
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 249–257
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

249

Iterative Recursive Attention Model for
Interpretable Sequence Classification

Martin Tutek and Jan Šnajder
Text Analysis and Knowledge Engineering Lab

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

{martin.tutek,jan.snajder}@fer.hr

Abstract

Natural language processing has greatly ben-
efited from the introduction of the attention
mechanism. However, standard attention mod-
els are of limited interpretability for tasks that
involve a series of inference steps. We de-
scribe an iterative recursive attention model,
which constructs incremental representations
of input data through reusing results of pre-
viously computed queries. We train our
model on sentiment classification datasets and
demonstrate its capacity to identify and com-
bine different aspects of the input in an easily
interpretable manner, while obtaining perfor-
mance close to the state of the art.

1 Introduction

The introduction of the attention mechanism (Bah-
danau et al., 2014) offered a way to demystify the
inference process of neural models. By assigning
scalar weights to different elements of the input, we
are able to visualize and potentially understand why
the model made the decision it made, or discover a
deficiency in the model by tracing down a relevant
aspect of the input being overlooked by the model.
Specifically in natural language processing (NLP),
which abounds with variable-length word sequence
classification tasks, attention alleviates the issue of
learning long-term dependencies in recurrent neu-
ral networks (Bengio et al., 1994) by offering the
model a glimpse into previously processed tokens.

Attention offers a good retrospective explanation
of the classification decision by indicating what
parts of the input contributed the most to the deci-
sion. However, in many cases the final decision is
best interpreted as a result of a series of inference
steps, each of which can potentially affect its polar-
ity. A case in point is sentiment analysis, in which
contrastive clauses and negations act as polarity
switches of the overall sentence sentiment. In such
cases, attention will only point to the part of the

input sentence whose polarity matches that of the
final decision. However, unfolding the inference
process of a model into a series of interpretable
steps would make the model more interpretable
and allow one to identify its shortcomings.

As a step toward that goal, we propose an exten-
sion of the iterative attention mechanism (Sordoni
et al., 2016), which we call the iterative recursive
attention model (IRAM), where the result of an
attentive query is nonlinearly transformed and then
added to the set of vector representations of the in-
put sequence. The nonlinear transformation, along
with reusing the representations obtained in previ-
ous steps, allows the model to construct a recursive
representation and process the input sequence bit
by bit. The upshot is that we can inspect how the
model weighs the different parts of the sentence
and recursively combines them to give the final
decision. We test the model on two sentiment anal-
ysis tasks and demonstrate its capacity to isolate
different task-related aspects of the input, while
reaching performance comparable with the state of
the art.

2 Related Work

Attention (Bahdanau et al., 2014) and its variants
(Luong et al., 2015) have initially been proposed for
machine translation, but are now widely adopted
in NLP. Attention has proven especially useful in
tasks that involve long text sequences, such as sum-
marization (Rush et al., 2015; See et al., 2017),
question answering (Hermann et al., 2015; Xiong
et al., 2016; Cui et al., 2017), and natural language
inference (Rocktäschel et al., 2015; Yin et al., 2016;
Parikh et al., 2016), as well as purely attentional
machine translation (Vaswani et al., 2017; Gu et al.,
2017).

Thus far, there has been a number of interesting
and effective approaches for interpreting the in-



250

ner workings of recurrent neural networks through
methods such as representing them as finite au-
tomata (Weiss et al., 2017), extracting inference
rules (Zanzotto and Ferrone, 2017), and analyz-
ing saliency of inputs through first-order derivative
information (Li et al., 2016; Arras et al., 2017).

Akin to the saliency analysis approaches, we opt
not to condense the trained network into a finite set
of rules. We differ from (Li et al., 2016; Arras et al.,
2017) in that we attempt to decode the steps of the
decision process of a recurrent network instead of
demonstrating through saliency how the decision
changes with respect to the inputs. In the context
of sentiment analysis, the main benefit we see in
representing the decision process of a recurrent net-
work as a sequence of steps is that it offers a simple
way to isolate sentiment-bearing phrases by ob-
serving how they get grouped in a single iteration.
Secondly, we aim for improved interpretability of
functional dependencies such as negation, where
we demonstrate that our method first attends on the
negated phrase, constructing an intermediate repre-
sentation, which is then recursively transformed in
the next iteration.

Sordoni et al. (2016) introduced the iterative at-
tention mechanism for question answering, where
attention alternates between the question and the
document, and the query is updated in each step by
a GRU cell (Cho et al., 2014). The model combines
the weights obtained throughout the iterations to
select the final answer, similar to the attention sum
reader of Kadlec et al. (2016) and pointer networks
of Vinyals et al. (2015).

We believe there is much to gain from the itera-
tive attention mechanism by eliminating the direct
link between the intermediate representations and
the output, allowing the model to construct its own
sequential representation of the input. Our model
only connects the last attention step to the output,
removing the need for intermediate steps to contain
all the information relevant for the final decision.
Apart from (Sordoni et al., 2016), related work
closest to ours consists of concepts of multi-head
attention (Lin et al., 2017; Vaswani et al., 2017),
in which all queries are generated at once, pair-
wise attention (Cui et al., 2017; Xiong et al., 2016),
where attention is applied to multiple inputs but
is not applied iteratively and hierarchical iterative
attention (Yang et al., 2016), where the authors
first use a intra-sentence attention mechanism and
then combine the intermediate representations with

inter-sentence attention. In contrast to their work,
we do not predetermine the level on which the at-
tention is applied – in each iteration the mechanism
can focus on any element of the input sequence.

3 Model

Throughout the experiments, we will use two vari-
ants of our model: (1) the vanilla model and (2)
the full model. The vanilla model contains the bare
minimum of components needed for the attention
mechanism to function as intended. The purpose
of the vanilla model is to eliminate any additional
confounders for the performance and showcase the
interpretability of the model. For the full model,
we extend the vanilla model with additional deep
learning components commonly employed in state-
of-the-art models, to showcase the performance of
the model when given capacity akin to competing
models.

In both versions of the model, data is processed
in three phases: (1) encoding phase, which con-
textualizes the word representations; (2) attention
phase, which uses iterative recursive attention to
isolate and combine the different parts of the in-
put; and (3) classification phase, where the learned
representation is fed as an input to a classifier.

The vanilla and full model differ only in the en-
coding phase, while our proposed attention mech-
anism is employed only in the second phase. We
begin with a detailed account of the proposed atten-
tion mechanism and its regularization, and continue
with a description of the remaining components,
highlighting the differences between the vanilla
and full models.

3.1 Iterative Recursive Attention
Fig. 1 shows the architecture of the iterative atten-
tion mechanism. The mechanism uses a recurrent
network, dubbed the controller, to refine the atten-
tion query throughout T iterations.

Inputs to the mechanism are an initial query x̂
and a set of hidden states H = [hi, . . . , hN ] consti-
tuting the input sequence, both obtained from the
encoding step.

As the controller, we use a gated recurrent unit
(GRU) (Cho et al., 2014) cell. The input to the
controller is the transformed result of the previous
query, while the hidden state is the previous query.

For the attention mechanism we use bilinear at-
tention (Luong et al., 2015):

~a = softmax (~qWH) (1)



251

Figure 1: The iterative recursive attention model
(IRAM). Green-colored components share their pa-
rameters with components of the same type. High-
lighted in gray is one iteration of IRAM.

where ~q is the current query vector, W a param-
eter of size Rdq×dh , while dq and dh are the di-
mensionalities of the query and the hidden state,
respectively.

The attention weights are then used to compute
the input summary in timestep t as a linear combi-
nation of the hidden states:

ŝ(t) =
N∑
i

a
(t)
i hi (2)

As we intend to use ŝ(t) in the next iteration
of the attention mechanism, we need to allow the
network the capacity to discern between the new
additions and original inputs. To this end, we use a
highway network (Srivastava et al., 2015), which
gives the model the option to pass subsets of the
summary as-is or transform them with a nonlin-
earity. If the summary is not transformed with
a nonlinearity, it ends up being merely a linear
combination of the hidden states, and we gain no
information from adding it to the sequence.

The final input summary is thus obtained as
s(t) = Highway(ŝ(t)) and added to the set of hid-
den states H = {hi, . . . , hn, s(1), . . . , s(t)}.

3.2 Attention Regularization
Ideally, we want the model to focus on different
task-related aspects of the input in each iteration.
However, the model is in no way incentivized to
learn to propagate information through the sum-

maries and can in principle focus on the same seg-
ment in each step.

To prevent this from happening – and push the
model to focus on different aspects of the input
in every step – we regularize it by minimizing the
pairwise dot products between all iterations of at-
tention:

Lattn =
γ

2T

∑
i 6=j

[AAT ]ij (3)

where γ is a hyperparameter determining the regu-
larization strength and A ∈ RT×N+T−1 is a matrix
containing the attention weights generated in T
steps over N inputs by the iterative attention mech-
anism. The matrix has N + T − 1 columns to
account for attention over T − 1 added summaries,
as the summary generated in the last iteration can-
not be attended over. In each row t, the matrix
has T − t − 1 trailing zeroes, corresponding to
summaries that are not yet available in iteration t.

Concretely, the attention weight vector in row t
of the matrix A consists of:

At = [

Input sequence︷ ︸︸ ︷
a1, . . . , aN ,

Summaries in t− < t︷ ︸︸ ︷
aN+1, . . . , aN+t−1, 0, . . . ]

(4)
resulting in each element i, j of the regularization
matrix AAT storing the dot product between atten-
tion weights in iterations i, j. The regularization
expression is a sum over all off-diagonal elements.
The diagonal elements are dot products of attention
weights in the same iteration so we ignore them.
We scale by 1

2 to account for the symmetrical ele-
ments in ATA and by 1

T to account for the number
of dot product comparisons.

We note that, while this regularization penalty
does encourage the model to focus on different ele-
ments of the input sequence, there is still a trivial
way for the model to minimize the penalty without
learning a meaningful behavior. Since the atten-
tion weight over the summary in iteration t is zero
in all iterations t− < t, the model can simply at-
tend over any elements of the input sequence in
the first iteration, and afterwards propagate the in-
formation forward by fully attending only over the
summary generated in the previous iteration. We
will illustrate this behavior with concrete examples
in Section 4.

3.3 Vanilla Encoder
For training, the inputs of the encoding phase are a
sequence of words x = [w1, . . . , wN ] and a class



252

Figure 2: The full version of the iterative recursive
attention model (IRAM). Green-colored compo-
nents share their parameters with components of
the same type; blue-colored components each have
their own parameters.

label y. The encoder of the vanilla model maps
the word indices to dense vector representations
using pretrained GloVe vectors (Pennington et al.,
2014). The sequence of word vectors is then fed
as input to a bidirectional long-short term memory
(BiLSTM) network (Hochreiter and Schmidhuber,
1997). The outputs of the BiLSTM are used as
the input sequence to the iterative attention step,
while the cell state in the last timestep is used as
the initial query.

3.4 Full Encoder

There are three key differences between the full
encoder and the vanilla encoder. The full encoder
uses (1) character n-gram embeddings, (2) an addi-
tional highway network, whose task is to fine-tune
the word embeddings, and (3) an additional layer
of BiLSTM, followed by a highway layer to con-
struct the initial query. For extensions (1) and (2),
we took inspiration from McCann et al. (2017),
who also use both components. However, unlike
McCann et al. (2017), who used a ReLU feedfor-
ward network to fine-tune the embeddings for the
task, we use a highway network, which we found
performs better.

The pretrained character n-gram vectors ob-
tained from (Hashimoto et al., 2016) are first aver-

aged over all character n-grams for a given word
and then concatenated to the GloVe embedding.
Further on, before feeding the sequence of word
embeddings to a recurrent model, we use a two-
layer highway network (Srivastava et al., 2015) to
fine-tune the embeddings for the task, which is es-
pecially beneficial when the input vectors are kept
fixed.

To contextualize the input sequence and produce
an initial attention query, we use a bidirectional
long-short term memory (BiLSTM) network. We
split the network conceptually into two parts: the
lower lctx layers are used to transform the input se-
quence of word embeddings into a sequence of con-
textualized word representations, while the upper
lquery layers are used to read and comprehend the
now-transformed sequence and capture its relevant
aspects into a single vector. The rationale for the
split is that recurrent networks are often required
to tackle two tasks at once: contextualize the input
and comprehend the whole sequence. Intuitively,
the split should incite a division of labor between
the two parts of the network: contextualization net-
work only has to memorize the local information
specific to each word (e.g., verb tense, noun gen-
der) in order to transform its representation, while
comprehension network needs to model aspects
of meaning pertaining to the entire sequence (e.g.,
the overall sentiment of the sentence, locations of
sentiment bearing phrases).

We use a single (lctx + lquery)-layered BiLSTM,
where we use the output of the lctx -th layer, while
we use the cell state from the last layer as the se-
quence representation x̂.

Lastly, since the weights of the BiLSTM network
are suited toward processing the input sequence
rather than preparing the query vector, we add an
additional highway layer designed to fine-tune the
sentence representation into the initial query.

3.5 Classifier

As input to the classifier, we use the summary vec-
tor obtained from the last step of iterative attention
s(T ). This way we force the network to propagate
information through the attention steps, and also be-
cause the intermediate summaries do not contribute
directly toward the classification and hence need
not have the same polarity. The last summary vec-
tor is fed into a maxout network (Goodfellow et al.,
2013) to obtain the class-conditional probabilities.

Fig. 2 shows the full version of the iterative at-



253

tention mechanism with all of the aforementioned
components.

4 Experiments

4.1 Datasets

We test IRAM on two sentiment classification
datasets. The first is the Stanford Sentiment Tree-
bank (SST) (Socher et al., 2013), a dataset de-
rived from movie reviews on Rotten Tomatoes
and containing 11,855 sentences labeled into five
classes at the sentence level and at the level of
each node in the constituency parse tree. The bi-
nary version with the neutral class removed con-
tains 56,400 instances, while the fine-grained ver-
sion with scores ranging from 1 (very negative)
to 5 (very positive) contains 94,200 text-sentiment
pairs. The second dataset is the Internet Movie
Database (IMDb) (Maas et al., 2011), containing
22,500 multi-sentence reviews extracted from pos-
itive and negative reviews. We truncate each sen-
tence from this dataset to a maximum length of 200
tokens.

Firstly, we demonstrate and analyze how each
component in the vanilla model contributes to the
performance and interpretability. We then analyze
the full model and evaluate it on the aforemen-
tioned datasets.

4.2 Experimental Setup

Unless stated otherwise, all weights are initialized
from a Gaussian distribution with zero mean and
standard deviation of 0.01. We use the Adam opti-
mizer (Kingma and Ba, 2014) with the AmsGrad
modification (Reddi et al., 2018) and α = 0.0003.
We clip the global norm of the gradients to 1.0 and
set weight decay to 0.00003.

We use 300-dimensional GloVe word embed-
dings trained on the Common Crawl corpus and
100-dimensional character embeddings. We follow
the recommendation of Mu et al. (2017) and stan-
dardize the embeddings. Dropout of 0.1 is applied
to the word embedding matrix.

For both datasets, we set lctx = 2 and lquery = 1.
The highway network for fine-tuning the input em-
beddings has two layers, while the ones fine-tuning
the query and the summary have a single layer. All
highway networks’ gate biases are initialized to
1, as recommended by Srivastava et al. (2015), as
well as the biases of the LSTM forget gates.

The maxout network uses two 200-dimensional
layers with a pool size of 4.

Figure 3: The effect of regularization γ across dif-
ferent values of T

Throughout our experiments, we have experi-
mented with selecting the batch size from {32, 64},
dropout for the recurrent layers and the maxout
classifier from {0.1, 0.2, 0.3, 0.4}, and the LSTM
hidden state size from {400, 500, 1000}. The word
and character n-gram vectors are kept fixed for SST
but are learned for the IMDb dataset. These param-
eters are optimized using cross-validation, and the
best configuration is ran on the test set. As IMDb
has no official validation set, we randomly select
10% of the dataset and use it for all of the experi-
ments. The values of other hyperparameters were
selected through inexhaustive search.

4.3 Analysis of the Vanilla Model

The vanilla model defined in Section 3.3 has two
main confounding variables: strength (and pres-
ence) of attention regularization (γ) and the num-
ber of iterations of the iterative recursive attention
mechanism (T ). We also would like to examine
the difference in performance of the vanilla IRAM
compared to some baseline sequence classifier. To
this end, we implement a baseline model without
the attention mechanism – a maxout classifier over
the last hidden state of the encoder BiLSTM. To
keep the running time of the experiments feasible,
in this section we use only the binary SST dataset.

Effect of regularization. For each experiment in
this round, we run every model three times with
different random seeds and report the average re-
sults along with the standard deviations across the
experiments. In Fig. 3 we present the comparison
between the performance of the vanilla model with
and without regularization. A more telling sign of



254

Figure 4: Attention sample for γ = 0 and T = 3

Figure 5: Classification accuracy for different val-
ues of γ

the different behavior between the models can be
seen through inspecting attention weights.

In Fig. 4 we can see that the attention mechanism,
when not regularized, fails to use its capacity and
simply attends over the same element in each time-
step. The last two columns, which contain the
summaries from the first two steps of the iterative
attention mechanism, have an attention weight of
0, which means that the model does not pass any
information through the summaries nor refine the
query. This behavior initially prompted us to add
the regularization penalty term.

Through inexhaustive search we isolated a crit-
ical range of values for γ, for which we perform
a detailed analysis of performance. For this ex-
periment, we fix T = 3 as it has exhibited better
performance for the vanilla model.

Effect of the number of iterations. Apart from
comparing the effect of the existence of regulariza-
tion, in Fig. 3 we can also observe the effect of the
number of timesteps T . Increasing T beyond 3 has
a diminishing effect on classification performance,
something which we find to be consistent for the
IMDB dataset as well.

We attribute this decrease in performance to the

SST
NSE (Munkhdalai and Yu, 2017) 89.7
IRAM 90.1
BCN + CoVe (McCann et al., 2017) 90.3
bmLSTM (Radford et al., 2017) 91.8

SST-5
IRAM 53.7
BCN + CoVe (McCann et al., 2017) 53.7
BCN + ELMo (Peters et al., 2018) 54.7

IMDb
IRAM 91.2
TRNN (Dieng et al., 2016) 93.8
oh-LSTM (Johnson and Zhang, 2016) 94.1
Virtual (Miyato et al., 2016) 94.1

Table 1: Classification accuracy on the test sets

Removed component Accuracy
Full model 90.1
Vanilla model 88.7
– char n-grams 89.3
– query fine-tune 89.8
– embedding fine-tune 89.3

Table 2: Effect of removing components on perfor-
mance

fact that SST is relatively simple, containing at
most two contrastive aspects in each sentence, mak-
ing any additional steps unnecessary. While the
model could in theory exploit the pass-through
mechanism, we believe that this operation adds
some noise to the final representations and in turn
affects performance slightly.

4.4 Analysis of the Full Model

We now evaluate the full model. Table 1 shows
the accuracy scores of our best models (for T = 3,
γ = 0.0003) and other state-of-the-art models on
the test portions of the SST and IMDb datasets. Our
model performs competitively with the best results
on SST and SST-5 datasets. It is important to note
that our model does not use transfer learning apart
from the pretrained word vectors, which is not the
case for the competing models.

Ablation study of encoder components. As
mentioned in Section 3.4, through adding various
components to the model we introduced a number
of confounders. In order to determine the effect of
each of the added components on the overall score,
we evaluate the performance of the full model on
the binary SST dataset with the remaining hyperpa-
rameters fixed and one of the components removed
in isolation.



255

(a) Simple unipolar sentence

(b) Sentence with a negation

(c) Contrastive multipolar sentence

Figure 6: Visualization of attention across sentence
words (horizontal) and T=3 time steps (vertical).
The last T -1 columns contain the attention weights
over the result of the previous attentive query.

4.5 Visualizing Attention

To gain an intuition about the working of IRAM,
we visually analyzed its attention mechanism on
a number of sentences from our dataset. We limit
ourselves to examples from the test set of the SST
dataset as the length of examples is manageable for
visualization. We isolate three specific cases where
the attention mechanism demonstrates interesting
results: (1) simple unipolar sentences, (2) sentences
with negations, and (3) multipolar sentences.

The least interesting case is the unipolar, as the
attention mechanism often does not need multiple
iterations. Fig. 6a shows the attention mechanism
simply propagating information, since sentiment
classification is straightforward and does not re-
quire multiple attention steps. This can be seen
from most of the attention weight in the second and
third steps being on the columns corresponding to
the summaries.

The more interesting cases are sentences involv-
ing negations and modifiers. Fig. 6b shows the
handling of negation: attention is initially on all

words except on the negator. In the second step,
the mechanism combines the output of the first step
with the negation. We interpret this as flipping the
sentiment – the model cannot rely solely on recog-
nizing a negative word, and has to account for what
that word negates through a functional dependence.
These examples highlight one of the drawbacks of
recurrent networks which we aim to alleviate. In
case a standard attention mechanism is applied to
a sentence containing a negator, the hidden repre-
sentation of the negator has to scale or negate the
intensity of an expression. Our model has the ca-
pacity to process such sequences iteratively, first
constructing the representation of an expression,
which is then adjusted by the nonlinear transforma-
tion and simpler to combine with the negator in the
next step.

Lastly, Fig. 6c shows a contrastive multipolar
sentence, where the model in the first step focuses
on positive words, and then combines the negative
words (tortured, unsettling) with the results of the
first step. In such cases, the model succeeds to
isolate the contrasting aspects of the sentence and
attends to them in different iterations of the model,
alleviating the burden of simultaneously represent-
ing the positive and negative aspects. After both
contrastive representations have been formed, the
model has the capacity to weigh them one against
other and compute the final representation.

5 Conclusion

The proposed iterative recursive attention model
(IRAM) has the capacity to construct representa-
tions of the input sequence in a recursive fashion,
making inference more interpretable. We demon-
strated that the model can learn to focus on various
task-relevant parts of the input, and can propagate
the information in a meaningful way to handle the
more difficult cases. On the sentiment analysis task,
the model performs comparable to the state of the
art. Our next goals will be to try to use the iterative
attention mechanism to extract tree-like sentence
structures akin to constituency parse trees, evalu-
ate the model on more complex datasets as well as
extend the model to support an adaptive number of
iterative steps.

Acknowledgment

This research has been supported by the Euro-
pean Regional Development Fund under the grant
KK.01.1.1.01.0009 (DATACROSS).



256

References
Leila Arras, Grégoire Montavon, Klaus-Robert Müller,

and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 159–168.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. Syntax, Semantics and Structure in Statis-
tical Translation, page 103.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
attention neural networks for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 593–602.

Adji B Dieng, Chong Wang, Jianfeng Gao, and John
Paisley. 2016. TopicRNN: A recurrent neural net-
work with long-range semantic dependency. In
ICLR 2016.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Maxout
networks. arXiv preprint arXiv:1302.4389.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems, pages 1693–1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Rie Johnson and Tong Zhang. 2016. Supervised and
semi-supervised text categorization using lstm for re-
gion embeddings. In International Conference on
Machine Learning, pages 526–534.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in nlp. In Proceedings of NAACL-HLT, pages 681–
691.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Thang Luong, Hieu Pham, and Christopher D Manning.
2015. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1412–1421.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6297–6308.

Takeru Miyato, Andrew M Dai, and Ian Good-
fellow. 2016. Adversarial training methods for
semi-supervised text classification. arXiv preprint
arXiv:1605.07725.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.
All-but-the-top: simple and effective postprocess-
ing for word representations. arXiv preprint
arXiv:1702.01417.

Tsendsuren Munkhdalai and Hong Yu. 2017. Neu-
ral semantic encoders. In Proceedings of the con-
ference. Association for Computational Linguistics.
Meeting, volume 1, page 397. NIH Public Access.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. arXiv preprint
arXiv:1606.01933.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.



257

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2018.
On the convergence of Adam and beyond. In Inter-
national Conference on Learning Representations.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 1073–1083.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2017. Ex-
tracting automata from recurrent neural networks us-
ing queries and counterexamples. arXiv preprint
arXiv:1711.09576.

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. ABCNN: Attention-based con-
volutional neural network for modeling sentence
pairs. Transactions of the Association of Computa-
tional Linguistics, 4(1):259–272.

Fabio Massimo Zanzotto and Lorenzo Ferrone. 2017.
Can we explain natural language inference deci-
sions taken with neural networks? inference rules
in distributed representations. In Neural Networks
(IJCNN), 2017 International Joint Conference on,
pages 3680–3687. IEEE.


