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Abstract

The decision making processes of deep net-
works are difficult to understand and while
their accuracy often improves with increased
architectural complexity, so too does their
opacity. Practical use of machine learning
models, especially for question and answering
applications, demands a system that is inter-
pretable. We analyze the attention of a mem-
ory network model to reconcile contradic-
tory performance on a challenging question-
answering dataset that is inspired by theory-
of-mind experiments. We equate success on
questions to task classification, which explains
not only test-time failures but also how well
the model generalizes to new training condi-
tions.

1 Reasoning about Beliefs

Possessing a capacity similar to human reasoning
has been argued to be necessary for the success
of artificial intelligence systems (e.g., Levesque
et al., 2011). One well-studied domain that re-
quires reasoning is question answering, where
simply memorizing and looking up information is
often not enough to correctly answer a question.

Recent research has focused on developing
neural models that succeed in such scenarios
(Sukhbaatar et al., 2015; Henaff et al., 2017). As
a benchmark to evaluate these models, Weston
et al. (2016) released a dataset – Facebook bAbi
– that provides a set of toy tasks, each examining
a specific type of reasoning. However, the bAbi
tasks are already too simple for the current mod-
els, which fail at only one or two (out of 20) tasks
(Rae et al., 2016; Santoro et al., 2017).

Considering humans’ reasoning abilities can
provide inspiration for more complex tasks. Peo-
ple reason not just about their own observations
and beliefs but also about others’ mental states
(such as beliefs and intentions). The capacity to

recognize that others can have mental states dif-
ferent than one’s own – theory of mind – marks
an important milestone in the development of chil-
dren and has been extensively studied by psychol-
ogists (for a review, see Flavell, 2004). Recently,
Nematzadeh et al. (2018) released a dataset in-
spired by the theory-of-mind experiments from
Baron-Cohen et al. (1985). The dataset is based on
three tasks designed to capture increasingly com-
plex theory-of-mind reasoning: true-, false-, and
second-order false-belief tasks. Examples of each
task type are given in Figure 1. In the true-belief
task, Sally observes the world and as a result she
has a first-order true-belief about the location of
the milk – her belief matches reality. In the false-
belief task, Sally’s first-order belief differs from
reality (i.e., she has a false-belief ) because she was
absent when the state of the world changed. In the
second-order false-belief task, Sally observes the
new location of the milk; thus, she has a true-belief
about the milk’s location. However, Anne’s belief
about Sally’s mental state does not match reality
because Anne does not know that Sally has ob-
served the change in the environment. As a result,
Anne has a false belief about Sally’s beliefs.

The dataset from Nematzadeh et al. (2018) con-
tains 4 question types: 2 related to world state and
2 related to beliefs (Table 1). These questions en-
able us to test whether a model can reason about
first-order and second-order beliefs and know the
initial and current location of an object; thus, we
can distinguish between when a model answers a
question by chance and when it actually under-
stands the entire state of the world. Table 2 gives
the answers for the 12 combinations of task type
and question. Our analysis will focus on the two
belief questions proposed.

We use these tasks to generate a training set
with 10 000 examples with each of the 12 com-
binations of task and question types, randomly
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Figure 1: The attention of MemN2N in response to first-order (all left) and second-order (all right) belief
questions. To correctly answer the second order belief question, the model needs to identify the true
belief task from other tasks (see Table 2). To this end, the model can use the presence of “exit” to classify
true-belief from non-true-belief tasks. There is no analogous identifier for the first-order question, where
the model fails.

Memory Where was the milk at the beginning?
Reality Where is the milk really?
First-order Where will Sally look for the milk?
Second-order Where does Sally think that Anne searches for the milk?

Table 1: Examples of the four question types.

True Belief False Belief Second-Order FB

Memory first first first
Reality second second second
First-order second first second
Second-order second first first

Table 2: The correct answer to each question. Here, “first”
and “second” are the the initial and actual locations of the
object of interest.

grouped into sets of 5 to form stories. Each story
in the test set contains 4 tasks, but there is only one
question present at the end. Because questions that
come closer to the beginning of a story have fewer
distractors (i.e., potential answer words) that may
confound a model, they are easier to answer.

2 Experiments

We train MemN2N (Sukhbaatar et al., 2015)
jointly over all task types without noise, but eval-
uate success on a test set with noise sentences
generated randomly at different positions (i.e.
ToM (noised)). We first examine how the model
performs across a range of parameter and initial-
ization values. Because MemN2N models are very
sensitive to the network initialization, for each set
of parameters, the best result out of 10 runs is used
for each configuration of hyperparameters. To un-
derstand why failures occur, we plot the average
attention over all instances of each task-question
combination. Figure 1 shows the average attention
of the best performing 3-hop model on the first-
order (left) and second-order (right) belief tasks.
Only the attention over memory slots with relevant

story sentences is displayed.
Surprisingly, the model is successful on the

“harder” second-order belief question but not on
the first-order one. Indeed, the pattern of atten-
tion across hops in response to the second-order
belief question is more varied across task condi-
tions and attends to sentences that provide infor-
mation about agents’ transition in the world (i.e.,
“Sally exited the kitchen”). On the other hand, the
left hand side of the figure shows that, in response
to the first-order belief question, the attention is
not sensitive to the task type (i.e., true-, false- or
second-order- belief).

Considering each belief question as a task clas-
sification, as shown in Table 2, can explain this
result. The answer to the first-order question is
different for false-belief and second-order false-
belief tasks while it is the same for the second-
order question. Given the similarity of these 2
tasks (e.g., Sally moves between rooms in both
tasks, both contain the word “exited”), the “clas-
sification” problem is much easier when the two
questions have the same answer. To answer the
first-order question correctly – where the answers
are different for the false-belief and second-order
false-belief tasks – the model needs to learn to dis-
tinguish between between these very similar tasks.

To further test this hypothesis, we created an in-
accurate version of the ToM dataset where the an-
swer to the false belief question was modified to be
the second location of the object as opposed to the
first. With the difficulty of classifying false-belief
from second-order false belief tasks removed, the
models were able to successfully answer all of the
first order belief questions.
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