
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 165–174
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

165

Analysing the potential of seq-to-seq models
for incremental interpretation in task-oriented dialogue

Dieuwke Hupkes, Sanne Bouwmeester, and Raquel Fernández
Institute for Logic Language and Computation

University of Amsterdam
{d.hupkes,raquel.fernandez}@uva.nl
sanne.bouwmeester1@student.uva.nl

Abstract

We investigate how encoder-decoder models
trained on a synthetic dataset of task-oriented
dialogues process disfluencies, such as hesita-
tions and self-corrections. We find that, con-
trary to earlier results, disfluencies have very
little impact on the task success of seq-to-seq
models with attention. Using visualisations
and diagnostic classifiers, we analyse the rep-
resentations that are incrementally built by the
model, and discover that models develop little
to no awareness of the structure of disfluen-
cies. However, adding disfluencies to the data
appears to help the model create clearer repre-
sentations overall, as evidenced by the atten-
tion patterns the different models exhibit.

1 Introduction

The use of Recurrent Neural Networks (RNNs) to
tackle sequential language tasks has become stan-
dard in natural language processing, after impres-
sive accomplishments in speech recognition, ma-
chine translation, and entailment (e.g., Sutskever
et al., 2014; Bahdanau et al., 2015b; Kalchbren-
ner et al., 2014). Recently, RNNs have also
been exploited as tools to model dialogue sys-
tems. Inspired by neural machine translation, re-
searchers such as Ritter et al. (2011) and Vinyals
and Le (2015) pioneered an approach to open-
domain chit-chat conversation based on sequence-
to-sequence models (Sutskever et al., 2014). In
this paper, we focus on task-oriented dialogue,
where the conversation serves to fulfil an inde-
pendent goal in a given domain. Current neural
dialogue models for task-oriented dialogue tend
to equip systems with external memory compo-
nents (Bordes et al., 2017), since key information
needs to be stored for potentially long time spans.
One of our goals here is to analyse to what ex-
tent sequence-to-sequence models without exter-
nal memory can deal with this challenge.

In addition, we consider language realisations
that include disfluencies common in dialogue in-
teraction, such as repetitions and self-corrections
(e.g., I’d like to make a reservation for six, I
mean, for eight people). Disfluencies have been
investigated extensively in psycholinguistics, with
a range of studies showing that they affect sen-
tence processing in intricate ways (Levelt, 1983;
Fox Tree, 1995; Bailey and Ferreira, 2003; Fer-
reira and Bailey, 2004; Lau and Ferreira, 2005;
Brennan and Schober, 2001). Most computational
work on disfluencies, however, has focused on de-
tection rather than on disfluency processing and
interpretation (e.g., Stolcke and Shriberg, 1996;
Heeman and Allen, 1999; Zwarts et al., 2010; Qian
and Liu, 2013; ?; ?). In contrast, our aim is to get
a better understanding of how RNNs process dis-
fluent utterances and to analyse the impact of such
disfluencies on a downstream task—in this case,
issuing an API request reflecting the preferences
of the user in a task-oriented dialogue.

For our experiments, we use the synthetic
dataset bAbI (Bordes et al., 2017) and a modified
version of it called bAbI+ which includes disflu-
encies (Shalyminov et al., 2017). The dataset con-
tains simple dialogues between a user and a sys-
tem in the restaurant reservation domain, which
terminate with the system issuing an API call that
encodes the user’s request. In bAbI+, disfluencies
are probabilistically inserted into user turns, fol-
lowing distributions in human data. Thus, while
the data is artificial and certainly simplistic, its
goal-oriented nature offers a rare opportunity: by
assessing whether the system issues the right API
call, we can study, in a controlled way, whether
and how the model builds up a relevant seman-
tic/pragmatic interpretation when processing a dis-
fluent utterance—a key aspect that would not be
available with unannotated natural data.



166

2 Data

In this section, we discuss the two datasets we use
for our experiments: bAbI (Bordes et al., 2017)
and bAbI+ (Shalyminov et al., 2017).

2.1 bAbI

The bAbI dataset consists of a series of syn-
thetic dialogues in English, representing human-
computer interactions in the context of restaurant
reservations. The data is broken down into six sub-
tasks that individuate different abilities that dia-
logue systems should have to conduct a successful
conversation with a human. We focus on Task 1,
which tests the capacity of a system to ask the right
questions and integrate the answers of the user to
issue an API call that matches the user’s prefer-
ences regarding four semantic slots: cuisine, loca-
tion, price range, and party size. A sample dia-
logue can be found in example (4), Section 4.1.

Data The training data for Task 1 is delibera-
tively kept simple and small, consisting of 1000
dialogues with on average 5 user and 7 system ut-
terances. An additional 1000 dialogues based on
different user queries are available for validation
and testing, respectively. The overall vocabulary
contains 86 distinct words. There are 7 distinct
system utterances and 300 possible API calls.

Baselines Together with the dataset, Bordes
et al. (2017) present several baseline models for
the task. All the methods proposed are retrieval
based, i.e., the models are trained to select the
best system response from a set of candidate re-
sponses (in contrast to the models we investigate
in the present work, which are generative—see
Section 3). The baseline models include classi-
cal information retrieval (IR) methods such as TF-
IDF and nearest neighbour approaches, as well
as an end-to-end recurrent neural network. Bor-
des et al. demonstrate that the end-to-end recur-
rent architecture—a memory network (Sukhbaatar
et al., 2015)—outperforms the classical IR meth-
ods as well as supervised embeddings, obtaining a
100% accuracy on retrieving the correct API calls.

2.2 bAbI+

Shalyminov et al. (2017) observe that the original
bAbI data lack naturalness and variation common
in actual dialogue interaction. To introduce such
variation while keeping lexical variation constant,
they insert speech disfluencies, using a fixed set

of templates that are probabilistically applied to
the user turns of the original bAbI Task 1 dataset.
In particular, three types of disfluencies are in-
troduced: hesitations (1), restarts (2), and self-
corrections (3), in around 21%, 40% and 5% of
the user’s turns, respectively.1

(1) We will be uhm eight
(2) Good morning uhm yeah good morning
(3) I would like a French uhm sorry a Vietnamese

restaurant

Eshghi et al. (2017) use the bAbI+ dataset to show
that a grammar-based semantic parser specifically
designed to process incremental dialogue phenom-
ena is able to handle the bAbI+ data without hav-
ing been directly exposed to it, achieving 100%
accuracy on API-call prediction. They then in-
vestigate whether the memory network approach
by Bordes et al. (2017) is able to generalise to the
disfluent data, finding that the model obtains very
poor accuracy (28%) on API-call prediction when
trained on the original bAbI dataset and tested on
bAbI+. Shalyminov et al. (2017) further show
that, even when the model is explicitly trained
on bAbI+, its performance decreases significantly,
achieving only 53% accuracy.

This result, together with the high level of con-
trol on types and frequency of disfluencies offered
by the bAbI+ scripts, makes the bAbI+ data an ex-
cellent testbed for studying the processing of dis-
fluencies by recurrent neural networks.

3 Generative bAbI+ Modelling

We start with replicating the results of Shalyminov
et al. (2017) and Eshghi et al. (2017) using a gen-
erative rather than retrieval based model. For this
replication, we use a vanilla one-layer encoder-
decoder model (Sutskever et al., 2014) without
any external memory. We train models with and
without an attention mechanism (Bahdanau et al.,
2015b) and compare their results. We perform a
modest grid search over hidden layer and embed-
ding sizes and find that an embedding size of 128
and a hidden layer size of 500 appear to be mini-
mally required to achieve a good performance on
the task. We therefore fix the embedding and hid-
den layer size to 128 and 500, respectively, for all
further experiments.

1The inserted material is in italics in the examples.



167

seq2seq attentive seq2seq MemN2N
train / test utterances API calls utterances API calls API calls

bAbI / bAbI 100 (100) 0.02 (66.4) 100 (100) 100 (100) 100
bAbI+ / bAbI+ 100 (100) 0.2 (80.6) 100 (100) 98.7 (99.7) 53
bAbI / bAbI+ 81.4 (83.3) 0.00 (58.2) 91.5 (92.8) 50.4 (90.1) 28
bAbI+ / bAbI 100 (100) 0.2 (81.4) 100 (100) 99.2 (100) 99

Table 1: Sequence accuracy (word accuracy in brackets) on the test set for utterances (non-API call
responses) and API calls only. The last column shows accuracy on the test set for the retrieval-based
memory-network system, as reported by Shalyminov et al. (2017) .

3.1 Training

All models are trained to predict the system ut-
terances of all of the 1000 training dialogues of
the bAbI and bAbI+ dataset, respectively, includ-
ing the final API call. After each user turn, mod-
els are asked to generate the next system utterance
in the dialogue, given the dialogue history up to
that point, which consists of all human and sys-
tem utterances that previously occurred in that di-
alogue. The model’s parameters are updated using
stochastic gradient descent on a cross-entropy loss
(using mini-batch size 32), with Adam (Kingma
and Ba, 2014) as optimiser (learning rate 0.001).
All models are trained until convergence, which
was reached after ∼20 epochs.

3.2 Evaluation

Following Shalyminov et al. (2017), we use a 2×2
paradigm in which we train models either on bAbI
or bAbI+ data and evaluate their performance on
the test set of the same dataset, as well as across
datasets. We report both the percentage of cor-
rect words in the generated responses (word accu-
racy) and the percentage of responses that were
entirely correct (sequence accuracy). Addition-
ally, we separately report the word and sequence
accuracy of the API calls generated at the end of
each dialogue. Note that these metrics are more
challenging than the retrieval-based ones used by
Bordes et al. (2017) and Eshghi et al. (2017), as
the correct response has to be generated word by
word, rather than merely being selected from a set
of already available candidate utterances.

3.3 Results

Our results can be found in Table 1. The results
obtained with the bAbI/bAbI and bAbI+/bAbI+
conditions indicate that an encoder-decoder model
with attention can achieve near-perfect accuracy
on Task 1 (predicting the right API call), whereas

a model without attention cannot (sequence accu-
racy for API calls is only 0.02% on bAbI/bAbI
and 0.2% on bAbI+/bAbI+). This suggests that, in
line with what was posed by Bordes et al. (2017),
the bAbI Task 1 requires some form of memory
that goes beyond what is available in a vanilla
sequence-to-sequence model. To solve the task,
however, using an attention mechanism suffices—
a more complicated memory such as present in
memory networks is not necessary.

Furthermore, our results confirm that models
trained on data without disfluencies struggle to
generalise when these are introduced at testing
time (bAbI/bAbI+): While the overall accuracy of
the dialogue is still high (91.5% of utterances are
correct), API call accuracy falls back to 50.4%.
Models trained on data containing disfluencies,
however, show near-perfect accuracy on disfluent
test data (98.7% on bAbI+/bAbI+)—a result that
stands in stark contrast with the findings of Eshghi
et al. (2017) and Shalyminov et al. (2017).

4 Generalisation to Disfluent Data

In this section, we analyse the potential for gen-
eralisation of the encoder-decoder model with at-
tention by focusing on the bAbI/bAbI+ condition,
where the model trained on bAbI data is tested on
bAbI+. As shown in Table 1, while the model
performs perfectly on the bAbI corpus, it achieves
only ∼50% accuracy on API call prediction when
it is asked to generalised to bAbI+ data. Here we
aim to shed light on these results by studying the
errors made by the model and visualising the pat-
terns of the attention component of the network.

4.1 Qualitative error analysis

We start by observing that the model faced with
the bAbI/bAbI+ condition encounters new lexical
items at test time, such as filled pauses (uh) or
editing terms (no sorry). These items are all



168

Figure 1: Visualisation of the decoder attention when generating the API call (vertical axis) for the dis-
fluent dialogue in example (4) (horizontal axis). Darker colours indicate higher attention values.

mapped to a single token <unk> for ‘unknown’.
In addition, the presence of disfluencies increases
the length of user utterances: The average utter-
ance length in bAbI is 4.8 tokens, while user utter-
ances in bAbI+ have an average length of 7.6.

Since the inventory of system utterances is very
limited (there are 7 types of system outputs), the
model has no difficulty learning their surface form.
The errors we find, therefore, do not concern the
grammaticality of the utterances, but rather when
in the course of a dialogue a particular system ut-
terance is offered. We find that utterance errors
always involve a jump ahead in the expected se-
quence of system utterances. For example, around
83% of the utterance errors occur at the beginning
of the dialogue. If the first user utterance is dis-
fluent (e.g., Good morning <unk> <unk>
good morning) and hence longer than ex-
pected, the model tends to skip the system’s greet-
ing and initial prompt (Hello, what can I
help you with today) and instead outputs
the second system prompt (I’m on it), which
only makes sense once the user has already pro-
vided some task-related information. Utterance
errors of this kind, where the model generates an
utterance that would be appropriate later on in the
dialogue, occur after all disfluency types present
in bAbI+: hesitations, restarts, and self-repairs.

The current evaluation setup does not allow us
to test whether utterance errors by the system lead
to errors in the final API call, since the input se-
quence given to the encoder is the gold dialogue
history and not the dialogue history with system
utterances generated by the model. This, however,
allows us to conclude that the errors made by the
model on around 50% of all API calls are a di-
rect consequence of the disfluencies present in the
user utterances. Not surprisingly, API call errors
are triggered by self-corrections, which in bAbI+
always involve the mention of two different val-
ues for a single semantic slot (see example (4) be-

low). Indeed, the model trained on bAbI achieves
near-perfect accuracy when tested on a corpus that
does not contain self-correction but only hesita-
tions and restarts. This indicates that the lower
accuracy is specifically caused by the presence of
multiple potential values for the same API slot in
self-corrections.

Manual error inspection shows that the model
does not follow a systematic strategy whereby the
first mention of a semantic slot is selected, which
would lead to all self-corrections being processed
incorrectly. As illustrated in (4), the model seems
to randomly select between the first and the sec-
ond mention of a slot in a self-correction struc-
ture, which leads to some self-corrections being
processed correctly:

(4) U:good morning
S:hello what can I help you with

today
U:can you make a reservation for six

oh no eight in a uhm yeah can you
make a reservation for eight in a
moderate price range no in a cheap
price range in madrid

S:i’m on it
U:<silence>
S:any preference on a type of cuisine
U:I love british food
S:ok let me look into some options

for you
U:<silence>
S:<API call british madrid six cheap>

In Figure 1, we visualise the decoder attention of
the bAbI model when it generates the (partly in-
correct) API call for the dialogue in (4). The plot
shows that while generating the different compo-
nents of the API call, the model strongly relies
on its attention mechanism to select the right slot.
Furthermore, it confirms the observation that the
model is not consistent in its strategy to select a
slot after a disfluency: While it incorrectly attends
to six (rather than eight), it correctly selects
cheap (a repair of moderate). In the next sec-
tion, we will have a closer look at the attention pat-



169

Figure 2: Alignment of in- and output words via the attention for different models tested on bAbI+ data.
Left: model trained on bAbI. Right: model trained on bAbI+.

terns of both the bAbI and bAbI+ trained model.

4.2 Comparing attention patterns

To evaluate the network’s attention patterns in
a more quantitative way, we store all attention
weights that the model computes while generat-
ing the API calls in the test corpus, and we com-
pute their average for each API-call word. That is,
for all words in an API-call, we compute to which
words in the dialogue history the decoder was on
average attending while it generated that word.

We plot the results in Figure 2, removing for
each API-call word (on the vertical axis in the
plot) the input words (horizontal axis) whose aver-
age attention score was lower 0.2. We observe that
the model trained on bAbI (left) not infrequently
attends to <unk> while generating API calls, in-
dicating that it did not attend to the correct content
word. A striking difference appears comparing the
results for the bAbI model with the bAbI+ trained
model (Figure 2, right), whose attention scores
are much less diffuse. While the bAbI model fre-
quently attends to irrelevant words such as “hello”,
“a” or “in” (first columns in the plot), these words
are not attended at all by the bAbI+ trained model.
This difference suggests that the bAbI+ model de-
veloped a more clear distinction between different
types of words in the input and benefits from the
presence of disfluencies in the training data rather
than being hindered by it.

In the next section, we investigate the rep-
resentations developed by the bAbI+ model
(bAbI+/bAbI+ condition), focussing in particular
on how it incrementally processes disfluencies.

5 Disfluency Processing

In contrast to previous work (Eshghi et al., 2017;
Shalyminov et al., 2017), our seq2seq model with
attention trained on bAbI+ data learns to process
disfluent user utterances remarkably well, achiev-
ing over 98% sequence accuracy on API calls (see
bAbI+/bAbI+ condition in Table 1). In this sec-
tion, we investigate how the model deals with dis-
fluencies, in particular self-corrections, by draw-
ing inspiration from human disfluency processing.

5.1 The structure of disfluencies

It has been often noted that disfluencies follow
regular patterns (Levelt, 1983; Shriberg, 1994).
Example (5) shows the structure of a prototypical
self-correction, where the reparandum (RM) con-
tains the problematic material to be repaired; the
utterance is then interrupted, which can optionally
be signalled with a filled paused and/or an editing
term (ET); the final part is the repair (R) proper,
after which the utterance may continue:

(5) a reservation for six {I mean} eight in a. . .
RM ET R

The presence or relationship between these ele-
ments serves to classify disfluencies into different
types. For example, restarts such as those inserted
in the bAbI+ corpus, are characterised by the fact
that the reparandum and the repair components are
identical (see example (2) in Section 2.2); in con-
trast to self-corrections, where the repair differs
from and is intended to overwrite the material in
the reparandum. In hesitations such as (1), there is
only a filled pause and no reparandum nor repair.



170

5.2 Editing terms

The algorithm used to generate the bAbI+ data
systematically adds editing expressions (such as
oh no or sorry) to all restarts and self-
corrections inserted in the data. However, edit-
ing expressions (e.g., I mean, rather, that is, sorry,
oops) are in fact rare in naturally occurring hu-
man conversation. For example, Hough (2015)
finds that only 18.52% of self-corrections in the
Switchboard corpus contain an explicit editing
term. Thus, while psycholinguistic research has
shown that the presence of an explicit editing term
followed by a correction makes the disfluency eas-
ier to handle (Brennan and Schober, 2001), hu-
mans are able to process disfluencies without the
clues offered by such expressions.

Here we test whether the model relies on the
systematic presence of editing expressions in the
bAbI+ data. To this end, we created two new ver-
sions of the dataset using the code by Shalyminov
et al. (2017):2 One with no editing term in any
of the self-corrections or restarts, dubbed “noET”;
and one where there is an editing term in 20% of
self-corrections and restarts, dubbed “realET” as
it reflects a more realistic presence of such ex-
pressions. We refer to the original bAbI+ data,
which has editing terms in all self-corrections and
restarts, as “fullET”.

We test to what extent a model trained on ful-
lET, which could rely on the systematic presence
of an editing term to detect the presence of a self-
correction or restart, is able to process disfluen-
cies in a more natural scenario where editing ex-
pressions are only sparsely available (realET). The
result indicates that the editing term has very lit-
tle effect on the model’s performance: as shown
in Table 2, accuracy goes down slightly, but is
still extremely high (98%). This finding persists
when the editing terms are left out of the test data
entirely (97% accuracy when testing on noET).
When models are trained on data containing fewer
editing terms (realET and noET) and tested on
data with a comparable or smaller percentage of
editing terms, we observe a slightly larger drop
in accuracy (see Table 2). We conclude that, al-
though editing terms may help the model to de-
velop better representations during training, their
presence is not required to correctly process dis-
fluencies at test time.

2https://github.com/ishalyminov/babi_
tools

Tested on
Trained on noET realET fullET

fullET 97 98 100
realET 94 95
noET 94

Table 2: Sequence accuracies of all sequences with
and without editing term, averaged over 5 runs.

5.3 Identification of structural components

Disfluencies have regular patterns. However, iden-
tifying their components online is not trivial. The
comprehender faces what Levelt (1983) calls the
continuation problem: the need to identify (the
beginning and end of the reparandum and the re-
pair onset. Evidence shows that there are no
clues (prosodic or otherwise) present during the
reparandum. Thus the identification of the disflu-
ency takes place at or after the moment of interrup-
tion (typically during the repair). Here there may
be prosodic changes, but such clues are usually
absent (Levelt and Cutler, 1983). Ferreira et al.
(2004) point out that “the language comprehen-
sion system is able to identify a disfluency, likely
through the use of a combination of cues (in some
manner that is as yet not understood).”

We test to what extent our trained encoder-
decoder model distinguishes reparanda and edit-
ing terms and can identify the boundaries of a
repair using diagnostic classifiers (Hupkes et al.,
2018). Diagnostic classifiers were proposed as
a method to qualitatively evaluate whether spe-
cific information is encoded in high-dimensional
representations—typically the hidden states that a
trained neural network goes through while pro-
cessing a sentence. The technique relies on train-
ing simple neural meta-models to predict the infor-
mation of interest from these representations and
then uses the accuracy of the resulting classifiers
as a proxy for the extent to which this information
is encoded in the representations.

In our case, we aim to identify whether the hid-
den layer activations reflect if the model is cur-
rently processing a reparandum, an editing term,
or the repair. To test his, we label each word in the
bAbI+ validation corpus according to which of the
3 categories it belongs to and train 3 binary clas-
sifiers to classify from the hidden layer activation
of the encoder whether the word it just processed
belongs to either one of these 3 classes. For an
example of such a labelling we refer to Figure 3.

https://github.com/ishalyminov/babi_tools
https://github.com/ishalyminov/babi_tools


171

1 2 2 3 0 0 0 1 1 2 2 3 3 0 0
with uhm yeah with british cuisine in a moderate no sorry a cheap price range

Figure 3: A labelled example sentence to evaluate whether models have distinct representations for
reparanda, repairs, and editing terms. For each label, we train a separate binary classifier to predict
whether or not a word belongs to the corresponding class.

We hypothesise that while reparanda will not be
detectable in the hidden layer activations, as they
can only be identified as such a posteriori (Levelt,
1983; Ferreira et al., 2004), editing terms should
be easy to detect, since they belong to a class of
distinct words. The most interesting classifier we
consider is the one identifying repairs, which re-
quires a more structural understanding of the dis-
fluency and the sentence as a whole.

self-corrections restarts
Reparandum 15.0 / 89.4 27.4 / 92.6
Editing term 37.3 / 99.4 55.7 / 99.2
Repair 21.3 / 93.5 35.2 / 94.9

Table 3: Precision / recall of diagnostic classifiers
to identify reparanda, editing terms and repairs.

The general trends in our results (see Table 3
above) are as expected: Editing terms are more
easily recoverable than both reparanda and repairs,
and the reparandum has the lowest scores with
a precision and recall of 0.15 and 0.89, respec-
tively. However, results for editing terms and re-
pairs are lower than expected. The presence of
editing terms is not reliably identifiable given the
hidden layer activations of a model (37.3% and
55.7% precision for self-corrections and restarts,
respectively), which is surprising given the fact
that there is no overlap between editing terms and
the rest of the model’s vocabulary. Taken together
with the results of our previous experiments in
Section 5.2 regarding the effect of editing terms on
the final sequence accuracy, this indicates that the
presence of an editing term causes only minimal
changes in the hidden layer activations, and thus
leaves only a small trace in the hidden state of the
network. The performance of the repair classifier
is also low: 21.3% precision on self-correction and
35.2% on restarts. These results suggest that the
model has no explicit representations of the struc-
ture of disfluencies and instead relies on other cues
to infer the right API call.

5.4 Incremental interpretation
Next we analyse how the model processes disflu-
encies by looking into the interpretation—in terms
of task-related predictions—that the model builds
incrementally, word by word and utterance by ut-
terance.

Word by word First, we probe the representa-
tions of the encoder part of the model while it
processes incoming sentences, for which we use
again diagnostic classifiers. In particular, we test
if information that is given at a particular point in
the dialogue (for instance, the user expresses she
would like to eat Indian food) is remembered by
the encoder throughout the rest of the conversa-
tion. We label the words in a dialogue according
to what slot information was already provided pre-
viously in the dialogue, and test if this information
can be predicted by a diagnostic classifier at later
points in the dialogue. Note that while in the bAbI
data the prediction for a slot changes only once
when the user expresses her preference, due to the
possibilities of corrections, slot information may
change multiple times in the bAbI+ corpus. We
train separate diagnostic classifiers for the differ-
ent slots in the API call: cuisine (10 options), loca-
tion (10 options), party size (4 options), and price
range (3 options).

Our experiments show that the semantic infor-
mation needed to issue an API call is not accu-
rately predictable from the hidden representations
that the encoder builds of the dialogue—see Ta-
ble 4, where accuracy scores are all relatively low.

Cuisine 31.3
Location 25.9
Price range 57.3
Party size 43.0

Table 4: Accuracy per slot type in the word-by-
word experiment.

In Figure 4, we plot the accuracy of the diagnos-
tic classifiers over time, relative to the position at
which information appears in the dialogue (that is,
the accuracy at position 4 represents the accuracy



172

Figure 4: Accuracy at position relative to mention
in the dialogue of each type of slot.

4 words after the slot information occurred). The
plot illustrates that the encoder keeps traces of se-
mantic slot information for a few time steps after
this information appears in the dialogue, but then
rapidly ‘forgets’ it when the dialogue continues.3

These results confirm our earlier findings that most
of the burden for correctly issuing API calls falls
on the model’s attention mechanism, which needs
to select the correct hidden states at the moment
an API call should be generated.

Utterance by utterance In a second experi-
ment, we study the incremental development of
the API call made by the model’s generative com-
ponent (the decoder) by prompting it to generate
an API call after every user utterance. To trigger
the API calls, we append the utterances normally
preceding an API call (let me look some
options for you <silence>) to the dia-
logue history that is fed to the decoder. We ap-
ply this trick to elicit an API call after every user
utterance in the dialogue. We evaluate the gener-
ated API calls by considering only the slots that
can already be filled given the current dialogue
history. That is, in a dialogue in which the user
has requested to eat Italian food in London but has
not talked about party size, we exclude the party
size slot from the evaluation, and evaluate only
whether the generated API call correctly predicts
“Italian” and “London”.

For models trained on bAbI data, the described
method reliably prompted an API call, while it

3To exclude the possibility that the low accuracy is a con-
sequence of relocation of information instead of it being for-
gotten, we also trained diagnostic classifiers to only start pre-
dicting a few words after slot information appears, but this
did not result in an increase in accuracy.

bAbI / bAbI 100
bAbI+ / bAbI 100
bAbI / bAbI+ 66.6
bAbI+ / bAbI+ 99.8

Table 5: Accuracy on triggered API calls utterance
by utterance.

was less successful for models trained on bAbI+,
where API calls were evoked only in 86% of the
time (when testing on bAbI+ data) and 54% of the
time (when testing on bAbI data). For our analy-
sis, we consider only cases in which the API call
was prompted and ignore cases in which other sen-
tences were generated

As shown in Table 5, we find that the de-
coders of both the bAbI and bAbI+ models are
able to generate appropriate API calls immedi-
ately after slots are mentioned in the user utterance
(∼100% accuracy in the bAbI/bAbI, bAbI+/bAbI,
and bAbI+/bAbI+ conditions). However, when
confronted with disfluencies, the model trained on
the disfluency-free bAbI data is not able to do so
reliably (66.6% accuracy with bAbI/bAbI+), fol-
lowing the trend we also observed in Table 1.

6 Conclusions

We have investigated how recurrent neural net-
works trained in a synthetic dataset of task-
oriented English dialogues process disfluencies.
Our first conclusion is that, contrary to earlier find-
ings, recurrent networks with attention can learn to
correctly process disfluencies, provided they were
presented to them at training time. In the current
data, they do so without strongly relying on the
presence of editing terms or identifying the repair
component of disfluent structures. When compar-
ing models trained on data with and without dis-
fluencies, we observe that the attention patterns of
the former models are more clear-cut, suggesting
that the disfluencies contribute to a better under-
standing of the input, rather than hindering it.

Furthermore, we find that in an encoder-decoder
model with attention, at least for the current task-
oriented setting, a large burden of the process-
ing falls on the generative part of the model: the
decoder aided by the attention mechanism. The
encoder, on the other hand, does not incremen-
tally develop complex representations of the dia-
logue history, limiting its usefulness as a cognitive
model of language interpretation. We preliminary
conclude that different learning biases are neces-



173

sary to obtain a more balanced division of labour
between encoder and decoder.

Here we have exploited synthetic data, taking
advantage of the control this affords regarding
types and frequency of disfluency patterns, as well
as the direct connection between language pro-
cessing and task success present in the dataset. In
the future, we aim at investigating neural models
of disfluency processing applied to more natural-
istic data, possibly leveraging eye-tracking infor-
mation to ground language comprehension (??).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015a. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations (ICLR).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015b. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations (ICLR2015).

Karl GD Bailey and Fernanda Ferreira. 2003. Disflu-
encies affect the parsing of garden-path sentences.
Journal of Memory and Language, 49(2):183–200.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog. In
Proceedings of the 5th International Conference on
Learning Representations (ICLR).

Susan E Brennan and Michael F Schober. 2001. How
listeners compensate for disfluencies in sponta-
neous speech. Journal of Memory and Language,
44(2):274–296.

Arash Eshghi, Igor Shalyminov, and Oliver Lemon.
2017. Bootstrapping incremental dialogue systems
from minimal data: the generalisation power of di-
alogue grammars. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2220–2230. Associa-
tion for Computational Linguistics.

Fernanda Ferreira and Karl G. D. Bailey. 2004. Disflu-
encies and human language comprehension. Trends
in Cognitive Sciences, 8(5).

Fernanda Ferreira, Ellen F. Lau, and Karl G. D. Bai-
ley. 2004. Disfluencies, language comprehension,
and tree adjoining grammars. Cognitive Science,
28:721–749.

Jean E. Fox Tree. 1995. The effects of false starts and
repetitions on the processing of subsequent words in
spontaneous speech. Journal of memory and lan-
guage, 34(6):709–738.

Peter A. Heeman and James F. Allen. 1999. Speech
repairs, intonational phrases, and discourse markers:
modeling speakers’ utterances in spoken dialogue.
Computational Linguistics, 25(4):527–571.

Julian Hough. 2015. Modelling Incremental Self-
Repair Processing in Dialogue. Ph.D. thesis, Queen
Mary University of London.

Dieuwke Hupkes, Sara Veldhoen, and Willem
Zuidema. 2018. Visualisation and ’diagnostic classi-
fiers’ reveal how recurrent and recursive neural net-
works process hierarchical structure. Journal of Ar-
tificial Intelligence Research, 61:907–926.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 655–665.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of ICLR 2014, pages 1–13.

Ellen F. Lau and Fernanda Ferreira. 2005. Linger-
ing effects of disfluent material on comprehension
of garden path sentences. Language and Cognitive
Processes, 20:633—666.

Willem J. M. Levelt. 1983. Monitoring and self-repair
in speech. Cognition, 14(1):41–104.

Willem JM Levelt and Anne Cutler. 1983. Prosodic
marking in speech repair. Journal of semantics,
2(2):205–218.

Xian Qian and Yang Liu. 2013. Disfluency detection
using multi-step stacked learning. In Proceedings of
the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 820–825.

Alan Ritter, Colin Cherry, and William B. Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages
583–593. Association for Computational Linguis-
tics.

Igor Shalyminov, Arash Eshghi, and Oliver Lemon.
2017. Challenging neural dialogue models with nat-
ural data: Memory networks fail on incremental
phenomena. In Proceedings of the 21st Workshop
on the Semantics and Pragmatics of Dialogue (SEM-
DIAL), pages 125–133.

Elizabeth E. Shriberg. 1994. Preliminaries to a Theory
of Speech Disfluencies. Ph.D. thesis, University of
California at Berkeley, Berkeley, CA.

Andreas Stolcke and Elizabeth Shriberg. 1996. Statis-
tical language modeling for speech disfluencies. In
Conference Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP-96), volume 1, pages 405–408.



174

Sainbayar Sukhbaatar, arthur szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
2440–2448. Curran Associates, Inc.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems (NIPS), pages 3104–3112.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. In Proceedings of the 31 st Interna-
tional Conference on Machine Learning (ICML) –
Deep Learning Workshop.

Simon Zwarts, Mark Johnson, and Robert Dale. 2010.
Detecting speech repairs incrementally using a noisy
channel approach. In Proceedings of the 23rd in-
ternational conference on computational linguistics,
pages 1371–1378. Association for Computational
Linguistics.


