seizure historypr. In the

indication for neurontin from Drugbank, seizures

are mentioned as a possible medical problem, so

this type of information could serve as background

evidence for the classifier. The adverse drug ef-

fects represent a separate feature and are included

in the same way. Due to low coverage of the drug-

problem features for the treatment-problem concept

pairs in the data (416 pairs are found, out of 7699),

we also investigate a more general, data-induced

approach, described next.

3.2 Concept-concept association (PMI)

We obtain association scores for concept pairs in

all relation types by estimating a pointwise mutual

information (PMI) model on a large corpus. We

use the MIMIC-III corpus (Johnson et al., 2016) to

compute the PMI for the co-occurring concepts.

We first recognize clinical concepts in MIMIC-

III using CLAMP (Soysal et al., 2017), and use

Ucto (Van Gompel et al., 2012) for preprocess-

ing. We then collect the counts, where two con-

cepts are taken as co-occurring if they are men-

tioned in the same sentence, irrespective of the

ordering. If found, we remove any determiners

and pronouns. The concept type identified by

CLAMP is appended to its mention. For a con-

cept pair in our data, we perform a type-sensitive

and order-insensitive lookup. In case of no match,

we back-off by gradually removing up to two left-

most tokens. We find that the coverage lies be-

tween 68–82% depending on the relation category

and the dataset split, and that the highest coverage

applies for PP relations. The concept-concept as-

sociation for relation extraction has been studied

previously by Demner-Fushman et al. (2010) and

de Bruijn et al. (2011), who used Medline R© as the

resource, whereas we achieved better results and

coverage on the development set with MIMIC-III

than Medline R©.

3.3 Semantic classes

The semantic classes can provide cues about the

relation types present in the sentence and facilitate

distinguishing between different TrP and TeP rela-

tions4. We obtain the classes with WordNet (Miller,

1995) and an online thesaurus5. This was a man-

ual process, in which we looked up the synonyms

for all relation type names. For the seven TrP and

TeP relation types, a hundred lexical triggers were

obtained in total. For example, {show, reveal, dis-

play. . .} belong to the “revealing” class indicative

of the TeRP relation. Lexical triggers are matched

to their semantic classes if they occur in the non-

concept sentence segments. We find that for TrP

relations, matching only with the middle segment

works best, but for TeP, the preceding, middle and

succeeding segments work best.

4We do not use semantic classes for PP since there is only
one relation type, PIP.

5en.oxforddictionaries.com

en.oxforddictionaries.com
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Figure 2: A comparison of counts between a SegCNN

and a model using either semantic classes or PMI fea-

tures, for different relation categories.

4 Results

In our experiments, we use different data splits

from those used in Luo et al. (2017) to increase

the size of the training part and to also create a

development set. The details, including the experi-

mental setting, can be found in the Appendix. For

the results using the vanilla SegCNN, we retrain

the original models by Luo et al. (2017) and report

their performance on our data splits. This gives

us the results which are a few points lower on TrP

and TeP relations, but also few points higher on PP

relations, than the results reported in their paper.

We show the results in Figure 1, where % F1

is reported for different relation categories. Over-

all, the highest scores are achieved on TeP rela-

tions. The addition of semantic classes helps the

most, with an improvement of almost 7 points over

SegCNN for TrP, and 6 points for TeP relations. We

think the advantage comes from the fact that the

relation triggers are represented explicitly as the in-

put to the classifier, whereas in the case of the base

SegCNN, the classifier can only rely on a dense

vectorial representation, which captures the trigger

words more fuzzily. The contribution of the associa-

tion features is less pronounced. The drug-problem

(SemClass) and concept-concept (PMI) features

have a small positive effect for TrP relations, with

PMI working best (+0.5) for PP relations, where

the coverage is the highest.

We now have a detailed look at the effect of

the individual features. For this, we contrast the

confusion matrix obtained from the base SegCNN

with the confusion matrix of an extended model,

where these matrices represent counts averaged

over 20 runs. We obtain a new, contrasted matrix

by subtracting the SegCNN matrix from that of the

extended model, and display it as a heat map. An

extension works well when the counts in the first di-

agonal are positive, and all the remaining counts are

negative. In Figures 2a and 2b, we see an increase

in correct classifications for semantic class features

across all relation types, which speaks about the

generality of this feature. The sensitivity for all

relations has also increased (first column) as there

are fewer true relations that remained unidentified.

However, the counts of the less frequent relations

(TrIP, TrNAP and TrWP) have shifted to incorrect

relations (note the pale-red cells in the lower left

corner of 2a). The improvements are the most ob-

vious for the most frequent relations (TrAP and

TeRP), with a clear increase in sensitivity, and a re-

duction in the number of unrelated (None) concepts

classified as either TrAP or TeRP. The confusion

matrix comparison for the problem-problem asso-
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ciation (PMI) feature is shown in Figures 2c and

2d.6 For TeP relations, we see that the addition of

this feature type helps in reducing the number of

hallucinated relations (first row), but at the expense

of sensitivity—note that several relations are left

unidentified (the counts in the TeCP and TeRP in

the first column increased). A slight positive effect

of PMI features can be seen for the PP relation,

where the model becomes less prone to proclaim

unrelated concepts as related (first row). Based on

these figures, we can conclude that the PMI feature

helps in deciding whether a pair of concepts should

be linked with a relation or not, but does not have

sufficient power to distinguish between different

relations.

In conclusion, results show that the SegCNN

model often misses, hallucinates or confuses rela-

tions, and that including semantic classes for rela-

tion triggers helps for different relation types.
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A Supplemental Material

A.1 Experimental setup

Luo et al. (2017) used a part of the i2b2/VA dataset

that is no longer available to those requesting the

dataset. We therefore only have 170 documents for

training and 256 documents for testing. Since our

goal is to build an accurate relation extractor, we

re-balance the dataset by increasing the size of the

training corpus, reducing the size of the test set and

creating a small development set. The sizes of the

final splits are shown in Table 2. In all our exper-

iments, we use the gold-standard concept annota-

tions, and train one classifier per relation category.

Hyper-parameters We use the same set of

hyper-parameters as Luo et al. (2017), except that

we turn off the drop out on the final layer of the

classifier network, which harmed the performance

in our experiments on the development set. We also

noticed that scaling of the added features positively

affected the results, so we tuned the scaling factor

as well.
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Figure 3: A comparison of counts between a base

SegCNN and a model extended with PMI features, for

different relation categories.

Embeddings We trained the word embeddings

on a combination of PubMed abstracts, open-

access PMC articles (Hakala et al., 2016) and

MIMIC-III intensive care notes (Johnson et al.,

2016), all segmented and tokenized, totaling

around 9 billion tokens. We induce the embed-

dings using word2vec’s CBOW model (Mikolov

et al., 2013) and the default parameters, except for

dimensionality, which we set to 200 for TrP rela-

tions, 500 for TeP and 400 for PP relations, as in

Luo et al. (2017).

A.2 Supplementary results

The additional results from a contrastive confusion

matrix analysis are shown in Figure 3 for the PMI

extension, and in Figure 4 for the model with the

added drug-treatment association feature.
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