Limitations in learning an interpreted language with recurrent models
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Abstract

In this submission I report work in progress
on learning simplified interpreted languages
by means of recurrent models. The data is
constructed to reflect core properties of nat-
ural language as modeled in formal syntax
and semantics. Preliminary results suggest
that LSTM networks do generalise to compo-
sitional interpretation, albeit only in the most
favorable learning setting.

Motivation. Despite showing impressive per-
formance on certain tasks, neural networks are still
far from showing natural language understanding
at a human level, cf. Paperno et al. (2016). In a
sense, it is not even clear what kind of neural ar-
chitecture is capable of learning natural language
semantics in all its complexity, with recurrent and
convolutional models being currently tried on var-
ious tasks.

One can hope to make progress towards the
challenging goal of natural language understand-
ing by taking into account what is known about
language structure and language processing in hu-
mans. With this in mind, it is possible to formulate
certain preliminary desiderata for an adequate nat-
ural language understanding model.

First, language processing in humans is known
to be sequential; people process and interpret lin-
guistic input on the fly, without any lookahead and
without waiting for the linguistic structure to be
completed. This property, which has serious po-
tential consequences for the cognitive architecture
(Christiansen and Chater, 2016), gives a certain
degree of cognitive plausibility to unidirectional
recurrent models compared to other neural archi-
tectures, at last in their current implementations.

Second, natural language can exploit recursive
structures: natural language syntax consists of
constructions, represented in formal grammars as
rewrite rules, which can recursively embed other

constructions of the same kind. For example, noun
phrases can in principle consist of a single proper
noun (e.g. Ann) but can also, among other pos-
sibilities, be built from other noun phrases recur-
sively via the possessive construction, as in Ann’s
child, Ann’s child’s friend, Ann’s child’s friend’s
parent etc. The possessive construction can be de-
scribed by the rewrite rule NP — NP’s N.

Third, the recursive syntactic structure drives
compositional semantic interpretation. The mean-
ing of the noun phrase Ann’s child’s friend is not
merely the sum of the meanings of the individual
words (in which case it would have been semanti-
cally equivalent to Ann’s friend’s child). Rather,
to interpret a complex expression correctly, one
has to follow the syntactic structure, first identify-
ing the meaning of the smaller constituent (Ann’s
friend), and then computing the meaning of the
whole on its basis.

Fourth, semantic compositionality can be for-
malized as function application, with one con-
stituent in a complex structure corresponding to
an argument of a function that another constituent
encodes. For instance, in Ann’s child, we can
think of Ann as denoting an individual and child as
denoting a function from individuals to individu-
als. In formal semantics, function argument appli-
cation as a semantic compositionality mechanism
extends to a wide range of syntactic constructions.

Finally, natural language interpretation, while
being sensitive to syntactic structure, is robust
to syntactic variation. For example, humans are
equally capable of learning to interpret and using
left-branching structures such as NP — NP’s N
(Ann’s child) and right-branching structures such
as NP — the Nof NP (the child of Ann).

The task. To summarize, in order to mimic hu-
man language capacities, an artificial system has
to be able to learn interpreted languages with com-
positionally interpreted recursive structures, while
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being adaptive to surface variation in the syntactic
patterns. To test whether neural systems can fit the
bill, we define toy interpreted languages based on
a fragment of English. The vocabulary includes
four names (Ann, Bill, Dick, George), interpreted
as individual identifiers, four function-denoting
nouns (child, parent, friend, enemy), and gram-
matical elements (of, ’s, the). Our languages con-
tain either left-branching (NP — NP’s N, Ann’s
child) or right-branching structures (the child of
Ann, NP — the N of NP).

The interpretation is defined model-
theoretically. We randomly generate a model
where each proper name corresponds to a dis-
tinct individual and each function denoted by a
common noun is total. In such a model, each
well-formed expression of the language is inter-
preted as an individual identifier. The denotation
of any expression can be calculated by recursive
application of functions to arguments, guided by
the syntactic structure of the expression.

The task given to the neural systems is to iden-
tify the individual that corresponds to each expres-
sion; e.g. Ann’s child’s friend is the same person as
George. Since there is just a finite number of indi-
viduals in our models, this boils down formally to
a string classification task, assigning each expres-
sion to one of the set of individuals in the model.

Systems and data. We tested two standard sys-
tems: a vanilla recurrent neural network (RNN)
and a long short-term memory network (LSTM)
on the task. Both systems were implemented in
PyTorch and used hidden layers of 256 units.

We used all expressions of the language up to
complexity n as experimental data; development
and testing data was randomly selected among
examples of maximal complexity. Examples of
smaller complexity, i.e. 1 and 2, were always in-
cluded in the training partition since they are nec-
essary to learn the interpretation of lexical items.
We also set a curriculum whereby the system was
at first given training examples of minimal com-
plexity, with more complex examples added grad-
ually in the process of training.

Results and discussion. We found the RNN
system to struggle already at a basic level; it
never achieved perfect accuracy even for mini-
mally complex structures (e.g. Ann’s child), so as-
sessing its recursive compositionality abilities is
out of question. Accuracies across LSTM experi-
mental setups are summarized in Table 1.
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branching 3 5 6 7
right branching 0 .17 21 .23 .26
left branching 1 1 1 1

left, slow curriculum | .17 33 96 1 1
left, no curriculum A7 21 19 21 .26

Table 1: System accuracy as a function of the lan-
guage, curriculum and data complexity. Random base-
line is .25.

rec.in train 0.0 02 04 06 0.8
average accuracy | 0 .65 .67 .92 .98

Table 2: Percentage of complexity 3 data included in
training data vs. average test accuracy over 10 runs.

We find that LSTM does learn to do composi-
tional interpretation in our task, but only in the best
scenario. First, and unsurprisingly, a curriculum
is essential for the LSTM to generalize to unseen
compositional examples. Informally, the system
has to learn to interpret words first, and recursive
semantic composition has to be learned later.

Second, although the recurrent architecture
seems naturally adapted for processing complex
left-branching structures, the system has to be
trained on a lot of examples of composition before
it generalizes; cf. Table 2. Unlike (presumably) in
humans, recursive compositionality does not come
for free and has to be learned from extensive data.
This observation goes in line with other findings in
related literature (Liska et al., 2018; Hupkes et al.,
2018; Lake and Baroni, 2017).

Third, the LSTM only generalized correctly
in the case of left-branching structures; for right
branching, the accuracy of recursive composition
in the end stays just above the chance level (25%).
This means that the system only learned to apply
composition following the linear sequence of the
input and failed when the order of compositional-
ity as determined by the syntactic structure runs
opposite to the linear order.

The last two observations suggest that learning
recursive structure remains a challenge for LSTM
networks, which excel only in sequential, left-to-
right processing. If recursion, as has been claimed,
is a core distinguishing property of human lan-
guage and cognition (Hauser et al., 2002; Chom-
sky, 2014), we may need to ensure that learning
systems designed for language incorporate proper
biases towards recursive processing.
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