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Abstract

This paper analyzes the behavior of stack-
augmented recurrent neural network (RNN)
models. Due to the architectural similarity be-
tween stack RNNs and pushdown transduc-
ers, we train stack RNN models on a num-
ber of tasks, including string reversal, context-
free language modelling, and cumulative XOR
evaluation. Examining the behavior of our net-
works, we show that stack-augmented RNNs
can discover intuitive stack-based strategies
for solving our tasks. However, stack RNNs
are more difficult to train than classical ar-
chitectures such as LSTMs. Rather than em-
ploy stack-based strategies, more complex net-
works often find approximate solutions by us-
ing the stack as unstructured memory.

1 Introduction

Recent work on recurrent neural network (RNN)
architectures has introduced a number of models
that enhance traditional networks with differen-
tiable implementations of common data structures.
Appealing to their Turing-completeness (Siegel-
mann and Sontag, 1995), Graves et al. (2014) view
RNNs as computational devices that learn trans-
duction algorithms, and develop a trainable model
of random-access memory that can simulate Tur-
ing machine computations. In the domain of natu-
ral language processing, the prevalence of context-
free models of natural language syntax has mo-
tivated stack-based architectures such as those of
Grefenstette et al. (2015) and Joulin and Mikolov
(2015). By analogy to Graves et al.’s Neural Tur-
ing Machines, these stack-based models are de-
signed to simulate pushdown transducer compu-
tations.

From a practical standpoint, stack-based mod-
els may be seen as a way to optimize networks
for discovering dependencies of a hierarchical
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nature. Additionally, stack-based models could
potentially facilitate interpretability by imposing
structure upon the recurrent state of an RNN.
Classical architectures such as Simple RNNs (El-
man, 1990), Long Short-Term Memory networks
(LSTM, Hochreiter and Schmidhuber, 1997), and
Gated Recurrent Unit networks (GRU, Cho et al.,
2014) represent state as black-box vectors. In cer-
tain cases, these models can learn to implement
classical data structures using state vectors (Kirov
and Frank, 2011). However, because state vec-
tors are fixed in size, the inferred data structures
must be represented in a fractal encoding requir-
ing arbitrary position. On the other hand, differ-
entiable stacks typically increase in size through-
out the course of the computation, so their per-
formance may better scale to larger inputs. Since
the ability of a differentiable stack to function cor-
rectly intrinsically requires that the information it
contains be represented in the proper format, ex-
amining the contents of a network’s stack through-
out the course of its computation could reveal hi-
erarchical patterns that the network has discovered
in its training data.

This paper systematically explores the behav-
ior of stack-augmented RNNs on simple computa-
tional tasks. While Yogatama et al. (2018) provide
an analysis of stack RNNs based on their Multi-
pop Adaptive Computation Stack model, our anal-
ysis is based on the existing Neural Stack model
of Grefenstette et al. (2015), as well as a novel en-
hancement thereof. We consider tasks with opti-
mal strategies requiring either finite-state memory
or a stack, or possibly a combination of the two.
We show that Neural Stack networks have the abil-
ity to learn to use the stack in an intuitive man-
ner. However, we find that Neural Stacks are more
difficult to train than classical architectures. In
particular, our models prefer not to employ stack-
based strategies when other forms of memory are
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Controller Stack

〈Vt−1, st−1〉〈xt,ht−1, rt−1〉

〈yt,ht〉 〈rt,Vt, st〉

〈vt, ut, dt〉

Figure 1: The Neural Stack architecture.

available, such as in networks with both LSTM
memory and a stack.

A description of our models, including a re-
view of Grefenstette et al.’s Neural Stacks, ap-
pears in Section 2. Section 3 discusses the rela-
tionship between stack-augmented RNN models
and pushdown transducers, motivating our intu-
ition that Neural Stacks are a suitable architecture
for learning context-free structure. The tasks we
consider are defined in Section 4, and our experi-
mental paradigm is described in Section 5. Section
6 presents quantitative evaluation of our models’
performance as well as qualitative description of
their behavior. Section 7 concludes.

2 Models

The neural network models considered in this pa-
per are based on the Neural Stacks of Grefenstette
et al. (2015), a family of stack-augmented RNN
architectures.1 A Neural Stack model consists of
two modular components: a controller executing
the computation of the network and a stack imple-
menting the data model of the network. At each
time step t, the controller receives an input vector
xt and a read vector rt−1 representing the mate-
rial at the top of the stack at the end of the previ-
ous time step. We assume that the controller may
adhere to any feedforward or recurrent structure;
if the controller is recurrent, then it may also re-
ceive a recurrent state vector ht−1. Based on xt,
rt−1, and possibly ht−1, the controller computes
an output yt, a new recurrent state vector ht if
applicable, and a tuple 〈vt, ut, dt〉 containing in-
structions for manipulating the stack. The stack
takes these instructions and produces rt, the vec-
tor corresponding to the material at the top of the
stack after popping and pushing operations have
been performed on the basis of 〈vt, ut, dt〉. The

1Code for our PyTorch (Paszke et al., 2017) im-
plementation is available at https://github.com/
viking-sudo-rm/StackNN.

contents of the stack are represented by a recur-
rent state matrix Vt and a strength vector st. This
schema is shown in Figure 1.

Having established the basic architecture, the
remainder of this section introduces our models
in full detail. Subsection 2.1 describes how the
stack computes rt and updates Vt and st based
on 〈vt, ut, dt〉. Subsection 2.2 presents the various
kinds of controllers we consider in this paper. Sub-
section 2.3 presents an enhancement of Grefen-
stette et al.’s schema that allows the network to
perform computations of varying duration.

2.1 Differentiable Stacks
A stack at time t consists of sequence of vectors
〈Vt[1],Vt[2], . . . ,Vt[t]〉, organized into a matrix
Vt whose ith row is Vt[i]. By convention, Vt[t]
is the “top” element of the stack, while Vt[1] is
the “bottom” element. Each element Vt[i] of the
stack is associated with a strength st[i] ∈ [0, 1].
The strength of a vector Vt[i] represents the “de-
gree” to which the vector is on the stack: a strength
of 1 means that the vector is “fully” on the stack,
while a strength of 0 means that the vector has
been popped from the stack. The strengths are or-
ganized into a vector st = 〈st[1], st[2], . . . , st[t]〉.

At each time step, the stack pops a number of
items from the top, pushes a new item to the top,
and reads a number of items from the top, in that
order. The behavior of the popping and push-
ing operations is determined by the instructions
〈vt, ut, dt〉. The value obtained from the reading
operation is passed back to the controller as the re-
current vector rt. Let us now describe each of the
three operations.

Popping reduces the strength st−1[t − 1] of the
top element from the previous time step by ut.
If st−1[t − 1] ≥ ut, then the strength of the
(t−1)st element after popping is simply st[t−1] =
st−1[t− 1]− ut. If st−1[t− 1] ≤ ut, then we con-
sider the popping operation to have “consumed”
st−1[t − 1], and the strength st−1[t − 2] of the
next element is reduced by the “left-over” strength
ut − st−1[t − 1]. This process is repeated until
all strengths in st−1 have been reduced. For each
i < t, we compute the left-over popping strength
ut[i] for the ith item as follows.

ut[i] ={
ut, i = t− 1

ReLU(ut[i+ 1]− st−1[i+ 1]), i < t− 1

https://github.com/viking-sudo-rm/StackNN
https://github.com/viking-sudo-rm/StackNN
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The strengths are then updated accordingly.

st[i] = ReLU (st−1[i]− ut[i])

The pushing operation simply places the vector
vt at the top of the stack with strength dt. Thus,
Vt and st[t] are updated as follows.

st[t] = dt Vt[i] =

{
vt, i = t

Vt−1[i], i < t

Note that st[1], st[2], . . . , st[t − 1] have already
been updated during the popping step.

The reading operation “reads” the elements on
the top of the stack whose total strength is 1. If
st[t] = 1, then only the top element is read. Oth-
erwise, the next element is read using the “left-
over” strength 1− st[t]. As in the case of popping,
we may define a series of left-over strengths ρt[1],
ρt[2], . . . , ρt[t] corresponding to each item in the
stack.

ρt[i] =

{
1, i = t

ReLU (ρt[i+ 1]− st[i+ 1]) , i < t

The result rt of the reading operation is obtained
by computing a sum of the items in the stack
weighted by their strengths, including only items
with sufficient left-over strength.

rt =

t∑
i=1

min (st[i], ρt[i]) ·Vt[i]

2.2 Controllers
We consider two types of controllers: linear and
LSTM. The linear controller is a feedforward net-
work consisting of a single linear layer. The net-
work output is directly extracted from the lin-
ear layer, while the stack instructions are passed
through the sigmoid function, denoted σ.

ut = σ
(
Wu ·

[
xt rt−1

]>
+ bu

)
dt = σ

(
Wd ·

[
xt rt−1

]>
+ bd

)
vt = σ

(
Wv ·

[
xt rt−1

]>
+ bv

)
yt = Wy ·

[
xt rt−1

]>
+ by

The LSTM controller maintains two state vectors:
the hidden state ht and the cell state ct. The out-
put and stack instructions are produced by pass-
ing ht through a linear layer. As in the linear
controller, the stack instructions are additionally
passed through the sigmoid function.

Controller Stack

〈Vt−1, st−1〉Input

Output〈Ot−1,ot−1〉

〈It, it〉〈It−1, it−1〉

〈Ot,ot〉

〈rt,Vt, st〉

〈ht−1, rt−1〉

〈it,ht〉

it−1

〈vt, ut, dt〉
xt

〈yt, ot〉

Figure 2: Our enhanced architecture with buffers.

2.3 Buffered Networks

One limitation of many RNN architectures, in-
cluding Neural Stacks, is that they can only com-
pute same-length transductions: at each time step,
the network must accept exactly one input vec-
tor and produce exactly one output vector. This
limitation prevents Neural Stacks from producing
output sequences that may be longer or shorter
than the input sequence. It also prohibits Neu-
ral Stack networks from performing computation
steps without reading an input or producing an
output (i.e., ε-transitions on input or output), even
though such computation steps are a common fea-
ture of stack transduction algorithms.

A well-known approach to overcoming this lim-
itation appears in Sequence-to-Sequence models
such as Sutskever et al. (2014) and Cho et al.
(2014). There, the production of the output se-
quence is delayed until the input sequence has
been fully read by the network. Output vectors
produced while reading the input are discarded,
and the input sequence is padded with blank sym-
bols to indicate that the network should be produc-
ing an output.

The delayed output approach solves the prob-
lem of fixed-length outputs, and we adopt it for
the String Reversal task described in Section 4.
However, delaying the output does not allow our
networks to perform streaming computations that
may interrupt the process of reading inputs or
emitting outputs. An alternative approach is to al-
low our networks to perform ε-transitions. While
Graves (2016) achieves this by dynamically re-
peating inputs and marking them with flags, we
augment the Neural Stack architecture with two
differentiable buffers: a read-only input buffer and
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a write-only output buffer. At each time step t,
the input vector xt is obtained by popping from
the input buffer with strength it−1. In addition to
the output vector and stack instructions, the con-
troller must produce an input buffer pop strength it
and an output buffer push strength ot. The output
vector is then enqueued to the output buffer with
strength ot. This enhanced architecture is shown
in Figure 2.

The implementation of the input and output
buffers is based on Grefenstette et al. (2015)’s
Neural Queues, a first-in-first-out variant of the
Neural Stack. Like the stack, the input buffer at
time t consists of a matrix of vectors It and a vec-
tor of strengths it. Similarly, the output buffer
consists of a matrix of vectors Ot and a vector of
strengths ot. The input buffer is initialized so that
I0 is a matrix representation of the full input se-
quence, with an initial strength of 1 for each item.

At time t, items are dequeued from the “front”
of the buffer with strength it−1.

ιt[j] =

{
it−1, j = 1

ReLU(ιt[j − 1]− it−1[j]), j > 1

it[j] = ReLU (it−1[j]− ιt[j])

Next, the input vector xt is produced by reading
from the front of the buffer with strength 1.

ξt[j] =

{
1, j = 1

ReLU (ξt[j − 1]− it[j]) , j > 1

xt =
n∑

j=1

min (it[j], ξt[j]) · It[j]

Since the input buffer is read-only, there is no push
operation. This means that unlike Vt and Ot,
the number of rows of It is fixed to a constant
n. When the controller’s computation is complete,
the output vector yt is enqueued to the “back” of
the output buffer with strength ot.

Ot[j] =

{
yt, j = t

Ot−1[j], j < t

ot[j] =

{
ot, j = t

ot−1[j], j < t

After the last time step, the final output sequence is
obtained by repeatedly dequeuing the front of the
output buffer with strength 1 and reading the front
of the output with strength 1. These dequeuing and
reading operations are identical to those defined
for the input buffer.

q0start
x : #, ε→ x
# : y, y → ε

Figure 3: A PDT for the String Reversal task.

3 Pushdown Transducers

Our decision to use a stack for NLP tasks rather
than some other differentiable data structure is
motivated by the success of context-free grammars
(CFGs) in describing the hierarchical phrase struc-
ture of natural language syntax. A classic theoreti-
cal result due to Chomsky (1962) shows that CFGs
generate exactly those sets of strings that are ac-
cepted by nondetermininstic pushdown automata
(PDAs), a model of computation that augments a
finite-state machine with a stack. When enhanced
with input and output buffers, we consider Neural
Stacks to be an implementation of deterministic
pushdown transducers (PDTs), a variant of PDAs
that includes an output tape.

Formally, a PDT is described by a transition
function of the form δ(q, x, s) = 〈q′, y, s′〉, in-
terpreted as follows: if the machine receives an
x from the input buffer and pops an s from the top
of the stack while in state q, then it sends a y to
the output buffer, pushes an s′ to the stack, and
transitions to state q′. We assume that δ is only
defined for finitely many configurations 〈q, x, s〉.
These configurations, combined with their corre-
sponding values of δ, represent all the possible ac-
tions of a pushdown transducer.

To illustrate, let us construct a PDT that com-
putes the function f

(
w#|w|

)
= #|w|wR, where

wR is the reverse of w and #|w| is a sequence
of #s of the same length as w. We can begin to
compute f using a single state q0 by pushing each
symbol of w onto the stack while emitting #s as
output. When the machine has finished reading w,
the stack contains the symbols of w in reverse or-
der. In the remainder of the computation, the ma-
chine pops symbols from the stack one at a time
and sends them to the output buffer. A pictoral
representation of this PDT is shown in Figure 3.
Each circle represents a state of the PDT, and each
action δ(q, x, s) = 〈q′, y, s′〉 is represented by an
arrow from q to q′ with the label “x : y, s → s′.”
Observe that the two labels of the arrow from q0
to itself encode a transition function implementing
the algorithm described above.

Given a finite state transition function, there ex-
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ists an LSTM that implements it. In fact, Weiss
et al. (2018) show that a deterministic k-counter
automaton can be simulated by an LSTM. Thus,
any deterministic PDT can be simulated by the
buffered stack architecture with an LSTM con-
troller.

4 Tasks

The goal of this paper is to ascertain whether
or not stack-augmented RNN architectures can
learn to perform PDT computations. To that
end, we consider six tasks designed to highlight
various features of PDT algorithms. Four of
these tasks—String Reversal, Parenthesis Predic-
tion, and the two XOR Evaluation tasks—have
simple PDT implementations. The PDTs for each
of these tasks differ in their memory requirements:
they require either finite-state memory or stack-
structured memory, or a combination of the two.
The remaining two tasks—Boolean Formula Eval-
uation and Subject–Auxiliary Agreement—are de-
signed to determine whether or not Neural Stacks
can be applied to complex use cases that are
thought to be compatible with stack-based tech-
niques.

4.1 String Reversal

In the String Reversal task, the network must com-
pute the function f from the previous section. As
discussed there, the String Reversal task can be
performed straightforwardly by pushing all input
symbols to the stack and then popping all symbols
from the stack. The purpose of this task is to serve
as a baseline test for whether or not a controller
can learn to use a stack in principle. Since in
the general case, correctly producing wR requires
recording w in the stack, we evaluate the network
solely based on the portion of its output where wR

should appear, immediately after reading the last
symbol of w.

4.2 XOR Evaluation

We consider two tasks that require the network to
implement the XOR function. In the Cumulative
XOR Evaluation task, the network reads an input
string of 1s and 0s. At each time step, the network
must output the XOR of all the input symbols it
has seen so far. The Delayed XOR Evaluation task
is similar, except that the most recent input symbol
is excluded from the XOR computation.

As shown in the left of Figure 4, the XOR Eval-
uation tasks can be computed by a PDT without
using the stack. Thus, we use XOR Evaluation
to test the versatility of the stack by assessing
whether a feedforward controller can learn to use
it as unstructured memory.

The Cumulative XOR Evaluation task presents
the linear controller with a theoretical challenge
because single-layer linear networks cannot com-
pute the XOR function (Minsky and Papert, 1969).
However, in the Delayed XOR Evaluation task,
the delay between reading an input symbol and
incorporating it into the XOR gives the network
two linear layers to compute XOR when unrav-
elled through time. Therefore, we expect that the
linear model should be able to perform the De-
layed XOR Evaluation task, but not the Cumula-
tive XOR Evaluation task.

The discrepancy between the Cumulative and
the Delayed XOR Evaluation tasks for the lin-
ear controller highlights the importance of tim-
ing in stack algorithms. Since the our enhanced
architecture from Subsection 2.3 can perform ε-
transitions, we expect it to perform the Cumu-
lative XOR Evaluation task with a linear con-
troller by learning to introduce the necessary de-
lay. Thus, the XOR tasks allow us to test whether
our buffered model can learn to optimize the tim-
ing of its computation.

4.3 Parenthesis Prediction

The Parenthesis Prediction task is a simplified lan-
guage modelling task. At each time step t, the
network reads the tth symbol of some string and
must attempt to output the (t + 1)st symbol. The
strings are sequences of well-nested parentheses
generated by the following CFG.

S→ S T | T S | T
T→ ( T ) | ( )

T→ [ T ] | [ ]

We evaluate the network only when the correct
prediction is ) or ]. This restriction allows for a
deterministic PDT solution, shown in the right of
Figure 4.

Unlike String Reversal and XOR Evaluation,
the Parenthesis Prediction task relies on both the
stack and the finite-state control. Thus, the Paren-
thesis Prediction task tests whether or not Neu-
ral Stack models can learn to combine different
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q1start q2

( : ), ε→ (
[ : ], ε→ [

) : ε, (→ ε
] : ε, [→ ε

ε : ), (→ (
ε : ], [→ [
ε : ε, $→ $

10start

0 : 0
1 : 1

0 : 1

1 : 0

Figure 4: PDTs for Cumulative XOR Evaluation (left) and Parenthesis Prediction (right) tasks. The symbol $
represents the bottom of the stack.

types of memory. Furthermore, since context-
free languages can be canonically represented as
homomorphic images of well-nested parentheses
(Chomsky and Schützenberger, 1959), the Paren-
thesis Prediction task may be used to gauge the
suitability of Neural Stacks for context-free lan-
guage modelling.

4.4 Boolean Formula Evaluation
In the Boolean Formula Evaluation task, the net-
work reads a boolean formula in reverse Polish no-
tation generated by the following CFG.

S→ S S ∨ | S S ∧
S→ T | F

At each time step, the network must output the
truth value of the longest sub-formula ending at
the input symbol.

The Boolean Formula Evaluation task tests the
ability of Neural Stacks to infer complex computa-
tions over the stack. In this case, the network must
store previously computed values on the stack and
evaluate boolean operations over these stored val-
ues. This technique is reminiscent of shift-reduce
parsing, making the Boolean Formula Evaluation
task a testing ground for the possibility of applying
Neural Stacks to natural language parsing.

4.5 Subject–Auxiliary Agreement
The Subject–Auxiliary Agreement task is inspired
by Linzen et al. (2016), who investigate whether
or not LSTMs can learn structure-sensitive long-
distance dependencies in natural language syntax.
There, the authors train LSTM models that per-
form language modelling on prefixes of sentences
drawn from corpora. The last word of each prefix
is a verb, and the models are evaluated solely on
whether or not they prefer the correct form of the

verb over the incorrect ones. In sentences with em-
bedded clauses, the network must be able to iden-
tify the subject of the verb among several possible
candidates in order to conjugate the verb.

Here, we consider sentences generated by a
small, unambiguous CFG that models a fragment
of English.

S→ NPsing has | NPplur have

NP→ NPsing | NPplur

NPsing→ the lobster (PP | Relsing)

NPplur→ the lobsters (PP | Relplur)

PP→ in NP

Relsing→ that has VP | Relobj

Relplur→ that have VP | Relobj

Relobj→ that NPsing has devoured

Relobj→ that NPplur have devoured

VP→ slept | devoured NP

As in the Parenthesis Prediction task, the network
performs language modelling, but is only evalu-
ated when the correct prediction is an auxiliary
verb (i.e., has or have).

5 Experiments

We conducted four experiments designed to assess
various aspects of the behavior of Neural Stacks.
In each experiment, models are trained on a gener-
ated dataset consisting of 800 input–output string
pairings encoded in one-hot representation. Train-
ing occurs in mini-batches containing 10 string
pairings each. At the end of each epoch, the model
is evaluated on a generated development set of 100
examples. Training terminates when five consecu-
tive epochs fail to exceed the highest development
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accuracy attained. The sizes of the LSTM con-
trollers’ recurrent state vectors are fixed to 10, and,
with the exception of Experiment 2 described be-
low, the sizes of the vectors placed on the stack are
fixed to 2. After training is complete, each trained
model is evaluated on a testing set of 1000 gener-
ated strings, each of which is at least roughly twice
as long as the strings used for training. 10 trials are
performed for each set of experimental conditions.

Experiment 1 tests the propensity of trained
Neural Stack models to use the stack. We train
both the standard Neural Stack model and our en-
hanced buffered model from Subsection 2.3 to per-
form the String Reversal task using the linear con-
troller. To compare the stack with unstructured
memory, we also train the standard Neural Stack
model using the LSTM controller as well as an
LSTM model without a stack. Training and de-
velopment data are obtained from sequences of 0s
and 1s randomly generated with an average length
of 10. The testing data have an average length of
20.

Experiment 2 considers the XOR Evaluation
tasks. We train standard models with a linear con-
troller on the Delayed XOR task and an LSTM
controller on the Cumulative XOR task to test the
network’s ability to use the stack as unstructured
state. We also train both a standard and a buffered
model on the Cumulative XOR Evaluation task us-
ing the linear controller to test the network’s abil-
ity to use our buffering mechanism to infer optimal
timing for computation steps. Training and devel-
opment data are obtained from randomly gener-
ated sequences of 0s and 1s fixed to a length of 12.
The testing data are fixed to a length of 24. The
vectors placed on the stack are fixed to a size of 6.

In Experiment 3, we attempt to perform the
Parenthesis Prediction task using standard mod-
els with various types of memory: a linear con-
troller with no stack, which has no memory; a
linear controller with a stack, which has stack-
structured memory; an LSTM controller with no
stack, which has unstructured memory; and an
LSTM controller with a stack, which has both
stack-structured and unstructured memory.

Sequences of well-nested parentheses are gen-
erated by the CFG from the previous section. The
training and development data are obtained by ran-
domly sampling from the set of strings of deriva-
tion depth at most 6, which contains strings of
length up to 20. The testing data are of depth 12

and length up to 110.
Experiment 4 compares the standard models

with linear and LSTM controllers against a base-
line consisting of an LSTM controller with no
stack. Whereas Experiments 1–3 presented the
network with tasks designed to showcase vari-
ous features of the Neural Stack architecture, the
goal of this experiment is to gauge the extent
to which stack-structured memory may improve
the network’s performance on more sophisticated
tasks. We train the three types of models on the
Boolean Formula Evaluation task and the Subject–
Auxiliary Agreement task. Data for both tasks
are generated by the CFGs given in Section 4.
The boolean formulae for training and develop-
ment are randomly sampled from the set of strings
of derivation depth at most 6, having a maximum
length of 15, while the testing data are sampled
from derivations of depth at most 7, with a max-
imum length of 31. The sentence prefixes are of
depth 16 and maximum length 23 during the train-
ing phase, and depth 32 and maximum length 49
during the final evaluation round.

6 Results

Our results are shown in Table 1. The networks
we trained were able to achieve a median accu-
racy of at least 90.0% during the training phase
in 10 of the 13 experimental conditions involving
a stack-augmented architecture. However, many
of these conditions include trials in which the
model performed considerably worse during train-
ing than the median. This suggests that while
stack-augmented networks are able to perform our
tasks in principle, they may be more difficult to
train than traditional RNN architectures. Note that
there is substantially less variation in the perfor-
mance of the LSTM networks without a stack.

In Experiment 1, the standard network with
the linear controller performs perfectly both dur-
ing the training phase and in the final testing
phase. The buffered network performed nearly
as well during the training phase, but its perfor-
mance failed to generalize to longer strings. The
LSTM network achieved roughly the same per-
formance both with and without a stack, substan-
tially worse than the linear controller. The left-
most graphic in Figure 5 shows that the linear con-
troller pushes a copy of its input to the stack and
then pops the copy to produce the output. As sug-
gested by an anonymous reviewer, we also consid-
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Task Buffered Controller Stack Min Med Max Min Med Max
Reversal No Linear Yes 49.9 100.0 100.0 49.3 100.0 100.0
Reversal Yes Linear Yes 55.3 98.7 99.4 49.5 60.4 74.7
Reversal No LSTM Yes 81.2 89.3 94.4 67.2 71.0 73.7
Reversal No LSTM No 83.0 86.5 92.5 64.8 68.6 73.3
XOR No Linear Yes 51.1 53.5 54.4 50.7 51.9 51.9
XOR No LSTM Yes 100.0 100.0 100.0 99.7 100.0 100.0
XOR Yes Linear Yes 51.0 99.8 100.0 50.4 96.0 99.1
Delayed XOR No Linear Yes 100.0 100.0 100.0 100.0 100.0 100.0
Parenthesis No Linear Yes 72.8 97.0 99.3 59.9 80.3 83.2
Parenthesis No Linear No 70.0 71.8 73.3 59.9 60.5 60.7
Parenthesis No LSTM Yes 100.0 100.0 100.0 85.8 86.8 88.9
Parenthesis No LSTM No 100.0 100.0 100.0 83.5 85.8 88.0
Formula No Linear Yes 87.4 92.0 97.3 87.8 91.2 96.2
Formula No LSTM Yes 98.0 98.7 99.4 96.8 97.7 98.4
Formula No LSTM No 95.4 98.5 99.3 95.3 97.6 98.4
Agreement No Linear Yes 53.3 73.5 93.9 51.8 68.8 85.8
Agreement No LSTM Yes 95.6 98.5 99.7 82.4 88.8 91.2
Agreement No LSTM No 96.2 98.1 100.0 83.7 88.2 90.6

Table 1: The minimum, median, and maximum accuracy (%) attained by the 10 models for each experimental
condition during the last epoch of the training phase (left) and the final testing phase (right).

ered a variant of this task in which certain alpha-
bet symbols are excluded from the reversed out-
put. The center graphic in Figure 5 shows that
for this task, the linear controller learns a strat-
egy in which only symbols included in the re-
versed output are pushed to the stack. The right-
most graphic shows that LSTM controller behaves
differently from the linear controller, exhibiting
uniform pushing and popping behavior through-
out the computation. This suggests that under
our experimental conditions, the LSTM controller
prefers to rely on its recurrent state for memory
rather than the stack, even though such a strategy
does not scale to the final testing round.

The models in Experiment 2 perform as we ex-
pected. The unbuffered model with the linear con-
troller performed at chance, in line with the in-
ability of the linear controller to compute XOR.
The rest of the models were able to achieve accu-
racy above 95.0% both in the training phase and in
the final testing phase. The buffered network was
successfully able to delay its computation in the
Cumulative XOR Evaluation task. The leftmost
graphic in Figure 6 illustrates the network’s be-
havior in the Delayed XOR Evaluation task, and
shows that the linear controller uses the stack as
unstructured memory—an unsurprising observa-
tion given the nature of the task. Note that the

vectors pushed onto the stack in the presence of
input symbol 1 vary between two possible values
that represent the current parity.

In Experiment 3, the linear model without a
stack performs fairly well during training, achiev-
ing a median accuracy of 71.8%. This is because
43.8% of (s and [s in the training data are imme-
diately followed by )s and ]s, respectively, so it is
possible to attain 71.9% accuracy by predicting )
and ] when reading ( and [ and by always predict-
ing ] when reading ) or ]. Linear models with the
stack perform better, but as shown by the right-
most graphic in Figure 6, they do not make use of
a stack-based strategy (since they never pop), but
instead appear to use the top of the stack as un-
structured memory. The LSTM models perform
slightly better, achieving 100% accuracy during
the training phase. However, the LSTM controller
still suffers significantly in the final testing phase
with or without a stack, suggesting that the LSTM
models are not employing a stack-based strategy.

In Experiment 4, the Boolean Formula Evalu-
ation task is performed easily, with a median ac-
curacy exceeding 90.0% for all models both on
the development set and the testing set. This is
most likely because, on average, three quarters of
the nodes in a boolean formula either require no
context for evaluation (because they are atomic)
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2 symbols, linear controller 4 symbols, linear controller 2 symbols, LSTM controller
Input: 100111# . . .# Input: 223030123112# . . .# Input: 100111# . . .#

Output: . . . 111001 Output: . . . 11100 . . . Output: . . . 111001

Figure 5: Diagrams of network computation on the Reversal task with linear and LSTM controllers. In each
diagram, the input may consist of 2 or 4 distinct alphabet symbols, but only the symbols 0 and 1 are included in
the output. Columns indicate the pop strengths, push strengths, and pushed vectors throughout the course of the
computation, along with the input and predicted output in one-hot notation. Lighter colors indicate higher values.

Delayed XOR, linear controller Parenthesis, linear controller
Input: 110110000110 Input: [([[]])][[()]]()[]

Output: 010010000010 Output: ])]]]]]]]])]]])]]]

Figure 6: Diagrams of network computation for the Delayed XOR and Parenthesis tasks with a linear controller.

or make use of limited context (because they are
boolean formulas of depth one). The linear con-
troller performed worse on average than the LSTM
models on the agreement task, though the highest-
performing linear models achieved a comparable
accuracy to their LSTM counterparts. Again, the
performance of the LSTM networks is unaffected
by the presence of the stack, suggesting that our
trained models prefer to use their recurrent state
over the stack.

7 Conclusion

We have shown in Experiments 1 and 2 that it is
possible in principle to train an RNN to operate
a stack and input–output buffers in the intended
way. There, the tasks involved have only one opti-
mal solution: String Reversal cannot be performed
without recording the string, and the linear con-
troller cannot solve Cumulative XOR Evaluation
without introducing a delay. In the other experi-

ments, our models were able to find approximate
solutions that rely on unstructured memory, and
the stack-augmented LSTMs always favored such
solutions over using the stack.

As we saw in Experiments 3 and 4, training
examples that require full usage of the stack are
rare in practice, making the long-term benefits of
stack-based strategies unattractive to greedy opti-
mization. However, the usage of a stack is neces-
sary for a general solution to all of the problems
we have explored, with the exception of the XOR
Evaluation tasks. While gradual improvements in
performance may be obtained by optimizing the
usage of unstructured memory, the discrete nature
of most stack-based solutions means that finding
such solutions often requires a substantial level of
serendipity. Our results then raise the question of
how to incentivize controllers toward stack-based
strategies during training. We leave this question
to future work.
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