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Abstract

Recurrent neural networks (RNNs) are tem-
poral networks and cumulative in nature that
have shown promising results in various nat-
ural language processing tasks. Despite their
success, it still remains a challenge to under-
stand their hidden behavior. In this work,
we analyze and interpret the cumulative na-
ture of RNN via a proposed technique named
as Layer-wIse-Semantic-Accumulation (LISA)
for explaining decisions and detecting the
most likely (i.e., saliency) patterns that the net-
work relies on while decision making. We
demonstrate (1) LISA: “How an RNN accumu-
lates or builds semantics during its sequential
processing for a given text example and ex-
pected response” (2) Example2pattern: “How
the saliency patterns look like for each cate-
gory in the data according to the network in de-
cision making”. We analyse the sensitiveness
of RNNs about different inputs to check the
increase or decrease in prediction scores and
further extract the saliency patterns learned by
the network. We employ two relation classifi-
cation datasets: SemEval 10 Task 8 and TAC
KBP Slot Filling to explain RNN predictions
via the LISA and example2pattern.

1 Introduction

The interpretability of systems based on deep neu-
ral network is required to be able to explain the
reasoning behind the network prediction(s), that
offers to (1) verify that the network works as ex-
pected and identify the cause of incorrect deci-
sion(s) (2) understand the network in order to im-
prove data or model with or without human in-
tervention. There is a long line of research in
techniques of interpretability of Deep Neural net-
works (DNNs) via different aspects, such as ex-
plaining network decisions, data generation, etc.
Erhan et al. (2009); Hinton (2012); Simonyan et al.
(2013) and Nguyen et al. (2016) focused on model

aspects to interpret neural networks via activa-
tion maximization approach by finding inputs that
maximize activations of given neurons. Goodfel-
low et al. (2014) interprets by generating adversar-
ial examples. However, Baehrens et al. (2010) and
Bach et al. (2015); Montavon et al. (2017) explain
neural network predictions by sensitivity analysis
to different input features and decomposition of
decision functions, respectively.

Recurrent neural networks (RNNs) (Elman,
1990) are temporal networks and cumulative in
nature to effectively model sequential data such
as text or speech. RNNs and their variants such
as LSTM (Hochreiter and Schmidhuber, 1997)
have shown success in several natural language
processing (NLP) tasks, such as entity extraction
(Lample et al., 2016; Ma and Hovy, 2016), rela-
tion extraction (Vu et al., 2016a; Miwa and Bansal,
2016; Gupta et al., 2016, 2018c), language mod-
eling (Mikolov et al., 2010; Peters et al., 2018),
slot filling (Mesnil et al., 2015; Vu et al., 2016b),
machine translation (Bahdanau et al., 2014), sen-
timent analysis (Wang et al., 2016; Tang et al.,
2015), semantic textual similarity (Mueller and
Thyagarajan, 2016; Gupta et al., 2018a) and dy-
namic topic modeling (Gupta et al., 2018d).

Past works (Zeiler and Fergus, 2014; Dosovit-
skiy and Brox, 2016) have mostly analyzed deep
neural network, especially CNN in the field of
computer vision to study and visualize the features
learned by neurons. Recent studies have investi-
gated visualization of RNN and its variants. Tang
et al. (2017) visualized the memory vectors to un-
derstand the behavior of LSTM and gated recur-
rent unit (GRU) in speech recognition task. For
given words in a sentence, Li et al. (2016) em-
ployed heat maps to study sensitivity and mean-
ing composition in recurrent networks. Ming et al.
(2017) proposed a tool, RNNVis to visualize hid-
den states based on RNN’s expected response to
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Figure 1: Connectionist Bi-directional Recurrent Neural Network (C-BRNN) (Vu et al., 2016a)

inputs. Peters et al. (2018) studied the inter-
nal states of deep bidirectional language model to
learn contextualized word representations and ob-
served that the higher-level hidden states capture
word semantics, while lower-level states capture
syntactical aspects. Despite the possibility of visu-
alizing hidden state activations and performance-
based analysis, there still remains a challenge for
humans to interpret hidden behavior of the“black
box” networks that raised questions in the NLP
community as to verify that the network behaves
as expected. In this aspect, we address the cu-
mulative nature of RNN with the text input and
computed response to answer “how does it aggre-
gate and build the semantic meaning of a sentence
word by word at each time point in the sequence
for each category in the data”.

Contribution: In this work, we analyze and in-
terpret the cumulative nature of RNN via a pro-
posed technique named as Layer-wIse-Semantic-
Accumulation (LISA) for explaining decisions and
detecting the most likely (i.e., saliency) patterns
that the network relies on while decision making.
We demonstrate (1) LISA: “How an RNN accumu-
lates or builds semantics during its sequential pro-
cessing for a given text example and expected re-
sponse” (2) Example2pattern: “How the saliency
patterns look like for each category in the data ac-
cording to the network in decision making”. We
analyse the sensitiveness of RNNs about different
inputs to check the increase or decrease in predic-
tion scores. For an example sentence that is clas-
sified correctly, we identify and extract a saliency

pattern (N-grams of words in order learned by the
network) that contributes the most in prediction
score. Therefore, the term example2pattern trans-
formation for each category in the data. We em-
ploy two relation classification datasets: SemEval
10 Task 8 and TAC KBP Slot Filling (SF) Shared
Task (ST) to explain RNN predictions via the pro-
posed LISA and example2pattern techniques.

2 Connectionist Bi-directional RNN

We adopt the bi-directional recurrent neural net-
work architecture with ranking loss, proposed by
Vu et al. (2016a). The network consists of three
parts: a forward pass which processes the original
sentence word by word (Equation 1); a backward
pass which processes the reversed sentence word
by word (Equation 2); and a combination of both
(Equation 3). The forward and backward passes
are combined by adding their hidden layers. There
is also a connection to the previous combined hid-
den layer with weight Wbi with a motivation to in-
clude all intermediate hidden layers into the final
decision of the network (see Equation 3). They
named the neural architecture as ‘Connectionist
Bi-directional RNN’ (C-BRNN). Figure 1 shows
the C-BRNN architecture, where all the three parts
are trained jointly.

hft = f(Uf · wt +Wf · hft−1) (1)

hbt = f(Ub · wn−t+1 +Wb · hbt+1) (2)

hbit = f(hft + hbt +Wbi · hbit−1) (3)

where wt is the word vector of dimension d for
a word at time step t in a sentence of length n.
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Figure 2: An illustration of Layer-wIse Semantic Accumulation (LISA) in C-BRNN, where we compute
prediction score for a (known) relation type at each of the input subsequence. The highlighted indices in
the softmax layer signify one of the relation types, i.e., cause-effect(e1, e2) in SemEval10 Task 8 dataset.
The bold signifies the last word in the subsequence. Note: Each word is represented by N-gram (N=3,
5 or 7), therefore each input subsequence is a sequence of N-grams. E.g., the word ‘of’ → ‘cause of
<e2>’ for N=3. To avoid complexity in this illustration, each word is shown as a uni-gram.

D is the hidden unit dimension. Uf ∈ Rd×D
and Ub ∈ Rd×D are the weight matrices between
hidden units and input wt in forward and back-
ward networks, respectively; Wf ∈ RD×D and
Wb ∈ RD×D are the weights matrices connect-
ing hidden units in forward and backward net-
works, respectively. Wbi ∈ RD×D is the weight
matrix connecting the hidden vectors of the com-
bined forward and backward network. Following
Gupta et al. (2015) during model training, we use
3-gram and 5-gram representation of each word
wt at timestep t in the word sequence, where a 3-
gram for wt is obtained by concatenating the cor-
responding word embeddings, i.e., wt−1wtwt+1.

Ranking Objective: Similar to Santos et al.
(2015) and Vu et al. (2016a), we applied the rank-
ing loss function to train C-BRNN. The ranking
scheme offers to maximize the distance between
the true label y+ and the best competitive label c−

given a data point x. It is defined as-

L = log(1 + exp(γ(m+ − sθ(x)y+)))
+ log(1 + exp(γ(m− + sθ(x)c−)))

(4)

where sθ(x)y+ and sθ(x)c− being the scores for
the classes y+ and c−, respectively. The param-
eter γ controls the penalization of the prediction
errors and m+ and m are margins for the correct
and incorrect classes. Following Vu et al. (2016a),
we set γ = 2, m+ = 2.5 and m− = 0.5.

Model Training and Features: We represent
each word by the concatenation of its word em-
bedding and position feature vectors. We use
word2vec (Mikolov et al., 2013) embeddings,
that are updated during model training. As po-
sition features in relation classification experi-
ments, we use position indicators (PI) (Zhang and
Wang, 2015) in C-BRNN to annotate target en-
tity/nominals in the word sequence, without neces-
sity to change the input vectors, while it increases
the length of the input word sequences, as four
independent words, as position indicators (<e1>,
</ e1>, <e2>, </e2>) around the relation argu-
ments are introduced.

In our analysis and interpretation of recurrent
neural networks, we use the trained C-BRNN
(Figure 1) (Vu et al., 2016a) model.

3 LISA and Example2Pattern in RNN

There are several aspects in interpreting the neu-
ral network, for instance via (1) Data: “Which di-
mensions of the data are the most relevant for the
task” (2) Prediction or Decision: “Explain why a
certain pattern” is classified in a certain way (3)
Model: “How patterns belonging to each category
in the data look like according to the network”.

In this work, we focus to explain RNN via de-
cision and model aspects by finding the patterns
that explains “why” a model arrives at a particu-
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lar decision for each category in the data and veri-
fies that model behaves as expected. To do so, we
propose a technique named as LISA that interprets
RNN about “how it accumulates and builds mean-
ingful semantics of a sentence word by word” and
“how the saliency patterns look like according to
the network” for each category in the data while
decision making. We extract the saliency patterns
via example2pattern transformation.

LISA Formulation: To explain the cumula-
tive nature of recurrent neural networks, we show
how does it build semantic meaning of a sentence
word by word belonging to a particular category
in the data and compute prediction scores for the
expected category on different inputs, as shown in
Figure 2. The scheme also depicts the contribu-
tion of each word in the sequence towards the final
classification score (prediction probability).

At first, we compute different subsequences
of word(s) for a given sequence of words (i.e.,
sentence). Consider a sequence S of words
[w1, w2, ..., wk, ..., wn] for a given sentence S of
length n. We compute n number of subsequences,
where each subsequence S≤k is a subvector of
words [w1, ...wk], i.e., S≤k consists of words pre-
ceding and including the word wk in the sequence
S. In context of this work, extending a subse-
quence by a word means appending the subse-
quence by the next word in the sequence. Observe
that the number of subsequences, n is equal to the
total number of time steps in the C-BRNN.

Next is to compute RNN prediction score for the
category R associated with sentence S. We com-
pute the score via the autoregressive conditional
P (R|S≤k,M) for each subsequence S≤k, as-

P (R|S≤k,M) = softmax(Why · hbik + by) (5)

using the trained C-BRNN (Figure 1) model
M. For each k ∈ [1, n], we compute the net-
work prediction, P (R|S≤k,M) to demonstrate the
cumulative property of recurrent neural network
that builds meaningful semantics of the sequence
S by extending each subsequence S≤k word by
word. The internal state hbik (attached to softmax
layer as in Figure 1) is involved in decision making
for each input subsequence S≤k with bias vector
by ∈ RC and hidden-to-softmax weights matrix
Why ∈ RD×C for C categories.

The LISA is illustrated in Figure 2, where each
word in the sequence contributes to final classifi-
cation score. It allows us to understand the net-
work decisions via peaks in the prediction score

Algorithm 1 Example2pattern Transformation
Input: sentence S, length n, category R,
threshold τ , C-BRNN M, N-gram size N
Output: N-gram saliency pattern patt

1: for k in 1 to n do
2: compute N-gramk (eqn 8) of words in S
3: for k in 1 to n do
4: compute S≤k (eqn 7) of N-grams
5: compute P (R|S≤k,M) using eqn 5
6: if P (R|S≤k,M) ≥ τ then
7: return patt← S≤k[−1]

over different subsequences. The peaks signify
the saliency patterns (i.e., sequence of words) that
the network has learned in order to make deci-
sion. For instance, the input word ‘of’ following
the subsequence ‘<e1> demolition </e1> was
the cause’ introduces a sudden increase in pre-
diction score for the relation type cause-effect(e1,
e2). It suggests that the C-BRNN collects the se-
mantics layer-wise via temporally organized sub-
sequences. Observe that the subsequence ‘...cause
of’ is salient enough in decision making (i.e., pre-
diction score=0.77), where the next subsequence
‘...cause of <e2>’ adds in the score to get 0.98.

Example2pattern for Saliency Pattern: To
further interpret RNN, we seek to identify and ex-
tract the most likely input pattern (or phrases) for
a given class that is discriminating enough in de-
cision making. Therefore, each example input is
transformed into a saliency pattern that informs us
about the network learning. To do so, we first
compute N-gram for each word wt in the sen-
tence S. For instance, a 3-gram representation
of wt is given by wt−1, wt, wt+1. Therefore, an
N-gram (for N=3) sequence S of words is rep-
resented as [[wt−1, wt, wt+1]

n
t=1], where w0 and

wn+1 are PADDING (zero) vectors of embedding
dimension.

Following Vu et al. (2016a), we use N-grams
(e.g., tri-grams) representation for each word in
each subsequence S≤k that is input to C-BRNN
to compute P (R|S≤k), where the N-gram (N=3)
subsequence S≤k is given by,

S≤k = [[PADDING,w1, w2]1, [w1, w2, w3]2, ...,

[wt−1, wt, wt+1]t, ..., [wk−1, wk, wk+1]k]

(6)

S≤k = [tri1, tri2, ..., trit, ...trik] (7)

for k ∈ [1, n]. Observe that the 3-gram trik con-
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Figure 3: (a-i) Layer-wIse Semantic Accumulation (LISA) by C-BRNN for different relation types in
SemEval10 Task 8 and TAC KBP Slot Filling datasets. The square in red color signifies that the relation
is correctly detected with the input subsequence (enough in decision making). (j-k) t-SNE visualization
of the last combined hidden unit (hbi) of C-BRNN computed using the SemEval10 train and test sets.
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ID Relation/Slot Types Example Sentences Example2Pattern
S1 cause-effect(e1, e2) <e1> demolition </e1> was the cause of <e2> terror </e2> cause of <e2>
S2 cause-effect(e2, e1) <e1> damage </e1> caused by the <e2> bombing </e2> damage </e1> caused
S3 component-whole(e1, e2) <e1> countyard </e1> of the <e2> castle </e2> </e1> of the
S4 entity-destination(e1,e2) <e1> marble </e1> was dropped into the <e2> bowl </e2> dropped into the
S5 entity-origin(e1, e2) <e1> car </e1> left the <e2> plant </e2> left the <e2>
S6 product-produce(e1, e2) <e1> cigarettes </e1> by the major <e2> producer </e2> </e1> by the
S7 instrument-agency(e1, e2) <e1> cigarettes </e1> are used by <e2> women </e2> </e1> are used
S8 per:loc of birth(e1, e2) <e1> person </e1> was born in <e2> location </e2> born in <e2>
S9 per:spouse(e1, e2) <e1> person </e1> married <e2> spouse </e2> </e1> married <e2>

Table 1: Example Sentences for LISA and example2pattern illustrations. The sentences S1-S7 belong to
SemEval10 Task 8 dataset and S8-S9 to TAC KBP Slot Filling (SF) shared task dataset.

sists of the word wk+1, if k 6= n. To generalize for
i ∈ [1, bN/2c], an N-gramk of sizeN for word wk
in C-BRNN is given by-

N-gramk = [wk−i, ..., wk, ..., wk+i]k (8)

Algorithm 1 shows the transformation of an ex-
ample sentence into pattern that is salient in deci-
sion making. For a given example sentence S with
its length n and category R, we extract the most
salient N-gram (N=3, 5 or 7) pattern patt (the last
N-gram in the N-gram subsequence S≤k) that con-
tributes the most in detecting the relation type R.
The threshold parameter τ signifies the probabil-
ity of prediction for the category R by the model
M. For an input N-gram sequence S≤k of sen-
tence S, we extract the last N-gram, e.g., trik that
detects the relation R with prediction score above
τ . By manual inspection of patterns extracted at
different values (0.4, 0.5, 0.6, 0.7) of τ , we found
that τ = 0.5 generates the most salient and inter-
pretable patterns. The saliency pattern detection
follows LISA as demonstrated in Figure 2, except
that we use N-gram (N =3, 5 or 7) input to detect
and extract the key relationship patterns.

4 Analysis: Relation Classification

Given a sentence and two annotated nominals, the
task of binary relation classification is to predict
the semantic relations between the pairs of nom-
inals. In most cases, the context in between the
two nominals define the relationship. However,
Vu et al. (2016a) has shown that the extended con-
text helps. In this work, we focus on the building
semantics for a given sentence using relationship
contexts between the two nominals.

We analyse RNNs for LISA and exam-
ple2pattern using two relation classification dat-
sets: (1) SemEval10 Shared Task 8 (Hendrickx

Input word sequence to C-BRNN pp

<e1> 0.10

<e1> demolition 0.25

<e1> demolition </e1> 0.29

<e1> demolition </e1> was 0.30

<e1> demolition </e1> was the 0.35

<e1> demolition </e1> was the cause 0.39

<e1> demolition </e1> was the cause of 0.77

<e1> demolition </e1> was the cause of <e2> 0.98

<e1> demolition </e1> was the cause of <e2> terror 1.00

<e1> demolition </e1> was the cause of <e2> terror </e2> 1.00

Table 2: Semantic accumulation and sensitivity
of C-BRNN over subsequences for sentence S1.
Bold indicates the last word in the subsequence.
pp: prediction probability in the softmax layer for
the relation type. The underline signifies that the
pp is sufficient enough (τ=0.50) in detecting the
relation. Saliency patterns, i.e., N-grams can be
extracted from the input subsequence that leads to
a sudden peak in pp, where pp ≥ τ .

et al., 2009) (2) TAC KBP Slot Filling (SF) shared
task1 (Adel and Schütze, 2015). We demon-
strate the sensitiveness of RNN for different sub-
sequences (Figure 2), input in the same order as
in the original sentence. We explain its predic-
tions (or judgments) and extract the salient rela-
tionship patterns learned for each category in the
two datasets.

4.1 SemEval10 Shared Task 8 dataset
The relation classification dataset of the Semantic
Evaluation 2010 (SemEval10) shared task 8 (Hen-
drickx et al., 2009) consists of 19 relations (9 di-
rected relations and one artificial class Other),
8,000 training and 2,717 testing sentences. We
split the training data into train (6.5k) and devel-
opment (1.5k) sentences to optimize the C-BRNN

1data from the slot filler classification component of the
slot filling pipeline, treated as relation classification
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Relation 3-gram Patterns 5-gram Patterns 7-gram Patterns
</e1> cause <e2> the leading causes of <e2> is one of the leading causes of

cause- </e1> caused a the main causes of <e2> is one of the main causes of
effect(e1,e2) that cause respiratory </e1> leads to <e2> inspiration </e1> that results in <e2> hardening </e2>

which cause acne </e1> that results in <e2> </e1> resulted in the <e2> loss </e2>
leading causes of </e1> resulted in the <e2> <e1> sadness </e1> leads to <e2> inspiration

caused due to </e1> has been caused by </e1> is caused by a <e2> comet
comes from the </e1> are caused by the </e1> however has been caused by the

cause- arose from an </e1> arose from an <e2> </e1> that has been caused by the
effect(e2,e1) caused by the </e1> caused due to <e2> that has been caused by the <e2>

radiated from a infection </e2> results in an <e1> product </e1> arose from an <e2>
in a <e2> </e1> was contained in a </e1> was contained in a <e2> box

was inside a </e1> was discovered inside a </e1> was in a <e2> suitcase </e2>
content- contained in a </e1> were in a <e2> </e1> were in a <e2> box </e2>
container(e1,e2) hidden in a is hidden in a <e2> </e1> was inside a <e2> box </e2>

stored in a </e1> was contained in a </e1> was hidden in an <e2> envelope
</e1> released by </e1> issued by the <e2> <e1> products </e1> created by an <e2>

product- </e1> issued by </e1> was prepared by <e2> </e1> by an <e2> artist </e2> who
produce(e1,e2) </e1> created by was written by a <e2> </e1> written by most of the <e2>

by the <e2> </e1> built by the <e2> temple </e1> has been built by <e2>
of the <e1> </e1> are made by <e2> </e1> were founded by the <e2> potter
</e1> of the </e1> of the <e2> device the <e1> timer </e1> of the <e2>

whole(e1, e2) of the <e2> </e1> was a part of </e1> was a part of the romulan
component- part of the </e1> is part of the </e1> was the best part of the

</e1> of <e2> is a basic element of </e1> is a basic element of the
</e1> on a </e1> is part of a are core components of the <e2> solutions
put into a have been moving into the </e1> have been moving back into <e2>

released into the was dropped into the <e2> </e1> have been moving into the <e2>
entity- </e1> into the </e1> moved into the <e2> </e1> have been dropped into the <e2>
destination(e1,e2) moved into the were released into the <e2> </e1> have been released back into the

added to the </e1> have been exported to power </e1> is exported to the <e2>
</e1> are used </e1> assists the <e2> eye cigarettes </e1> are used by <e2> women
used by <e2> </e1> are used by <e2> <e1> telescope </e1> assists the <e2> eye

instrument- </e1> is used </e1> were used by some <e1> practices </e1> for <e2> engineers </e2>
agency(e1,e2) set by the </e1> with which the <e2> the best <e1> tools </e1> for <e2>

</e1> set by readily associated with the <e2> <e1> wire </e1> with which the <e2>

Table 3: SemEval10 Task 8 dataset: N-Gram (3, 5 and 7) saliency patterns extracted for different relation
types by C-BRNN with PI

network. For instance, an example sentence with
relation label is given by-

The <e1> demolition </e1> was
the cause of <e2> terror </e2>
and communal divide is just a way
of not letting truth prevail. →
cause-effect(e1,e2)

The terms demolition and terror are
the relation arguments or nominals, where the
phrase was the cause of is the relationship
context between the two arguments. Table 1
shows the examples sentences (shortened to ar-
gument1+relationship context+argument2) drawn
from the development and test sets that we em-
ployed to analyse the C-BRNN for semantic accu-
mulation in our experiments. We use the similar
experimental setup as Vu et al. (2016a).

LISA Analysis: As discussed in Section 3, we
interpret C-BRNN by explaining its predictions
via the semantic accumulation over the subse-
quences S≤k (Figure 2) for each sentence S. We
select the example sentences S1-S7 (Table 1) for
which the network predicts the correct relation
type with high scores. For an example sentence
S1, Table 2 illustrates how different subsequences
are input to C-BRNN in order to compute predic-
tion scores pp in the softmax layer for the relation
cause-effect(e1, e2). We use tri-gram
(section 3) word representation for each word for
the examples S1-S7.

Figures 3a, 3b, 3c, 3d 3e, 3f and 3g demon-
strate the cumulative nature and sensitiveness of
RNN via prediction probability (pp) about differ-
ent inputs for sentences S1-S7, respectively. For
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Slots N-gram Patterns
</e1> wife of
</e1> , wife

per- </e1> wife
spouse(e1,e2) </e1> married <e2>

</e1> marriages to
was born in

born in <e2>
per- a native of
location of birth(e1,e2) </e1> from <e2>

</e1> ’s hometown

Table 4: TAC KBP SF dataset: Tri-gram saliency
patterns extracted for slots per:spouse(e1, e2) and
per:location of birth(e1,e2)

instance in Figure 3a and Table 2, the C-BRNN
builds meaning of the sentence S1 word by word,
where a sudden increase in pp is observed when
the input subsequence <e1> demolition
</e1> was the cause is extended with the
next term of in the word sequence S. Note that
the relationship context between the arguments
demolition and terror is sufficient enough
in detecting the relationship type. Interestingly,
we also observe that the prepositions (such as of,
by, into, etc.) in combination with verbs are key
features in building the meaningful semantics.

Saliency Patterns via example2pattern Trans-
formation: Following the discussion in Section
3 and Algorithm 1, we transform each correctly
identified example into pattern by extracting the
most likely N-gram in the input subsequence(s).
In each of the Figures 3a, 3b, 3c, 3d 3e, 3f and 3g,
the square box in red color signifies that the rela-
tion type is correctly identified (when τ = 0.5) at
this particular subsequence input (without the re-
maining context in the sentence). We extract the
last N-gram of such a subsequence.

Table 1 shows the example2pattern transforma-
tions for sentences S1-S7 in SemEval10 dataset,
derived from Figures 3a-3g, respectively with N=3
(in the N-grams). Similarly, we extract the salient
patterns (3-gram, 5-gram and 7-gram) (Table 3)
for different relationships. We also observe that
the relation types content-container(e1,
e2) and instrument-agency(e1,
e2) are mostly defined by smaller rela-
tionship contexts (e.g, 3-gram), however
entity-destination(e1,e2) by larger
contexts (7-gram).

4.2 TAC KBP Slot Filling dataset
We investigate another dataset from TAC KBP
Slot Filling (SF) shared task (Surdeanu, 2013),
where we use the relation classification dataset by
Adel et al. (2016) in the context of slot filling. We
have selected the two slots: per:loc of birth and
per:spouse out of 24 types.

LISA Analysis: Following Section 4.1, we anal-
yse the C-BRNN for LISA using sentences S8
and S9 (Table 1). Figures 3h and 3i demonstrate
the cumulative nature of recurrent neural network,
where we observe that the salient patterns born
in <e2> and </e1> married e2 lead to
correct decision making for S8 and S9, respec-
tively. Interestingly for S8, we see a decrease in
prediction score from 0.59 to 0.52 on including
terms in the subsequence, following the term in.

Saliency Patterns via example2pattern Trans-
formation: Following Section 3 and Algorithm 1,
we demonstrate the example2pattern transforma-
tion of sentences S8 and S9 in Table 1 with tir-
grams. In addition, Table 4 shows the tri-gram
salient patterns extracted for the two slots.

5 Visualizing Latent Semantics

In this section, we attempt to visualize the hidden
state of each test (and train) example that has ac-
cumulated (or built) the meaningful semantics dur-
ing sequential processing in C-BRNN. To do this,
we compute the last hidden vector hbi of the com-
bined network (e.g., hbi attached to the softmax
layer in Figure 1) for each test (and train) exam-
ple and visualize (Figure 3k and 3j) using t-SNE
(Maaten and Hinton, 2008). Each color represents
a relation-type. Observe the distinctive clusters of
accumulated semantics in hidden states for each
category in the data (SemEval10 Task 8).

6 Conclusion and Future Work

We have demonstrated the cumulative nature of
recurrent neural networks via sensitivity analysis
over different inputs, i.e., LISA to understand how
they build meaningful semantics and explain pre-
dictions for each category in the data. We have
also detected a salient pattern in each of the exam-
ple sentences, i.e., example2pattern transforma-
tion that the network learns in decision making.
We extract the salient patterns for different cate-
gories in two relation classification datasets.

In future work, it would be interesting to anal-
yse the sensitiveness of RNNs with corruption in
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the salient patterns. One could also investigate
visualizing the dimensions of hidden states (acti-
vation maximization) and word embedding vec-
tors with the network decisions over time. We
forsee to apply LISA and example2pattern on dif-
ferent tasks such as document categorization, sen-
timent analysis, language modeling, etc. An-
other interesting direction would be to analyze
the bag-of-word neural topic models such as Doc-
NADE (Larochelle and Lauly, 2012) and iDoc-
NADE (Gupta et al., 2018b) to interpret their se-
mantic accumulation during autoregressive com-
putations in building document representation(s).
We extract the saliency patterns for each cate-
gory in the data that can be effectively used in
instantiating pattern-based information extraction
systems, such as bootstrapping entity (Gupta and
Manning, 2014) and relation extractors (Gupta
et al., 2018e).
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