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1 Introduction

A glut of recent research shows that language
models capture linguistic structure. Linzen et al.
(2016) found that LSTM-based language models
may encode syntactic information sufficient to fa-
vor verbs which match the number of their subject
nouns. Liu et al. (2018) suggested that the high
performance of LSTMs may depend on the lin-
guistic structure of the input data, as performance
on several artificial tasks was higher with natural
language data than with artificial sequential data.

Such work answers the question of whether a
model represents linguistic structure. But how
and when are these structures acquired? Rather
than treating the training process itself as a black
box, we investigate how representations of linguis-
tic structure are learned over time. In particular,
we demonstrate that different aspects of linguistic
structure are learned at different rates, with part
of speech tagging acquired early and global topic
information learned continuously.

2 Methods

2.1 Concentration

We measure the degree to which a neural network
has “structured” its representation x of a particular
word in a sequence through concentration.
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The more similar in value the cells of z are, the
smaller its 12/11 ratio is. Thus if a neural network
relies heavily on a small number of cells in an acti-
vation pattern, the activation is very concentrated.
Likewise, a concentrated gradient is mainly mod-
ifying a few specific pathways. For example, it
might modify a neuron associated with particular
inputs like parentheses (Karpathy et al., 2015), or
properties like sentiment (Radford et al., 2017).
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Figure 1: Correlation between mean concentration of
a word gradient and word frequency. Vertical dashes
mark when the optimizer rescales step size.

2.2 SVCCA

Existing work investigates how language model
layers encode tags by training taggers on the ac-
tivations produced by each layer (Belinkov et al.,
2018). We use an alternative technique, SVCCA
(Raghu et al., 2017), which interprets an arbitrary
selection of neurons in terms of how they relate to
another selection of neurons from any network run
on the same input data. This method treats a se-
lection of neurons as a subspace, spanned by their
activations. Given any 2 sets of neurons, SVCCA
projects the 2 distinct views of the same data onto
a shared subspace which maximizes correlation
between the 2 views.

Intuitively, if both views encode the same se-
mantic information, the correlation in the shared
subspace will be high. If the 2 views are encoding
disjoint properties, the correlation will be low.

3 Experiments

All experiments are conducted on 1.6GB of En-
glish Wikipedia (70/10/20 train/dev/test split) with
a 2-layer LSTM language model featuring tied
weights in the softmax and embedding layers.

3.1 Gradient Concentration During Training

Over time, the model learns to shape weight struc-
ture around familiar words, with more frequent
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Figure 2: Correlation between mean concentration of a
word gradient and word frequency.

words being more concentrated in their gradient.
We can inspect this correlation between word fre-
quency and concentration over time in the gradi-
ents passed backwards from the decoder layer to
the RNN layer in Figure 1. It is clear that fre-
quent words are more concentrated in their rep-
resentation, and further that generally words be-
come more concentrated in their representation
over time. These observations support the idea
that gradient concentration can measure the degree
to which a word is relied on in shaping specialized
structures within the representation.

However, Figure 2 shows that this correlation
follows dramatically different trends for open POS
classes (e.g., nouns and verbs) and closed classes
(e.g., pronouns and prepositions). Initially, fre-
quent words from closed classes are highly con-
centrated, but soon stabilize, while frequent words
from open classes continue to become more con-
centrated. Why might this pattern emerge?

Closed classes offer clear signals about the cur-
rent part of speech in a sequence. Open classes,
however, contain words which are often ambigu-
ous, such as “report”, which may be a noun or
verb. Open classes may also offer murkier syntac-
tic signals because there are far more words that
may occur in a particular open class POS role.
We posit that early in training, closed classes are
therefore essential for learning how to prototype
syntactic structure, and are essential for shaping
network structure. However, open classes are es-
sential for modeling global sentence topic, so their
importance in training continues to increase after
part of speech tags are effectively modeled.
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Figure 3: SVCCA correlation scores between LM and
taggers. Values are rescaled so maximum score is 1.

3.2 Structure Encoding Over Time

Concentration experiments imply that a network
first learns syntax, but topic significance continues
to rise later. We test this claim directly.

As a proxy for syntactic representation, we use
the task of POS tagging, as in (Belinkov et al.,
2017). For document-global topic information, we
classify the sequence by which Wikipedia article it
came from. Both taggers are single layer LSTMs.

We applied SVCCA to the RNN layers of our
language model and each tagger in order to find
the correlation between the language model rep-
resentation and the tagger representation. Indeed,
Figure 3 illustrates that the POS structure is ef-
fectively represented immediately, and continues
to be learned in the early stages of training be-
fore the first optimizer step size rescale. After that
point, POS structure actually slightly declines and
stabilizes below its peak value. Meanwhile, topic
structure continues to increase over the course of
training.

4 Conclusions

The SVCCA results imply that early in training,
representing syntax and POS is the natural way to
get initial high performance. However, as train-
ing progresses, these low-level aspects of linguis-
tic structure sees diminishing returns from com-
mitting more parameters to their representation.
Instead, later training realizes more gains from re-
fining representations of global topic.

The concentration experiments tell the same
story through a different lens. Early in training,
structure is dictated by the closed POS classes,
which give clear signals about syntax. However,
small collections of directions within the network
are increasingly responsive to words from open
classes, which are more useful for modeling topic.

Our next step in this work is to develop ways of
interpreting syntactic structures during training.
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