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Abstract

While Long Short-Term Memory networks
(LSTMs) and other forms of recurrent neural
network have been successfully applied to lan-
guage modeling on a character level, the hid-
den state dynamics of these models can be
difficult to interpret. We investigate the hid-
den states of such a model by using the HDB-
SCAN clustering algorithm to identify points
in the text at which the hidden state is similar.
Focusing on whitespace characters prior to the
beginning of a word reveals interpretable clus-
ters that offer insight into how the LSTM may
combine contextual and character-level infor-
mation to identify parts of speech. We also
introduce a method for deriving word vectors
from the hidden state representation in order
to investigate the word-level knowledge of the
model. These word vectors encode meaning-
ful semantic information even for words that
appear only once in the training text.

1 Introduction

Recurrent Neural Networks (RNNs), including
Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997; Gers et al.,
2000), have been widely applied to natural lan-
guage processing tasks including character-level
language modeling (Mikolov et al., 2012; Graves,
2013). However, like other types of neural net-
works, the hidden states and behaviour of a given
LSTM can be difficult to understand and interpret,
due to both the distributed nature of the hidden
state representations and the relatively opaque re-
lationship between the hidden state and the final
output of the network. It is also not clear how a
character-level LSTM language model takes ad-
vantage of orthographic patterns to infer higher-
level information.
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In this paper, we investigate the hidden state dy-
namics of a character-level LSTM language model
both directly and — through the use of output gate
activations — indirectly. As an overview, our main
contributions are:

1. We use clustering to investigate similar hid-
den states (and output gate activations) at dif-
ferent points in a text, paying special atten-
tion to whitespace characters. We provide in-
sight into the model’s awareness of both or-
thographic patterns and word-level grammat-
ical information.

2. Inspired by our findings from clustering, we
introduce a method for extracting meaning-
ful word embeddings from a character-level
model, allowing us to investigate the word-
level knowledge of the model.

First, we use the HDBSCAN clustering algo-
rithm (Campello et al., 2013) to reveal locations
within a text at which the hidden state of the
LSTM is similar, or at which a similar combina-
tion of cell state dimensions is relevant (as deter-
mined by output gates). Interestingly, focusing
on moments when the network must predict the
first letter of a word reveals clusters that are in-
terpretable on the level of words and which dis-
play both character-level patterns and grammati-
cal structure (i.e. separating parts of speech). We
give examples of clusters of similar hidden states
that appear to be heavily influenced by local ortho-
graphic patterns but also distinguish between dif-
ferent grammatical functions of the pattern — for
example, a cluster containing whitespace charac-
ters following possessive uses, but not contractive
uses, of the affix “’s”. This sheds light on the use
of orthographic patterns to infer higher-level infor-
mation.

We also introduce a method for extracting word
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embeddings from a character-level model and per-
form qualitative and quantitative analyses of these
embeddings. Surprisingly, this method can as-
sign meaningful representations even to words that
appear only once in the text, including associ-
ating the rare word “scrutinizingly” with “ques-
tioningly” and “attentively”, and correctly iden-
tifying “deck” as a verb based on a single use
despite its lack of meaningful subword compo-
nents. These results suggests that the model is ca-
pable of deducing meaningful information about a
word based on the context of a single use. While
these embeddings do not achieve state-of-the-art
performance on word similarity benchmarks, they
do outperform the older methods of Turian et al.
(2010) despite the small corpus size and the fact
that our language model was not designed with the
intent of producing word embeddings.

The rest of the paper is structured as follows:
The following section describes related work. Sec-
tion 3 describes the architecture and training of the
LSTM language model used in our experiments.
In Section 4, we describe our clustering methods
and show examples of the clusters found, as well
as a part of speech analysis. In Section 5, we de-
scribe and analyze our method for extracting word
embeddings from the character-level model. Fi-
nally, we conclude and suggest directions for fu-
ture work.

2 Related Work

2.1 Analyzing Hidden State Dynamics

Many researchers have investigated techniques for
understanding the meaning and dynamics of the
hidden states of recurrent neural networks. In
his seminal paper (Elman, 1990) introducing the
simple recurrent network (SRN) (or “Elman net-
work”), Elman uses hierarchical clustering to in-
vestigate the hidden states of a word-level RNN
modeling a toy language of 29 words. Our ap-
proach in Section 4 is in some ways similar, al-
though we use real English data and a character-
level LSTM model. This also bears some similari-
ties to a visualization technique used by Krakovna
and Doshi-Velez (2016) to investigate a hybrid
HMM-LSTM model, although their work uses
only 10 k-means clusters and does not deeply in-
vestigate clustering. Elman also uses principal
component analysis to visualize hidden state over
time (1991), and many researchers have used di-
mensionality reduction methods such as t-SNE

(Van der Maaten and Hinton, 2008) to visualize
similarity between word embeddings, as well as
other forms of distributed representation. More
recently, Li et al. (2016) directly visualize repre-
sentations over time using heatmaps, and Strobelt
et al. (2018) develop interactive tools for visual-
izing LSTM hidden states and testing hypotheses
about distributed representations.

Other researchers have investigated methods for
clarifying the function of specific hidden dimen-
sions. Karpathy et al. (2015) use static visu-
alizations to demonstrate the existence of cells
in an LSTM language model with interpretable
behaviour representing long-term dependencies
(such as cells tracking line length or quotations
in a text). Another approach is that of Kádár
et al. (2017), who introduce a “Top K Contexts”
method for interpreting the function of certain hid-
den dimensions, identifying the K points in a se-
quence which experience the highest activations
for the dimension in question.

2.2 Character-Level Word Embeddings

Multiple researchers have developed methods for
creating word embeddings that incorporate sub-
word level (Luong et al., 2013) or character-level
(Santos and Zadrozny, 2014; Ling et al., 2015) in-
formation in order to better handle rare or out-of-
vocabulary words. These approaches differ from
our work in Section 5 in that they use architec-
tures specifically designed to create word embed-
dings, while we create embeddings from the hid-
den state of a character-level model not designed
for this purpose. In addition, we are interested not
in the embeddings themselves, but rather in what
they tell us about the word-level knowledge of the
language model.

Kim et al. (2016) investigate word embeddings
created by a character-aware language model;
however, the model uses word-level inputs that are
further subdivided into character-level information
and makes predictions on the word level, while we
use an entirely character-level model.

3 Model

In this paper we focus on the task of language
modeling on the character level. Given an input se-
quence of characters, the model is tasked with pre-
dicting the log probability of the following charac-
ter.

We trained two models on different data sets us-
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ing the same architecture. Most of the paper fo-
cuses on the War and Peace model, but Section
5 uses embeddings derived from the Lancaster-
Oslo/Bergen Corpus model when measuring per-
formance against word embedding benchmarks.

3.1 Training Data

Our first model uses a relatively small data set,
consisting of the text of War and Peace by Tol-
stoy1. This data set was chosen due to its conve-
nience as a sufficiently long but stylistically con-
sistent example of English text. The text contains
3,201,616 characters. We use the first 95% of the
data for training and the last 5% for validation.

Our second model uses a slightly larger data set,
consisting of the Lancaster-Oslo/Bergen (LOB)
corpus (Johansson et al., 1978)2, which we re-
moved all markup from. This data set draws
from a wide variety of fiction and non-fiction texts
written in British English in 1961, and contains
5,818,332 characters total. It was chosen for use
in Section 5 because it covers a wide range of top-
ics (allowing us to extract word embeddings for a
wider vocabulary) while still remaining at a man-
ageable size. We use the last 95% of the data for
training and the first 5% for validation.

3.2 Model Architecture and Implementation

We use a simple LSTM architecture consisting
of a 256-dimensional character embedding layer,
followed by three 512-dimensional LSTM layers,
and a final layer producing a log softmax distribu-
tion over the set of possible characters. The model
was implemented in PyTorch (Paszke et al., 2017)
using the default LSTM implementation3.

This architecture was chosen mostly arbitrarily,
and distantly inspired by Karpathy et al. (2015).

3.3 Training

The War and Peace model was trained for 170
epochs using stochastic gradient descent and the
negative log likelihood loss function, with mini-
batches of size 100 and truncated backpropaga-
tion through time (BPTT) of 100 time steps. Dur-
ing training, dropout was applied after each LSTM
layer with a dropout rate of 0.5. The learning rate

1(Tolstoy, 2009), translated to English by Louise and
Aylmer Maude.

2retrieved from http://purl.ox.ac.uk/ota/
0167

3We intend to release our code, including the trained mod-
els.

was initially set to 1 and halved every time the
loss on the validation data set plateaued. The final
model achieved 1.660 bits-per-character (BPC) on
the validation data.

The Lancaster-Oslo/Bergen model was trained
for 100 epochs using the PyTorch implementation
of AdaGrad, with mini-batches of size 100, trun-
cated BPTT of 100 time steps, a dropout rate of
0.5, and an initial learning rate of 0.01.4 The final
model achieved 1.787 BPC on the validation data.

4 Cluster Analysis of Character-Level
and Word-Level Patterns

In this section we analyze points in the training
text by clustering according to hidden state val-
ues and output gate activations, revealing a combi-
nation of grammatical and word-level patterns re-
flected in the hidden state of our language model.

4.1 Data For Clustering

We created two sets of data for use in clustering: a
“full” data set and a “whitespace” data set.

To create the “full” data set, we ran our War and
Peace language model on the first 50,000 charac-
ters5 of the training data and recorded the hidden
state (i.e. the values often denoted ht in the LSTM
literature, rather than the cell state ct) and the sig-
moid activations of the output gate of the third
LSTM layer at each time step. We focus on the
third layer based on the expectation that it will en-
code more high-level information than earlier lay-
ers, an expectation which was supported by brief
experimentation on the first layer.

To create the “whitespace” data set, we ran the
War and Peace model on the first 250,000 charac-
ters of the training data and recorded data only for
timesteps when the input character was a space or
a new line character.

4.2 Basic Clustering Experiment

We chose to use the HDBSCAN clustering algo-
rithm (Campello et al., 2013), since it is designed
to work with non-globular clusters of varying den-
sity, does not require that an expected number of
clusters be specified in advance, and is willing to
avoid assigning points to a cluster if they do not

4Training parameters were not tuned to the data and differ
mainly because the models were not trained at the same time,
with unrelated experiments intervening.

5This smaller data set was used due to the relatively
slow speed of the HDBSCAN implementation on high-
dimensional data.

http://purl.ox.ac.uk/ota/0167
http://purl.ox.ac.uk/ota/0167
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Cluster Sample Cluster Members

4
even wi[s]h to; conversing wi[t]h;
case wi[t]h; whi[c]h was; him wi[t]h;
his wi[f]e; very wi[t]ty; acts whi[c]h;

7
so[m]ething like; she sa[w] that;
Hardenburg sa[y]s; the sa[m]e time;
none se[e]med to; words su[g]gested.

14 e[x]plains; e[v]erything; e[x]posed;
e[x]pectations; e[l]derly; e[x]pression;

39 thi[s] reception; tha[t] profound; like thi[s]?”;
the[y] promised; the[y] have; The[r]e is;

54
who[ ]is; He[ ]spoke; he[ ]indicated;
who[ ]had; He[ ]frowned; She[ ]was;
who[ ]was; she[ ]said; why[ ]he

56
on[ ]the; for[ ]God’s; of[ ]the;
of[ ]them; by[ ]imbecility; for[ ]Pierre;
of[ ]young people; from[ ]abroad;

62
had[ ]gone; had[ ]the; had[ ]been;
have[ ]reference; have[ ]promised;
had[ ]also; has[ ]been; has[ ]to;

63
her[ ]house; that[ ]is; his[ ]boats;
this[ ]pretty; that[ ]this; prevented her[ ]from;
her[ ]age; his[ ]way; her[ ]duties;

Table 1: Example members of clusters found using
hidden state values based on the “full” data set. Cluster
members (indicated by brackets) are accompanied by
text excerpts (separated by semicolons) to give context.

seem to be a good fit for any cluster. We used the
Python implementation of McInnes et al. (2017).

Using the “full” data set, we attempted to
cluster the time steps according to either hid-
den state or output gate activations. We used
the Euclidean metric and the HDBSCAN param-
eters min cluster size=100 and min samples=10.
This was chosen somewhat arbitrarily and not on
the basis of a parameter search; we did briefly
try other settings during preliminary research and
found that the results were similar6. Clustering
by hidden state values and clustering by output
gate activations both produced a number of inter-
pretable clusters7.

Table 1 shows a representative sample of the
clusters found when using the hidden state for
clustering8. We found that most clusters seemed to
have interpretable meanings on the character level,
often including characters near the start of words
that begin with a particular character or characters,
as in clusters 4, 7, and 14. In some cases, these
clusters seem to locate orthographic patterns that

6Of course, allowing smaller clusters results in more clus-
ters, while requiring larger clusters results in fewer, broader
clusters, but there were no major qualitative differences in the
types of clusters produced.

7Clustering by hidden state produced 67 clusters, while
clustering by output gate activations produced 87 clusters.

8The output gate clusters were similar and are omitted to
save space.

are useful in predicting the following character;
for example, the characters in cluster 4 are often
followed by an “h”, and cluster 39 contains mostly
letters at the end of a word (i.e. usually followed
by whitespace). However, we did not find clusters
that were characterised only by the following char-
acters and not by patterns in the preceding charac-
ters.

More interestingly, clusters consisting of points
immediately preceding the start of a word tended
to reflect word-level information relating to the
preceding word. For example, cluster 54 con-
sists of spaces immediately following the pro-
nouns “he” and “she”, as well as the interroga-
tive pronoun “who”9, while cluster 56 consists of
spaces following certain prepositions. This was
observed in both the clusters based on hidden state
and the clusters based on output gate activation.
This could be due to the fact that the output gate
activations, which also impact the hidden state,
can be intepreted as choosing which dimensions
of the cell state are relevant for the network’s “de-
cision” at a given time, and we would expect that
word-level information is relevant when choosing
a distribution over the first letter of the next word.

4.3 Whitespace Clustering and
Part-of-Speech Analysis

Since the clusters including whitespace tended
to reflect word-level grammatical information (as
seen in clusters 54, 56, and 62 from Table 1), we
performed another round of clustering restricting
our focus to only spaces and new lines. Cluster-
ing was performed on the “whitespace” data ac-
cording to either hidden states or output gate acti-
vations, again producing many interpretable clus-
ters10.

For the purposes of word-level analysis, each
data point (corresponding to a whitespace charac-
ter in the text) was equated with the word imme-
diately preceding it. The Stanford Part-of-Speech
Tagger (Toutanova et al., 2003) was used to tag
the text with part of speech (POS) information,
and for each cluster the precision (percentage of
words in the cluster having a given tag) and re-
call (percentage of words with a given tag falling

9 This cluster also occasionally includes spaces following
the word “why”, which may be due to orthographic similarity
to “who”, or due to the fact that “why” is often followed by a
verb, as in “Why is...”.

10Clustering by hidden states produced 70 clusters, while
clustering by output gate activations produced 77 clusters.
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Cluster Sample Members of Cluster POS - Precision POS - Recall

HS-35 asked; replied; remarked; continued; replied; cried; cried;
repeated; continued; exclaimed; remarked; remarked; continued; declared; VBD: 100% VBD: 4.5%

HS-40
will; will; don’t; don’t; don’t; cannot; just; can’t;
will; will; might; could; shall; will; would; just;
would; just; just; don’t; don’t; could;

MD: 59.2%
RB: 18.3%
NN: 21.3% 11

MD: 89.9%
RB: 5.1%
NN: 2.9%

HS-57 looking; looked; looking; looked; looked; looking; walked; glanced;
looking; looking; glancing; looked; looked; looked; looking

VBD: 60.0%
VBG: 40.0%

VBD: 2.4%
VBG: 4.8%

HS-59
trembled; jumped; tucked; smoothed; smiled; raised;
standing; smiled; pushed; smiled; passed; crowding;
turning; raised; climbed; watched; turned; changed;

VBD: 59.1%
VBG: 31.5%
VBN: 8.7%

VBD: 6.0%
VBG: 9.7%
VBN: 3.3%

HS-62
unnatural; beautiful; beautiful; beautiful; terrified;
suppressed; proud-looking; polished; well-garnished; nice-looking;
swaggering; wonderful; embittered; alarmed; mournful

JJ: 84.4%
VBN: 6.7%
VBG: 4.4%

JJ: 4.1%
VBN: 0.9%
VBG: 0.5%

OG-69
laughter; mother; father; daughter; father; father; matter;
daughter; father; manner; officer; father; daughter;
mother; laughter; daughter; daughter; father; officer;

NN: 94.1%
NNS: 2.9%
JJ: 2.9%

NN: 1.9%
NNS: 0.3%
JJ: 0.1%

OG-74 emancipation; nation; conversation; conversation; opinion
conversation; resignation; conversation; conversation; expression;

NN: 95.7%
NNP: 4.4%

NN: 3.8%
NNP: 0.3%

Table 2: Cluster members and POS statistics. Example cluster members (corresponding to whitespace characters)
are drawn uniformly at random from the cluster and are represented by the preceding word. Note that some words
appear multiple times since each appearance of the word in the text corresponds to a different data point. POS
tags are those used by the Stanford POS tagger. Statistics are reported for the three parts of speech with highest
precision.

into the cluster)12 were calculated with respect to
each tag. Since the clusters are based only on data
corresponding to whitespace, words not followed
by whitespace (approximately 16% of all words)
were not counted when calculating recall.

A selection of clusters, example members, and
POS statistics can be seen in Table 2. Clusters are
designated “OG” or “HS” for “output gate” and
“hidden state” respectively, so “HS-35” means the
35th cluster produced when clustering by hidden
state values. These clusters were selected to illus-
trate the interesting patterns present, rather than to
represent “typical” clusters.

The resulting clusters based on hidden states
were similar to those based on output gate acti-
vations. Both approaches resulted in some clus-
ters based on a mix of orthographic and semantic
similarity — for example, both produced a clus-
ter consisting primarily of three-letter verbs be-
ginning with “s” (particularly “sat”, “saw”, and
“say”), as well as clusters consisting of possessive
uses of the suffix “’s”, but not uses of “’s” as a
contraction of “is” (as in “it’s”, “that’s”, etc.), de-
spite the existence of several such uses in the text.

11Manual inspection suggests that the claimed 22% preci-
sion for nouns is actually due to the POS tagger mistaking
“don’t”, “can’t” etc. for nouns, probably due to poor tok-
enization, meaning that the true precision for modal verbs in
this cluster is 80% if we consider these to be modal verbs.

12Note that when measured in this way, recall will usually
be quite low, since most clusters only contain some particular
subset of words with a given tag.

In fact, some early experimentation resulted in a
distinct cluster for the contractive use of “’s”, al-
though this does not occur with the parameters we
chose for our canonical data. Additionally, in both
cases the majority of clusters contained instances
of only a single word or a small set of words —
for example, a cluster consisting entirely of the
word “the”, a cluster consisting almost entirely of
the words “he” and “she”, and a cluster containing
only the words “me” and “my”. In total, 71% of
clusters either contained only one or two words, or
were determined by preceding punctuation.

However, there were qualitative differences be-
tween the two approaches. Some of the hidden
state clusters appear to be based on semantic sim-
ilarities that go beyond mere grammatical similar-
ity; in particular, cluster HS-35 (as seen in Table 2)
contains words related to dialogue (and additional
context reveals that members of this cluster always
follow the end of a quotation), while cluster HS-
57 contains multiple words related to looking (in-
cluding “gazed”, although it does not appear in the
table). Additionally, cluster HS-40 finds modal
verbs with high precision and 89.9% recall, along
with the words “just” and “still”, which might be
included due to orthographic similarity to “must”
and “will”.

In contrast, clusters based on output gate acti-
vations appear to be somewhat more closely re-
lated to orthographic similarities. Several of these
clusters display orthographic patterns that corre-
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late strongly with parts of speech; for example,
clusters OG-69 and OG-74 contain “-ion” nouns
and “-er” nouns (but not “-er” adjectives) respec-
tively, and rather than including all modal verbs
in a single cluster, the output gate clusters group
the words “would”, “could”, and “should” sepa-
rately from “don’t”, “won’t”, and “can’t” (which
are in turn separate from the cluster containing
“will” and “still”). This suggests that character-
level patterns correlated with grammatical infor-
mation could strongly influence output gate activa-
tions in a way that contributes to the grammatical
understanding of the model13.

5 Extracting Word Embeddings

As seen in Section 4.3, hidden states after whites-
pace characters encode word-level information.
This suggests a method for deriving word embed-
dings from a character-level model, in order to bet-
ter investigate the model’s word-level knowledge.

To obtain word embeddings, we ran the War
and Peace model on the entire text of War and
Peace, storing hidden state values at each point in
the text. We then associated each word appear-
ing at least once in the text14 with the average hid-
den state vector for whitespace characters follow-
ing the word in question. This produced a set of
512-dimensional embeddings for a vocabulary of
15,750 distinct words15.

Table 3 shows the nearest neighbours16 of the
embeddings of several words, as well as a count of
how frequently the word appears in the text. While
not all nearest neighbours seem to be relevant (par-
ticularly for e.g. “write” and “food”), it nonethe-
less appears that for words well-represented in
the text, these embeddings do reflect meaning
(e.g. “loved” is similar to “liked”, “soldier” to “of-
ficer”, and so on). In the case of words that are less
well represented (e.g. “write”, “food”), the nearest
neighbours often seem to be retrieved based more
on orthographic similarities; however, “food” is

13Though the ability of RNNs to learn and represent syntax
has been studied in RNNs with explicit access to grammati-
cal structure (Kuncoro et al., 2017), to our knowledge, syn-
tax representations have not been explored in character-level
RNNs.

14Excluding words that are never followed immediately by
a whitespace character (about 16% of all words).

1517,510 words in total, but 1,760 are a combination of two
words joined by an em-dash. We ignore these “words” in our
nearest neighbours analysis.

16A tool from scikit-learn (Pedregosa et al., 2011) was used
to find nearest neighbours by cosine similarity. Using the
Euclidean metric instead gives very similar results.

Word (Occurrences) 5 Nearest Neighbours

prince (1,926) princess, pwince, princes,
platón, phillip

we (1069) I, tu, you, ve, he

soldier (201) officer, footman, soldiers,
traveler, landowner

loved (120) liked, longed, saved,
lived, lose

frenchman (100)
frenchwoman, englishman,
huntsman, coachman,
frenchmen

write (61) wring, wake, wipe, strive, live
food (41) foot, folk, fool, fear, form
tu (4) we, I, thou, you, je

untruth (3) distrust, entreaty, rescript,
rupture, ruse

cannonading (2)
undertaking, attacking,
outflanking, maintaining
tormenting

scrutinizingly (1)
questioningly, challengingly,
attentively, imploringly,
despairingly

moscovite (1) honneur, moravian, tshausen,
chinese, grenadier

custodian (1) guardian, battalion, nightmare,
republican, mathematician

conduce (1) convince, conclude, conduced
induce, introduce

deck (1) delve, dwell, descry,
deny, decide

Table 3: Sample vocabulary words and the number
of times each appears in the text, compared with the
5 nearest neighbours according to our extracted word
embeddings.

still associated with nouns, and “write” with verbs,
and more generally the embedding usually appears
to at least reflect basic part of speech information.

More surprising, however, is the treatment of
words that appear only once in the text. In
some cases, the embeddings of these words do re-
flect not only grammatical information but also
their actual meaning; the word “moscovite”,
for example, is correctly associated with the
words “moravian” and “chinese” which also de-
scribe geographic origin, and the word “scruti-
nizingly” is associated with “questioningly” and
“challengingly”. In these cases, since the word
“moscovites” and various forms of “scrutinize”
do appear more frequently in the text, it is pos-
sible that orthographic similarity and an under-
standing of morphemes such as “-s”, “-ing” and
“-ly” contribute to these embeddings. This would
be consistent with the findings of e.g. Santos and
Zadrozny (2014) and others who have used the or-
thographic information associated with words to
develop word embeddings that perform well for
rare words and even out-of-vocabulary words.
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Task Pairs Found and Correlation
Our Embeddings Metaoptimize Skip-Gram

WS-353 290 0.1376 351 0.1013 353 0.6392
WS-353-SIM 164 0.2265 201 0.1507 203 0.6962
WS-353-REL 215 0.1384 252 0.0929 252 0.6094
MC-30 25 0.1808 30 -0.1351 30 0.6258
RG-65 48 0.2051 64 -0.0182 65 0.5386
Rare-Word 604 0.1500 1159 0.1085 1435 0.3878
MEN 2317 0.1800 2915 0.0908 2999 0.6462
MTurk-287 232 0.3681 284 0.0922 286 0.6698
MTurk-771 689 0.0920 770 0.1016 771 0.5679
YP-130 111 0.1311 124 0.0690 130 0.3992
SimLex-999 948 0.0827 998 0.0095 998 0.3131
Verb-144 144 0.3437 144 0.0553 144 0.2728
SimVerb-3500 3052 0.0098 3447 0.0009 3492 0.2172

Table 4: Performance of the word vectors derived from our Lancaster-Oslo/Bergen model on word similarity tasks,
compared with scores (taken from http://wordvectors.org (Faruqui and Dyer, 2014)) for the Metaopti-
mize (Turian et al., 2010) and Skip-Gram (Mikolov et al., 2013) embeddings. For each set of embeddings and each
task we list the number of word pairs found and the measured correlation (Spearman’s rank correlation coefficient).

However, this does not explain the case of
“deck”. When this word appears in the text, it is
used in its sense as a verb. The only other ap-
pearance of the string “deck” in the text is the
word “decks”, referring to the noun form of the
word, and yet the embedding for “deck” is cor-
rectly similar to other verbs. For this reason, and
because the word “deck” is short and does not con-
sist of meaningful sub-word entities, it is unlikely
that the verb-ness of “deck” was deduced from the
word itself. This suggests that the model was able
to determine the part of speech of the word from
its use in a single context (e.g. the fact that it was
preceded by “do not”). A similar mechanism may
also be responsible for the understanding of the
French word “tu”, which is correctly identified as
a personal pronoun similar to both “you” (its trans-
lation, appearing 3,509 times) and “je” (the French
1st-person singular pronoun, appearing 16 times)
despite containing little orthographic information.
It should also be noted that while it is not the norm
for these embeddings of singleton words to reflect
meaning (as in the case of “scrutinizingly”), the
majority of embeddings do appear to at least iden-
tify part of speech (as in the case of “deck”), sug-
gesting a fairly robust mechanism for determining
this information from context.

The goal of this experiment was not to produce
high-quality embeddings, but rather to understand
the word-level knowledge of a character-level lan-
guage model. Nonetheless, we decided to evaluate
word embeddings obtained in this manner against
some word similarity benchmarks. In order to ob-
tain a broader vocabulary, we used word embed-

dings derived from the model we trained on the
Lancaster-Oslo/Bergen corpus. While this train-
ing data is still quite small (less than 6 million
characters), it covers a wider range of authors,
styles, and topics, including fiction, non-fiction,
scientific papers and news articles, and thus is bet-
ter suited to producing general-purpose word em-
beddings. The embeddings we extracted from this
corpus cover a vocabulary of 38,981 words.

We assessed these embeddings us-
ing the 13 word similarity tasks of
http://wordvectors.org (Faruqui and
Dyer, 2014), achieving the results shown in Table
4. While these results are far from state-of-the-art,
they do outperform the representations of Turian
et al. (2010) on all tasks except for MTurk-771.
Furthermore, our embeddings perform compa-
rably on the “Rare Words” task compared to
several other tasks, despite the small corpus size,
presumably due to the use of orthographic and
contextual information by the language model.

6 Discussion and Conclusion

In this paper, we used clustering to investigate the
type of information reflected in the hidden states
and output gate activations of an LSTM language
model. Focusing on whitespace characters re-
vealed clusters containing words with meaningful
semantic similarities, as well as clusters reflecting
orthographic patterns that correlate with grammat-
ical information.

We also described a method for extracting
word embeddings from a character-level language
model. Analysis suggests that the model is able to

http://wordvectors.org
http://wordvectors.org
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learn meaningful semantic information even about
words that appear only once in the training text,
using some combination of orthographic and con-
textual information.

Directions for future work related to our cluster-
ing analysis could include applying similar tech-
niques to other RNN architectures (e.g. the GRU
of Cho et al. (2014)), comparing the effectiveness
of different clustering algorithms for this type of
analysis, and scaling up the clustering experiments
using more computational resources, a more effi-
cient algorithm, and a larger corpus.

Another promising direction is to expand on the
findings of Section 5 by analyzing the quality of
word embeddings produced from character-level
models trained on a larger corpus, and investi-
gating the capability of character level models to
produce word embeddings for out-of-vocabulary
words when given a small amount of context.

Collectively, our findings regarding clustering
analysis and extraction of word embeddings offer
interesting insight into the behaviour of character-
level recurrent language models, and we hope that
they will prove a useful contribution in the ongo-
ing effort to increase the interpretability of recur-
rent neural networks.
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