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Abstract

Despite their superior performance, deep
learning models often lack interpretability. In
this paper, we explore the modeling of insight-
ful relations between words, in order to un-
derstand and enhance predictions. To this ef-
fect, we propose the Self-Attention Network
(SANet), a flexible and interpretable archi-
tecture for text classification. Experiments
indicate that gains obtained by self-attention
is task-dependent. For instance, experiments
on sentiment analysis tasks showed an im-
provement of around 2% when using self-
attention compared to a baseline without atten-
tion, while topic classification showed no gain.
Interpretability brought forward by our archi-
tecture highlighted the importance of neigh-
boring word interactions to extract sentiment.

1 Introduction

Deep neural networks have achieved great suc-
cesses on numerous tasks. However, they are of-
ten seen as black boxes, lacking interpretability.
Research efforts in order to solve this issue have
steadily increased (Simonyan et al., 2013; Zeiler
and Fergus, 2014; Bach et al., 2015; Ribeiro et al.,
2016; Fong and Vedaldi, 2017). In language mod-
eling, interpretability often takes place via an at-
tention mechanism in the neural network (Bah-
danau et al., 2014; Xu et al., 2015; Sukhbaatar
et al., 2015; Choi et al., 2017). In this context,
attention essentially allows a network to identify
which words in a sentence are more relevant. Be-
yond interpretability, this often results in improved
decision making by the network.

Recently, Vaswani et al. (2017) proposed the
Transformer architecture for machine translation.
It relies only on attention mechanisms, instead of
making use of either recurrent or convolutional
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neural networks. This architecture contains lay-
ers called self-attention (or intra-attention) which
allow each word in the sequence to pay attention
to other words in the sequence, independently of
their positions. We modified this architecture, re-
sulting in the following contributions:
• A novel architecture for text classification

called Self-Attention Network (SANet) that
models the interactions between all input
word pairs. It is sequence length-agnostic,
thanks to a global max pooling layer.
• A study on the impact of this self-attention

mechanism on large scale datasets. In partic-
ular, we empirically demonstrate the positive
impact of self-attention in terms of perfor-
mance and interpretability for sentiment anal-
ysis, compared to topic classification. In the
study, we make use of two quantitative met-
rics (Gini coefficient and diagonality) that ex-
hibit particular behaviors for attention mech-
anisms in sentiment analysis.

2 Related Work

The majority of text classification techniques ei-
ther use convolutional or recurrent neural net-
works on the words or the characters of the sen-
tence (Zhang et al., 2015, 2017; Yang et al., 2016;
Conneau et al., 2017; Johnson and Zhang, 2016,
2017; Howard and Ruder, 2018). One notable ex-
ception is the fastText architecture (Joulin et al.,
2016) which essentially employs a bag-of-words
approach with word embeddings of the sentence.

Attention mechanisms are a way to add inter-
pretability in neural networks. They were in-
troduced by Bahdanau et al. (2014), where they
achieved state-of-the-art in machine translation.
Since then, attention mechanisms have been used
in other language modeling tasks such as image
captioning (Xu et al., 2015), question answer-
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ing (Sukhbaatar et al., 2015; Choi et al., 2017), and
text classification (Yang et al., 2016). The con-
cept of self-attention (Cheng et al., 2016; Parikh
et al., 2016), central to our proposed approach,
has shown great promises in natural language pro-
cessing; It produced state-of-the-art results for ma-
chine translation (Vaswani et al., 2017).

In text classification, the focus on interpretabil-
ity has thus far been limited. Lee et al. (2018) used
a convolutional neural network (CNN) with Class
Activation Mapping (CAM) (Oquab et al., 2015)
to do sentiment analysis. CAM basically uses
the weights of the classification layer to derive a
heatmap on the input. Wang et al. (2018) used a
densely connected CNN (Huang et al., 2017) to
apply attention to n-grams. However, their ap-
proach limits the range and acuteness of the in-
teractions between the words in the text. Lin et al.
(2017) and Yang et al. (2016) both combined an
attention mechanism with a recurrent neural net-
work. The main difference with our work is, while
being interpretable, these approaches do not per-
form true word-on-word attention across a whole
sequence such as our self-attention layer.

3 SANet: Self-Attention Network

Inspired by the Transformer architecture (Vaswani
et al., 2017) which performed machine translation
without recurrent or convolutional layers, we pro-
pose the Self-Attention Network (SANet) archi-
tecture targeting instead text classification. One
key difference between our approach and Vaswani
et al. (2017)’s is that we only perform input-input
attention with self-attention, as we do not have se-
quences as output but a text classification. More-
over, we employ global max pooling at the top,
which enables our architecture to process input se-
quences of arbitrary length.

Formally, let X = [xT1 ;x
T
2 ; . . . ;x

T
n ] be the con-

catenation of a sequence of n vectors giving a ma-
trix X ∈ Rn×d such that xi ∈ Rd. Vaswani et al.
(2017) defined attention as a function with as input
a triplet containing queries Q, keys K with asso-
ciated values V .

Att(Q,K, V ) = softmax
(
QKT

)
V

In the case of self-attention, Q, K and V are linear
projections of X . Thus, we define the dot-product
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Figure 1: Our Self-Attention Network (SANet),
derived from the Transformer architec-
ture (Vaswani et al., 2017). The self-attention
block is repeated N times.

self-attention mechanism as follows.

Self-Att(X) = Att(XWQ, XWK , XWV )

= softmax
(
XWQKXT

)
XWV

Where WQ,WK ,WV ,WQK ∈ Rd×d and
WQK = WQW

T
K . Hence, WQK and WV are

learned parameters.
Our network (depicted in Figure 1) first encodes

each word to its embedding. Pre-trained embed-
dings, like GloVe (Pennington et al., 2014), may
be used and fine-tuned during the learning pro-
cess. Next, to inject information about the order
of the words, the positional encoding layer adds
location information to each word. We use the
positional encoding vectors that were defined by
Vaswani et al. (2017) as follows.

PEpos,2i = sin
( pos

100002i/d

)
PEpos,2i+1 = cos

( pos

100002i/d

)
Where pos is the position of the word in the se-
quence and 1 ≤ i ≤ d is the dimension in the
positional encoding vector.
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Figure 2: Visualization of sequences length distributions. For each dataset, the total number of exam-
ples is presented on the right and task semantics are identified on the left: Topic Classification (TC) or
Sentiment Analysis (SA).

A linear layer then performs dimensionality re-
duction/augmentation of the embedding space to
a vector space of dimension d, which is kept con-
stant throughout the network. It is followed by one
or several “self-attention blocks” stacked one onto
another. These blocks are comprised of a self-
attention layer followed by a feed-forward net-
work, both with residual connections. Contrary
to Vaswani et al. (2017), we only use a single
attention head, with attention performed on the
complete sequence with constant d-dimensional
inputs.

The feed-forward network consists of a single
hidden layer with a ReLU.

FFN(x) = max(0, xW1 + b1)W2 + b2

Where W1,W2 ∈ Rd×d are learned parameters.
The “Add & Norm” layer is a residual connection
defined by LayerNorm(x + SubLayer(x)), where
SubLayer(x) is the output of the previous layer
and LayerNorm is a layer normalization method
introduced by Ba et al. (2016). Let xi be the vec-
tor representation of an element in the input se-
quence. The normalization layer simply normal-
izes xi by the mean and the variance of its ele-
ments. Throughout this paper, dropout of 0.1 is
applied to the output of SubLayer(x)

Finally, since we restrict ourselves to classifica-
tion, we need a fixed-size representation of the se-
quence before the classification layer. To achieve
this, we apply a global max pooling operation for

each dimension across all the n words of the se-
quence. That is, if X ∈ Rn×d, then the max pool-
ing on X outputs a vector in Rd. This technique
was inspired by global average pooling introduced
by Lin et al. (2013) for image classification in
CNNs. Global max pooling allows us to handle se-
quences of any length (up to memory limitations).
Thus, our approach is length-agnostic contrary to
some approaches based on CNN, where sequences
are truncated or padded to obtain a fixed-length
representation.

4 Experiments

We evaluated our model on seven large scale
text classification datasets introduced by Zhang
et al. (2015), grouped into two kinds of tasks.
The first one is topic classification: AG’s News
with 4 classes of news articles, DBPedia with
14 classes of the Wikipedia ontology and Ya-
hoo! Answers containing 10 categories of ques-
tions/answers. Yelp and Amazon reviews involve
sentiment analysis with ratings from 1 to 5 stars.
Two versions are derived from those datasets: one
for predicting the number of stars, and the other
involving the polarity of the reviews (negative for
1-2 stars, positive for 4-5 stars).

Each text entry was split into sentences and tok-
enized using NLTK (Bird et al., 2009). Sequences
longer than 1000 tokens were truncated to accom-
modate GPU memory limitations, only affecting a
negligible portion of the texts. See Figure 2 for
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Table 1: Test error rates (%) for text classification. In bold, the state-of-the-art and in italic, our best
model. Lin et al. (2017)’s results provided by Wang et al. (2018). Stars (*) indicate attention mechanisms.

Model
Topic Classification Sentiment Analysis

AG DBP. Yah. A. Yelp P. Yelp F. Amz. F. Amz. P.

ngrams/CNN (Zhang et al., 2015) 7.64 1.31 28.26 4.36 37.95 40.43 4.98
fastText (Joulin et al., 2016) 7.5 1.4 27.7 4.3 36.1 39.8 5.4
word-CNN (Johnson and Zhang, 2016) 6.57 0.84 24.85 2.90 32.39 36.24 3.79
HN-ATT* (Yang et al., 2016) - - 24.2 - - 36.4 -
VDCNN (Conneau et al., 2017) 8.67 1.29 26.57 4.28 35.28 37.00 4.28
DCNN (Zhang et al., 2017) - 1.17 25.82 3.96 - - -
DPCNN (Johnson and Zhang, 2017) 6.87 0.88 23.90 2.64 30.58 34.81 3.32
SA-Embedding* (Lin et al., 2017) 8.5 1.7 - 5.1 36.6 40.2 -
ULMFiT (Howard and Ruder, 2018) 5.01 0.80 - 2.16 29.98 - -
DCCNN-ATT* (Wang et al., 2018) 6.4 0.8 - 3.5 34.0 37.0 -

Baseline (base model) 7.34 1.30 26.87 6.39 39.98 41.80 6.38
SANet* (base model) 7.86 1.27 26.99 6.26 38.16 40.08 5.55
Baseline (big) 7.20 1.25 25.90 6.42 38.92 40.58 5.82
SANet* (big) 7.42 1.28 25.88 4.77 36.03 38.67 4.52

a visualization of the resulting sequences length
distribution and the total number of examples per
dataset.

We used 20% of the training texts for vali-
dation. The vocabulary was built using every
word appearing in the training and validation
sets. The words embeddings were initialized using
pre-trained word vectors from GloVe (Pennington
et al., 2014) when available, or randomly initial-
ized otherwise.

We experimented with two configurations for
our proposed SANet. The base model used N = 1
self-attention blocks, an embedding size of 100
and a hidden size of d = 128. The big model
doubled these numbers, i.e. N = 2 self-attention
blocks, embedding size of 200 and hidden size
d = 256. For each configuration, we also trained
a baseline network without any attention mecha-
nisms, replacing each self-attention layer with a
feed forward layer.

Training was performed using SGD with a mo-
mentum of 0.9, a learning rate of 0.01 and mini-
batches of size 128. For the embeddings, a learn-
ing rate of 0.001 was applied without momentum.
All learning rates were halved for the big model.
We trained for 40 epochs and selected the best
epoch, based on validation accuracy.

5 Results and Discussion

From a performance perspective, as shown in Ta-
ble 1, our model based entirely on attention is
competitive while offering high level interpretabil-
ity. There is a notable exception with Yelp Review
Polarity that will be discussed. Our results also
indicate that the increase in depth and representa-
tion size in the big model is beneficial, compared
to the simpler base model. Most noteworthy, we
noticed considerably different behaviors of the at-
tention mechanism depending on the type of task.
We offer an analysis below.

5.1 Topic Classification Tasks

On the topic classification task, the self-attention
behavior can be described as looking for interac-
tions between important concepts, without consid-
ering relative distance. As such, it acts similarly
to a bag-of-word approach, while highlighting key
elements and their associations. Thus, the atten-
tion matrix takes shape of active columns, one per
concept. One such matrix is depicted in Figure
3a, where the attention is focused on distanced
pairs such as (microsoft, class-action)
or (settlement, billions) to help SANet
predict the Business category, while the baseline
wrongfully predicts Sci/Tech. We observed this
column-based structure for attention matrix for ev-
ery topic classification dataset, see Figure 4 for
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Figure 3: Self-attention different behavior for each text classification task. The attention matrices were
extracted from the SANet base model applied on the testing set of each dataset. Words on the y-axis are
attending to the words on the x-axis. GT refers to the ground truth.

multiple examples. Although it adds interpretabil-
ity to the model, our results seem to indicate that
self-attention does not improve performances for
topic classification, compared to the baseline.

5.2 Sentiment Analysis Tasks

For sentiment analysis tasks, self-attention im-
proves accuracy for every dataset and model con-
figurations that we tested. For Yelp Review Po-
larity, although attention helps, the overall perfor-
mances remain subpar.

Noticeably for the other datasets, SANet is able
to extract subtle interactions between words, with
a strong focus on neighboring relation. Hence, the
attention matrices are close to being band matri-
ces, with interest concentrated on very small re-
gions near the diagonal. This is observable in Fig-
ure 5 where multiple examples from all sentiment
analysis datasets are presented. Concentration of
the attention around the diagonal indicates that
the useful features learned by the attention mech-
anism consist essentially of skip-bigrams with rel-
atively small gaps. Of note, Wang and Manning
(2012) previously observed consistent gains when
including word bigram features to extract senti-
ment. Thus, our model corroborates this intu-
ition about sentiment analysis while yielding in-
terpretable insights on relevant word pairs across

all possible skip-bigrams.
Figure 3b is a typical example of such ma-

trix with a band diagonal structure, for a 5-star
Yelp review. A number of positive elements are
highlighted by the self-attention mechanism such
as i) the initial strong sentiment with the inter-
action between this with love and ! ii) the
favorable comparison with even and better
iii) the enticing openness to experiences with
try and something and iv) the positive com-
bination of two negative words with never and
disappointed.

Positional encoding helps the self-attention
mechanism when interpreting words repetitions,
in order to extract sentiment gradation. When re-
peating three times an adjective before the mod-
ified noun, attention on the adjective increases
with their proximity to the noun: horrible
horrible horrible service. Punctu-

ation repetitions exhibit a similar behavior, as in
the sentence “love this place!!!”, where the words
love and all three exclamation points apply at-
tention to this with varying intensities: love
this place ! ! ! . This particular behav-
ior of the model reinforces our belief that it learns
intricate knowledge for the task of sentiment anal-
ysis. Entire attention heatmaps for complete se-
quences can be found in Figure 6.
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Figure 4: Randomly selected attention matrices for topic classification task. Each row corresponds to a
different dataset in this order: AG’s News, DBPedia and Yahoo! Answers. The column-based pattern is
clearly present in the attention mechanism for topic classification.

Figure 5: Randomly selected attention matrices for sentiment analysis task. Each row corresponds to a
different dataset in this order: Yelp Review Polarity, Yelp Review Full, Amazon Review Full and Amazon
Review Polarity. The diagonal band pattern of the matrices is clearly present in the attention mechanism
for sentiment analysis except for the Yelp Review Polarity dataset.

5.3 Quantitative Analysis

We now present a quantitative analysis of the at-
tention matrices to support the qualitative intuition
stated previously. Two metrics are used in order to
assess the properties of the matrices; the first one
(Gini coefficient) quantifies the sparsity of the at-
tention, whereas the second one (diagonality) fo-
cuses on the diagonal concentration. These two

properties are relevant for interpretability issues.
The results are presented in Table 2.

The Gini coefficient which measures the in-
equality in the attention weights distribution is first
computed. For topic classification datasets, the
mean of the Gini coefficient is 63.57%, whereas,
for sentiment analysis datasets, it raises at 87.15%
without considering Yelp Review Polarity. Thus,
for topic classification it reveals that every word
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Figure 6: Positional encoding impact for sentiment gradation through self-attention mechanism. Both
examples are extracted from the testing set of the Yelp Review Full dataset. Label 4 means 5-star review
and label 0 means 1-star review. Words on the y-axis are attending to the words on the x-axis. GT refers
to the ground truth.

Table 2: Quantitative statistics of the self-attention mechanism behavior for the two text classification
tasks. Metrics are computed on the testing sets using the SANet base model.

Metric
Topic Classification Sentiment Analysis

AG DBP. Yah. A. Yelp P. Yelp F. Amz. F. Amz. P.

Gini coefficient 55.31 67.94 67.45 65.16 84.18 89.50 87.76

Diagonality (bandwidth = 1) 7.44 8.49 6.34 5.02 23.54 41.77 40.01
Diagonality (bandwidth = 2) 11.86 13.80 9.83 7.89 36.89 62.35 60.34
Diagonality (bandwidth = 3) 16.21 18.88 13.28 10.62 45.49 73.53 71.43
Diagonality (bandwidth = 4) 20.42 23.74 16.59 13.19 50.90 79.49 77.21
Diagonality (bandwidth = 5) 24.48 28.25 19.65 15.62 54.54 83.09 80.56

interacts with multiple other words in the se-
quence. On the other hand, for sentiment analy-
sis, the attention is focused on a fewer number of
word pairs. The second metric will also point out
that the sentiment analysis attention is sparse and
specifically based on pair of words that are close
in the sentence. This structurally corresponds to
an attention matrix concentrated near the diagonal
and justifies the introduction of the following met-
ric.

This new metric evaluates the resemblance with
a band matrix by computing the proportion of at-
tention weights which occur inside the band diago-
nal of a given bandwidth b, thus the band diagonal-

ity or diagonality for short. It expresses the inter-
actions of every element with itself, and the b ele-
ments before and after in the sequence. This met-
ric of diagonality was computed for a bandwidth
of b = 1, 2, . . . , 5 as presented in Table 2. Re-
sults clearly reveal that sentiment analysis atten-
tion matrices are structurally close to being band
matrices. Notably, with a bandwidth of b = 3 for
topic classification, 16.12% of the weights occur
inside the band diagonal, as for sentiment analysis
without considering Yelp Review Polarity, 63.48%
is located inside the band diagonal.

In our opinion, the combination of these two
metrics supports our qualitative observations of
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the attention matrices. It strengthens the differ-
ence in attention behavior between the topic clas-
sification and sentiment analysis task. Moreover,
this quantitative analysis clearly exposes SANet
inability to learn the appropriate attention behavior
for sentiment analysis with Yelp Review Polarity.
Its failure to adequately exploit the self-attention
mechanism coincide with its poor performance to
extract sentiment. Interestingly, Yelp Review Po-
larity examples are a subset of Yelp Review Full
with merged classes, for which SANet performs
well with the expected attention behavior. The
cause of this discrepancy with the Yelp datasets
is unknown and left for future work as is some lin-
guistic investigation of the impact of close inter-
acting words in sentiment analysis.

6 Conclusion

In this paper, we introduced the Self-Attention
Network (SANet), an attention-based length-
agnostic model architecture for text classification.
Our experiments showed that self-attention is im-
portant for sentiment analysis. Moreover, the im-
proved interpretability of the model through atten-
tion visualization enabled us to discover consid-
erably different behaviors of our attention mech-
anism between the topic classification and senti-
ment analysis tasks. The interpretable perspective
of this work gives insights on the importance of
modeling interaction between neighboring words
in order to accurately extract sentiment, as noted
by (Wang and Manning, 2012) for bigrams. It
highlights how interpretability can help us under-
stand models behavior to guide future research. In
the future, we hope to apply our Self-Attention
Network to other datasets such as bullying detec-
tion on social network data and tasks from vari-
ous fields, such as genomic data in bioinformat-
ics. Finally, we wish to study the properties of the
introduced global max pooling layer as a comple-
mentary tool for interpretability in a similar way
that was done with CAM (Oquab et al., 2015) for
global average pooling. The outcome will be some
attention on individual words that can take into ac-
count the context given by the self-attention mech-
anism. This contrast with the approach of this
paper which focuses on interaction between ele-
ments as pairs. Thus we are allowed to expect that
these two mechanisms will act in a complementary
way to enrich interpretability.
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