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Abstract

Understanding the behavior of a trained net-
work and finding explanations for its outputs
is important for improving the network’s per-
formance and generalization ability, and for
ensuring trust in automated systems. Several
approaches have previously been proposed to
identify and visualize the most important fea-
tures by analyzing a trained network. How-
ever, the relations between different features
and classes are lost in most cases. We pro-
pose a technique to induce sets of if-then-else
rules that capture these relations to globally
explain the predictions of a network. We first
calculate the importance of the features in the
trained network. We then weigh the original
inputs with these feature importance scores,
simplify the transformed input space, and fi-
nally fit a rule induction model to explain the
model predictions. We find that the output
rule-sets can explain the predictions of a neu-
ral network trained for 4-class text classifi-
cation from the 20 newsgroups dataset to a
macro-averaged F-score of 0.80. We make the
code available at https://github.com/
clips/interpret_with_rules.

1 Introduction

Deep, non-linear neural networks are notorious
for being black boxes, because the basis of a net-
work’s decision is unknown. Although some-
times we only care about better performance, un-
derstanding a trained model is important in many
cases. For example, when a statistical system is
used to take decisions regarding a patient’s health,
it is critical to know the underlying reasons. Caru-
ana et al. (2015) have previously discussed a rule-
based system that had associated the history of
asthma in patients suffering from pneumonia with
a lower risk of death due to it. Despite being coun-
terintuitive, it was a predictive pattern in the data
because the patients with asthma were admitted di-

rectly to the ICU and received more intensive care,
which resulted in better outcomes. Model inter-
pretability is also useful to understand the biases
in the data that influence its decision. For exam-
ple, explaining a trained model and its outputs can
bring attention towards a potentially unfair out-
come when a loan or a job opportunity is denied
to an individual due to any societal bias present in
the training data'-2. Another less discussed aspect
of model interpretability is its utility for analyz-
ing a model’s strengths and weaknesses. This un-
derstanding can assist with improving the model’s
performance and generalization ability (Andrews
et al., 1995).

Model interpretability techniques can either
have a global or a local scope. A global explana-
tion refers to the explanation of a complete model,
as opposed to local explanations of individual pre-
dictions. Several existing model-agnostic inter-
pretability techniques provide a list of important
features as explanations. In such a list, the infor-
mation about the interaction between different fea-
tures and their correspondence to the class is lost.
We propose a technique to understand the relations
between the input features and the class labels that
a trained supervised neural network captures. It
is therefore a mechanism for global interpretabil-
ity. We first weigh the input features with their im-
portance in a trained network. We then select the
best features according to the training set, and sim-
plify them to discrete features that represent either
a positive, a negative, or no correlation between
a high feature value and a class label. We per-
form this step to limit the complexity of the out-
put rules and make them easily understandable by
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humans. We use this smaller, transformed input
space to induce rules that best explain the model’s
predictions. We evaluate the technique on a sim-
ple text categorization problem to clearly illustrate
its operation and results. We find that the output
rules have a macro-averaged F-score 0.80 when
explaining the predictions of a feedforward neu-
ral network trained to classify a subset of docu-
ments from the 20 newsgroups dataset® into those
about either ‘Medicine’, ‘Space’, ‘Cryptography’,
or ‘Electronics’.

2 Related Work

There has been a lot of recent interest in mak-
ing machine learning models interpretable. Differ-
ent approaches can be broadly grouped under two
headings—1) the use of interpretable models, and
2) model-agnostic interpretability techniques. In
the first case, the choice of machine learning meth-
ods is limited to the more interpretable models
such as linear models and decision trees (Molnar;
Caruana et al., 2015). The drawback of incorporat-
ing model interpretability through specific model
choices is that these models may not perform well
enough for a given task or a given dataset. To
overcome this, the second set of approaches try to
explain either a complete model, or an individual
prediction by using the input data and the model
output(s). Several approaches involve manipula-
tion of the trained network to identify the most
significant input features. In some cases, the in-
put features are deleted one by one, and the corre-
sponding effect on the output is recorded (Li et al.,
2016b; Avati et al., 2017; Suresh et al., 2017).
The features that cause the maximum change in
the output are ranked the highest. Another com-
putational approach uses gradient ascent to learn
the input vector that maximizes a given output in
a trained network (Erhan et al., 2009; Simonyan
et al., 2013). In some other cases, the gradient of
the output with respect to the input is computed,
which corresponds to the effect of an infinitesimal
change of the input on the output (Engelbrecht and
Cloete, 1998; Simonyan et al., 2013; Aubakirova
and Bansal, 2016; Sushil et al., 2018). Another ap-
proach computes feature importance using layer-
wise relevance propagation (LRP) (Bach et al.,
2015; Montavon et al., 2017; Arras et al., 2017),
which has been shown to be equivalent to the prod-
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uct of the gradient value and the input (Kinder-
mans et al., 2016). Sometimes the importance of
a feature is analyzed by setting its value to a ref-
erence value, and then backpropagating the dif-
ference (DeepLIFT) (Shrikumar et al., 2017). In
another approach, a separate ‘explanation model’
is trained to fit the predictions of the original
model (Ribeiro et al., 2016; Lundberg and Lee,
2017; Lakkaraju et al., 2017). In an informa-
tion theoretic approach, the mutual information
between feature subsets and the model output is
approximated to identify the most important fea-
tures, similar to feature selection techniques (Chen
etal., 2018). For recurrent neural networks with an
attention mechanism, attention weights are often
used as feature importance scores (Hermann et al.,
2015; Yang et al., 2016; Choi et al., 2016). Poerner
et al. (2018) have investigated several of the pre-
viously discussed techniques and have found LRP
and DeepLIFT to be the most effective approaches
for explaining deep neural networks in NLP.

Most of the above-mentioned techniques output
a ranked list of the most significant features for a
model. Several approaches, especially when the
input is an image, visualize these features as im-
age segments (Erhan et al., 2009; Simonyan et al.,
2013; Olah et al., 2018). These act as visual cues
about the salient objects in an image for the clas-
sifier. However, such visual understanding is lim-
ited when we use either structured or textual input.
Heatmaps are often used to visualize interpreta-
tions of text-based models (Hermann et al., 2015;
Li et al., 2016a,b; Yang et al., 2016; Aubakirova
and Bansal, 2016; Arras et al., 2017). However,
the interaction between different features and their
relative contribution towards class labels remains
unknown in this qualitative representation. To
overcome this limitation, in the same vein as our
work, rule induction for interpreting neural net-
works has been proposed (Andrews et al., 1995;
Lakkaraju et al., 2017). Thrun (1993) have pro-
posed a technique to find disjunctive rules by iden-
tifying valid intervals of input values for the cor-
rect classification. Intervals are expanded start-
ing with the known values for instances. Lakkaraju
et al. (2017) use the input data and the model pre-
dictions to learn decision sets that are optimized to
jointly maximize the interpretability of the expla-
nations and the extent to which the original model
is explained.

In our approach, we aim to generate a set of if-
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then-else rules that approximate the interaction be-
tween the most important features and classes for
a trained model. As opposed to Lakkaraju et al.
(2017), before learning an explanation model, we
modify the input data based on the importance of
the features in the trained network. In doing so, we
already encode some information about the net-
work’s performance within these input features.

3 Methodology

We are interested in identifying the if-then-else
rules between different input features and class la-
bels that are captured by a trained network to an-
alyze the features that are the most important for
classification according to the model. The insight
gained in this manner can facilitate model under-
standing and error analysis. These rules should re-
flect and mimic a network’s behavior for generat-
ing its output and may not correspond to human
intuitions about a task, or expectations about what
a network would learn. We focus on learning the
rules that explain an entire model, as opposed to
a single prediction. Our proposed technique com-
prises of these main steps:

1. Input saliency computation (§ 3.1)
2. Input transformation and selection (§ 3.2)
3. Rule induction (§ 3.3)

The entire pipeline is depicted in Figure 1.

3.1 Input saliency computation

As the first step in the pipeline, we compute the
contribution of the input features towards the pre-
dicted output in a trained network. This gives us
the importance of different features in the network.
For this, we record the change in the predicted
output on modifying the input features infinitesi-
mally; i.e., for every test instance j, we compute
the gradient of the predicted output 07(%) (where m
is the predicted output class for that instance) w.r.t.
all the K input features i,(f ), k= 1..K. We get
a saliency map similar to Simonyan et al. (2013),
where the saliency S of the kth input feature for
the jth instance is defined as

()
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Here, m, which is the predicted output class for
that instance among all possible n output classes,
is computed as
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Figure 1: Pipeline for rule induction for global
model interpretability.

mY) = argmax (o).

The higher the absolute value of the gradient
S ,g] ), the greater the importance of the feature k
in the instance j for the predicted class. Here, a
positive sign of the saliency score indicates that
the feature is positively correlated with the prob-
ability of the output class, a negative sign shows
an inverse correlation, and a value of 0 shows that
there is no effect of the feature on the predicted
output class for that instance.

3.2 Input transformation and selection

Once we have obtained the saliency scores S
in § 3.1, we multiply these scores with the origi-
nal inputs. Hence, we get transformed input data
I’, where the input values have been reweighed ac-
cording to their importance in the trained network.
This corresponds to step 2 in Figure 1.

We then reduce the transformed input data I’ to
their sign. This is the 3rd step in the figure. This
gives us a set of discrete features I, € {—1,0,1}.
The value -1 indicates that the feature is highly
negatively correlated with the class, i.e., a higher
feature value decreases the probability of the out-
put class. The value 1 indicates that the feature



is highly positively correlated with the class, i.e.,
a higher value of that feature increases the proba-
bility of the output class. 0 may mean either that
the feature is absent for the document, or that it
is not important for the output class*. We perform
this sign reduction step because the rule conditions
with these discrete feature values are more inter-
pretable and readable than those containing con-
tinuous reweighed vector values.

We then keep only the top 1000 features in the
trained network, represented by step 4 in the fig-
ure. We restrict the feature space to reduce the
complexity of the rule induction step. We use ei-
ther an unsupervised technique—sensitivity anal-
ysis, or the mutual information between the inputs
I’ and the corresponding training labels. The first
technique uses only the gradient values to find the
most important features, whereas the second su-
pervised technique makes use of both the trans-
formed inputs I/ and the labels for this purpose.

e Sensitivity analysis

For feature selection using sensitivity analy-
sis (Engelbrecht and Cloete, 1998), we first
compute the gradients of all the output nodes
with respect to all the input features for all the
instances. We then aggregate these gradient
values across the instances by taking a root
mean square value. The squaring ensures that
negative and positive effects of a feature are
treated in an equivalent manner. Hence, we
obtain the overall importance scores of all
the features for every output node in the net-
work. Now, we use the maximum importance
of the features across all the output nodes as
the significance of the features in the trained
network. The features with the highest sig-
nificance scores are then selected as the top
features. Hence, the method uses only the
trained network weights and the original in-
put data for feature selection. It does not
make use of the labels for the instances and is
hence an unsupervised technique for select-
ing the most important features in a trained
neural network.

Mutual information

In this step, we identify the top features using
*We have two interpretations for 0 because we take a
product of the gradients and the input feature values. 0 value

of either of these two terms could transform the final value to
0.

85

mutual information between the reweighed
features I, (computed as the product of gradi-
ents and the original inputs, and then reduced
to the corresponding sign), and the labels in
the training data.

3.3 Rule induction

We train a rule induction model on the transformed
features I, obtained as a result of the previous step
(§ 3.2) to fit the output predictions of the origi-
nal model. For multi-class problems, we induce
the rules in a one-vs-rest manner where the rules
for explaining every individual class are found one
at a time. This gives us separate discriminatory
rules for all the classes. Separate rule-sets for in-
dividual classes are more interpretable compared
to an ordered set of rules for multiple classes at
once. In the latter case, we often need to take
into account the rules that have been first learned
for other classes to interpret the rules for the class
we are interested in, which increases its complex-
ity, especially when we have a large number of
classes.

RIPPER-k

We use the implementation of the rule induction
algorithm RIPPER-k (Cohen, 1995) in Weka (Hall
et al., 2009) (JRIP). The algorithm generates a set
of if-then-else rule by first overfitting the condi-
tions on a growing set, and then pruning them
based on their performance on a pruning set.
These rules are learned in one-vs-rest manner in
order of increasing class prevalence, where the fi-
nal else condition covers the majority class.

In the growing phase, starting with an empty set,
the algorithm adds conditions that test the values
of discrete and continuous features in the dataset
to attribute them to the corresponding class. For
example, given two input features fi; and fo, the
algorithm checks if the concerned class is covered
by the rules f1 = dy, fo < ¢y or fo > c1, where
di is a valid value of the nominal feature f7, and
c1 is the value of a continuous feature fo that oc-
curs in the training data. The conditions are added
repeatedly to maximize an information gain cri-
terion. Next, the final sequence of the obtained
conditions are removed one at a time to increase
the generalization of the rule on the pruning set.
When deleting conditions does not improve the er-
ror rate any more, pruning is terminated. Thereby,
the instances covered by the rule are removed, and
the process is repeated for the rest of the instances,



until more than half of the instances covered by a
rule in the pruning data are incorrect.

4 Experimental Details

4.1 Data
We use the documents related to ‘Space’,
‘Medicine’, ‘Electronics’ and ‘Cryptography’

from the 20-newsgroups dataset for text classifi-
cation. We limit ourselves to 4 classes under the
‘Science’ category to reduce experimental com-
plexity. There are approximately 535 training in-
stances, 60 development instances, and 395 test in-
stances for every category. The development set
is used for optimizing the model we want to ex-
plain. We featurize the data as a bag-of-words with
TF-IDF values after removing headers, signature
blocks, quotation blocks and stopwords. We get
30,346 input features in this manner.

4.2 Model to be explained

We explain a feedforward neural network that has
been trained for 4-class text classification. The
neural network has 2 hidden layers with 100 units
each, ReLU activation function for these layers,
and a softmax output layer. It has been optimized
using the Adam optimizer (Kingma and Ba, 2014)
for 50 epochs to minimize the cross entropy loss.
We get a macro-averaged F-score of 0.82 on the
test set.

4.3 Metrics

Fidelity refers to the extent to which an inter-
pretability technique explains the original model.
It can be expressed using many different met-
rics. We quantify fidelity as the macro-averaged
F-score of predicting the output of the model that
is being explained using the rules that are induced
by the explanation technique. The F-scores for the
individual classes obtained in the one-vs-rest man-
ner are averaged to compute this overall fidelity.

4.4 Hyperparameter optimization

We found that the rules induced using RIPPER-
k are sensitive to its hyperparameters, especially
to the minimum number of correctly covered in-
stances and the seed value chosen for random-
izing the instances, particularly when the dataset
is small. To account for the variation, we run
RIPPER-k with 50 different seed values, and the
value of the minimum number of instances posi-
tively covered by a rule ranging between 2 and the
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number of instances of the class being explained.
For each run, we compute the macro-averaged F-
score for explaining the predictions of the neural
network. In doing so, we obtain a standard de-
viation of around 10%, 18%, 17% and 14% for
the classes ‘Space’, ‘Medicine’, ‘Electronics’, and
‘Cryptography’ respectively. This shows that it is
important to find an optimum performance over
several runs.

We select the rule-set that results in the maxi-
mum score, and hence is the one that explains the
original model predictions the best among the pos-
sible alternatives. We select the rule-set with the
maximum score instead of the most generalizable
RIPPER-k model because we are not interested in
transferring the rules to unknown tasks. If we do
not ensure that the learned rules approximate the
patterns in the original model to the best possi-
ble extent, it remains unclear whether an unintu-
itive rule-set is obtained because of the parame-
ters of RIPPER-k, or because our neural network
has poor explanations. We compare different rule-
sets with high F-scores to verify their consistency,
which has been discussed in § 5.2.

5 Results and Discussion

5.1 Rules as explanations

We obtain a fidelity score of 0.80 using the
proposed technique when the features are pre-
selected using the mutual information (MI) score
between the transformed inputs and the output la-
bels. Hence, the learned set of if-then-else rules
can explain the output of our neural network for
4-class text classification to an F-score of 0.80.
The precision, recall, and F-scores for individual
classes is presented in Table 1. The precision of
the rules is high, which shows that the rules, if in-
duced, are reliable. The largest F-score of 0.90
is obtained for the class space, and the lowest F-
score of 0.75 is obtained for the classes electron-
ics and cryptography. On analyzing the rule-sets
obtained for different classes, we see that the com-
plexity of the rules for the space class is lower than
that of electronics. For space classification, single
terms are often indicative of the correct class. On
the other hand, for electronics and cryptography
classes, the rules often consist of multiple words,
which are jointly used to discriminate between
different classes. This suggests that cryptogra-
phy and electronics are more confusable classes,
which is also reflected in their lower F-scores.



MI SA
Text class p R F p R F
Space 0.99 0.82 0901|099 0.76 0.86
Medicine 094 0.68 079092 0.70 0.79
Electronics 0.89 0.64 0.75]0.92 0.63 0.75
Cryptography 0.97 0.61 0.75 099 0.61 0.75
Macro-average | 0.95 0.69 0.80 | 0.96 0.68 0.79

Table 1: Precision (P), Recall (R), and F-score (F) when explaining neural network predictions using the
induced rules with features selected using mutual information (MI) and sensitivity analysis (SA).

The results with MI feature selection are com-
parable to those obtained using sensitivity analy-
sis feature selection, presented in Table 1 as well.
The observed patterns in the corresponding rule
sets are also very similar. Hence, we only present
the rules induced using MI feature selection, and
those using sensitivity analysis can be found in the
Appendix.

Now, in Figure 2, we present the rules that ex-
plain the predictions of the neural network for the
electronics class. The coverage of the individual
rules in these sets is also reported in the format
a/b, which means that the rule covers b instances
in the dataset, out of which a instances are cor-
rectly covered. A higher value of b suggests that a
rule is more generalized, especially if it is higher
up in the hierarchy where it has more instances of
the correct class to its disposal. The value of a/b
should be used to assess how trustworthy a rule is,
with lower values indicating less trustworthiness.
On inspecting the gradients, we found that the gra-
dient value was O only for one feature for one in-
stance in the test set. This feature is not present in
the induced rules. Hence, in these rules, the fea-
ture value of 0 has only one interpretation—the ab-
sence of the feature. The rules for the other classes
can be found in the Appendix.

There are several rules which associate class-

specific content words with the corresponding
class. In complex rules, we find several terms that
are used to identify the electronics class by exclud-
ing the likelihood of the other classes. For exam-
ple, in the rule:
(D) (people = 0) and (used = 1) and (key = 0)
and (don = 0) and (use = 0) and (edu =
0) and (medication = 0) and (concept = 0)
and (did = 0) = electronics

the absence of the term medication is used to rule
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out the possibility of the medicine class, the ab-
sence of the term key is used to rule out the possi-
bility of the class cryptography. Hence, the model
uses an elimination strategy in combination with
class-relevant features for its predictions.

One of the rules learned for the class space is:

2

This rule, which is matched after some other rules’
with higher coverage, covers 3 correct and O in-
correct instances. The value of -1 associated with
probably in conjunction with 1 for idea shows that
a low score of probably, combined with a high
score of idea corresponds to the class space. Simi-
larly, in Figure 2, we often see that the presence of
the word just reduces the probability of electronics
class. Similar associations can be observed in the
rule:

(idea = 1) and (probably = -1) =—> space

3) (don = -1) and (just = -1) = medicine

where the presence of don’t® and just reduces the
probability of the medicine class. This rule covers
4 positive and 0 negative examples. These rules
show that function words, which may hint towards
terms related to modality, are often important for
the network to classify the class of the text docu-
ments.

In Figure 3, we present the most important
features for the same model, as generated by
SHAP (Lundberg and Lee, 2017). This is a
state-of-the-art tool that unifies several popular ap-
proaches for model interpretability. The top fea-
tures presented here overlap with the features we
identify using our technique. However, the inter-
action between these features is not obvious from
the figure. It is possible to generate an interac-

>The complete rule set can be found in the Appendix.
Sdon’t is tokenized as don and ’t, and the mention of don
is found in the rule.



if (just = -1) and (use = 1) = electronics (24/24)

elif (circuit = 1) = electronics (32/32)

elif (just = -1) and (don = 1) = electronics (11/11)

elif (people = 0) and (used = 1) and (key = 0) and (don = 0) and (use = 0) and (edu = 0) and (medication
= 0) and (concept = 0) and (did = 0) = electronics (36/43)

elif (electronics = 1) = electronics (17/18)

elif (battery = 1) = electronics (23/23)

elif (radio = 1) and (shack = 1) = electronics (9/9)

elif (people = 0) and (thanks = 1) and (advance = 1) = electronics (12/14)

elif (signal = 1) = electronics (13/15)

elif (people = 0) and (company = 1) and (just = 0) = electronics (13/18)

elif (pc = 1) = electronics (16/19)

elif (people = 0) and (use = 1) and (just = 0) and (good = 0) and (clipper = 0) and (probably = 0) and
(center = 0) and (unless = 0) and (18084tm = 0) and (algorithms = 0) = electronics (29/33)

elif (appreciated = 1) and (time = 0) = electronics (11/16)

elif (voltage = 1) = electronics (8/8)

elif (program = -1) = electronics (10/15)

else: others (1134/1281)

Figure 2: Set of if-then-else rules that explain the predictions of the neural network for the ‘electronics’
class when using mutual information feature selection. Here the discrete test value 1 means a positive
correlation between a feature value (which we can approximate to relative frequency due to the use of
TF-IDF vectors) and the probability of the class, -1 means a negative correlation, and 0 shows an absence
of a feature. The values (a/b) mean that a of b instances covered by the rule are correct. The rules with
lower values of a/b are less trustworthy, and the rules with lower value of b, especially in the first few
conditions, are less generalized.

J— e e e model.
e —:~_ e : Next, in Figure 4a, we present the if-then-else
oo b . rules that have been induced from the training data
o —g T z using the original input and the gold labels, to give
ey P ; an idea about the relations between features and
- T e e classes that we would expect the model to pick
fgz;% e up from the data. In Figure 4b, we compare them
e =TT ' with the feature-class associations that are instead
‘ o ety - captured by the trained network. These have been

identified by using the transformed input space for
rule induction, also to explain gold labels. Al-
though the rules in these ordered sets are not di-
rectly comparable, we see that there are three ex-
actly matching rules in the two sets (ignoring the
tion plot in SHAP, where the interaction between  order) and several common feature conditions. In
different features is visualized. However, only a  these cases, the patterns in the training data are
few features can be compared against each other  approximated by the network. We find that the
in this manner without making the process expen-  rules fit on the network-transformed training data
sive. These interactions are not understandable  have a 2% higher macro averaged F-score com-
without extensive analysis. The technique we pro-  pared to those on the original data. This suggests
pose instead manages to capture the associations  that the generalization brought about by the net-
between features and classes, alleviating the need  work assists in rule induction for this dataset on
for these complex visualizations to understand the  these tasks.

Figure 3: Feature importance estimation using
SHAP for model interpretability.
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if (circuit = 1) = electronics (53/55)

elif (people = 0) and (electronics = 1) = electronics (31/34)

elif (people = 0) and (power = 1) and (time = 0) and (research = 0) and (years = 0) = electronics
(43/55)

elif (people = 0) and (thanks = 1) and (used = 1) and (particular = 0) = electronics (12/14)

elif (people = 0) and (space = 0) and (voltage = 1) = electronics (22/22)

elif (people = 0) and (motorola = 1) = electronics (16/19)

elif (people = 0) and (space = 0) and (line = 1) and (encryption = 0) and (med = 0) and (doesn = 0)
and (case = 0) = electronics (28/39)

elif (people = 0) and (space = 0) and (wire = 1) = electronics (14/18)

elif (space = 0) and (people = 0) and (1174 = 1) = electronics (9/9)

elif (amp = 1) = electronics (13/14)

elif (just = 0) and (space = 0) and (8051 = 1) = electronics (8/8)

else: others (1565/1848)

(a) The rules induced on the original training data that point towards the associations in the data that we would expect the
neural network to capture.

if (circuit = 1) = electronics (53/53)

elif (people = 0) and (power = 1) and (time = 0) and (national = 0) = electronics (48/63)
elif (people = 0) and (electronics = 1) = electronics (27/28)

elif (people = 0) and (voltage = 1) = electronics (22/23)

elif (people = 0) and (space = 0) and (line = 1) and (want = 0) and (government = 0) and (block = 0)
and (years = 0) and (amateur = 0) and (cell = 0) = electronics (28/33)

elif (people = 0) and (space = 0) and (advance = 1) = electronics (18/26)

elif (people = 0) and (motorola = 1) = electronics (16/16)

elif (people = 0) and (space = 0) and (wire = 1) and (digital = 0) = electronics (14/14)
elif (think = 0) and (buy = 1) and (government = 0) = electronics (14/21)

elif (people = 0) and (space = 0) and (uucp = 1) = electronics (10/12)

elif (space = 0) and (government = 0) and (amp = 1) = electronics (13/15)

elif (people = 0) and (space = 0) and (8051 = 1) = electronics (8/8)

else: others (1562/1823)

(b) The rules induced on the training data transformed according to the network weights. These point towards the asso-
ciations that the network actually captures, as opposed to those we expect it to capture. To find these rules, we compute the
gradients of the output of the corresponding gold label class w.r.t. the input features, instead of taking the gradients of the output
predictions.

Figure 4: The rules induced on the training data to fit the gold labels.

5.2 Consistency of the induced rule-sets ordered rules is not trivial. We calculate the mean

percentage of the exactly matching rules between
As we discussed in § 4.4, it is important to opti-  the well-performing models and the final selected
mize the hyperparameters of RIPPER-k to find an e of rules, when these sets are assumed to be un-
optimum set of rules because we obtain high stan-  ordered. This score penalizes the rules that match
dard deviations of the fidelity scores of explana- partially as being a mismatch, which makes it a
tions across different hyperparameters. Addition-  ggrict metric for sets with longer rules. In this
ally, if several sets of explanations have high fi- process, we get the scores in the range 50%—79%
delity scores, they should also be consistent with using M1, and 48%-90% using sensitivity analy-
each other. To this end, we analyze multiple rule- i feature selection techniques. We find that the
sets with high fidelity scores to check whether they  ¢Jagses with high fidelity scores also have high rule
are similar to each other. For this comparison,  gverlap, and vice versa. This suggests that differ-
we identify all the sets of rules whose F-scores  ent models that explain less confusable classes are

lie within 1% of the F-score of the best model. 4150 more consistent across different parameters.
However, a comparison between different sets of
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We additionally calculate the mean percentage of
the instances that have been classified identically
by the well-performing models and the final se-
lected model to facilitate a semantic comparison.
We find that the classification overlap between dif-
ferent models ranges from 94%-97% when using
MI feature selection, and 93%—-98% with sensitiv-
ity analysis feature selection. The exact numbers
can be found in the Appendix.

6 Limitations

While the advantage of using a rule inducer like
RIPPER-k lies in gaining insight into feature-class
associations, the approach has its own drawbacks.
RIPPER-k outputs rules according to class preva-
lence. Hence, the majority class only has an ‘else’
clause associated with it. Furthermore, only the
default rule is fired when there is just one class
in the dataset. Hence, this technique is unsuitable
for one-class problems, and when the class we are
interested in is the majority class in the one-vs-
rest binary setup. Moreover, if several features
frequently co-occur and infrequently occur with-
out each other, this technique may find only one
of them.

Next, the proposed technique is a global expla-
nation technique that can be used to identify the
if-then-else rules that explain a model as a whole.
However, using this technique, we can not obtain
such rules for explaining only a single instance.

Finally, the learned rules are sensitive to some
parameters in RIPPER-k. As discussed earlier, we
overcome this limitation by optimizing the perfor-
mance over different parameters. However, this
step reduces the speed of finding explanations.

7 Conclusions and Future work

In this paper, we have proposed a technique to
learn if-then-else rules to explain the predictions
of supervised models. We have first computed the
gradients of the output predictions with respect to
the input features for every instance. We have
then rescaled these gradients to feature weights,
and have multiplied them with the original inputs
to learn reweighed inputs for every instance. We
have then simplified them to a set of 1000 trans-
formed features with discrete values. Finally, we
have induced rules that combine these features
into rule conditions for every class in the data sep-
arately. We have found that the induced rules can
explain the predictions of our classifier to a macro-
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averaged F-score of 0.80. We have shown that
these rules can be used to understand a model’s
behavior and output predictions.

In future, we plan to evaluate the proposed tech-
nique on different datasets to compare the fidelity
scores of the explanations across datasets with dif-
ferent complexities. We would also like to com-
pare our work with other techniques for inducing
rules as explanations. It would also be interesting
to investigate other rule induction algorithms that
can support one-class problems, and that are less
sensitive to parameters such as shuffling of data to
overcome the limitations present due to the use of
RIPPER-k.
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A Appendix

In Table 2, we present the mean percentage of
the exact match between different rule-sets out-
put by several good models obtained with differ-
ent RIPPER-k parameters, compared to the rule-
set we finally selected. In the same table, we
also present the mean percentage of instances that
have been classified by different models identi-
cally as the model we finally selected. Further-
more, in Figure 5, we present the rules induced
after performing feature selection using sensitiv-
ity analysis to explain the predictions of the neural
network on the test data. In Figure 6, we present
the rules induced when we instead use mutual in-
formation for feature selection to explain the same
predictions.
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Text class MI SA

Rule match Classification match | Rule match Classification match
Space 79% 97% 90% 98%
Medicine 63% 96% 68% 94%
Electronics 52% 94% 57% 93%
Cryptography 50% 97% 48% 97%

Table 2: Mean exact match between unordered set of rules from several good models obtained with
different parameters of RIPPER-k and the selected model for every class, and the mean classification

overlap between them.

if (just = -1) and (use = 1) = electronics (24/24)

elif (just = -1) and (like = 1) = electronics (14/14)

elif (circuit = 1) = electronics (32/32)

elif (electronics = 1) = electronics (24/25)

elif (battery = 1) = electronics (22/22)

elif (people = 0) and (used = 1) and (way = 0) and (clipper = 0) and (space = 0) and (good = 0) and
(fairly = 0) and (drug = 0) = electronics (38/48)

elif (line = 1) and (space = 0) and (encryption = 0) and (clipper = 0) and elif (medical = 0) and (doctor
= 0) = electronics (20/20)

elif (people = 0) and (thanks = 1) and (advance = 1) and (long = 0) = electronics (10/10)

elif (people = 0) and (voltage = 1) —> electronics (10/11)

elif (company = 1) and (medical = 0) and (order = 0) and (minutes = 0) and elif (clipper = 0) —>
electronics (19/23)

elif (pc = 1) and (security = 0) = electronics (12/12)

elif (think = -1) and (didn = -1) = electronics (5/5)

elif (people = 0) and (cheap = 1) = electronics (10/14)

elif (just = 0) and (motorola = 1) = electronics (6/6)

elif (just = 0) and (tape = 1) = electronics (6/7)

elif (end = -1) — electronics (7/10)

else: others (1144/1296)

(a) Rules for the electronics class
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if (medical = 1) — medicine (55/55)

elif (doctor = 1) =—> medicine (38/38)

elif (cause = 1) and (time = 0) = medicine (30/35)
elif (disease = 1) —> medicine (17/17)

elif (body = 1) = medicine (25/31)

elif (med = 1) — medicine (14/14)

elif (effects = 1) and (space = 0) =—> medicine (17/21)
elif (like = -1) and (time = 1) — medicine (7/7)

elif (don = 0) and (skin = 1) = medicine (7/7)

elif (photography = 1) —> medicine (13/13)

elif (cancer = 1) = medicine (8/8)

elif (surgery = 1) = medicine (8/8)

elif (pain = 1) = medicine (6/8)

elif (allergic = 1) = medicine (7/7)

elif (water = 1) and (make = 0) — medicine (9/13)
elif (left = 1) and (use = 0) = medicine (7/9)

elif (don = 0) and (blood = 1) —> medicine (5/5)

elif (don = 0) and (experience = 1) =—> medicine (7/9)
elif (therapy = 1) —> medicine (4/4)

else: others (1147/1270)

(b) Rules for the medicine class

if (space = 1) = space (116/118)

elif (orbit = 1) = space (29/29)

elif (earth = 1) = space (23/24)

elif (sky = 1) = space (17/17)

elif (nasa = 1) = space (12/12)

elif (launch = 1) = space (14/14)

elif (solar = 1) = space (9/9)

elif (moon = 1) = space (7/7)

elif (shuttle = 1) — space (6/6)

elif (spacecraft = 1) = space (6/6)

elif (ground = -1) and (secret = 0) =—> space (4/4)
elif (plane = 1) = space (3/3)

elif (materials = 1) and (st = 0) = space (4/4)
else: others (1245/1326)

(c) Rules for the space class
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if (clipper = 1) and (moon = 0) = cryptography (90/90)

elif (key = 1) and (care = 0) and (like = 0) = cryptography (37/38)

elif (government = 1) and (launch = 0) and (medical = 0) and (nasa = 0) = cryptography (45/46)
elif (encryption = 1) = cryptography (25/25)

elif (nsa = 1) = cryptography (13/13)

elif (just = 0) and (david = 1) and (want = 0) and (disease = 0) =—> cryptography (13/15)
elif (time = 0) and (algorithm = 1) = cryptography (8/8)

elif (com = 1) and (metzger = 1) = cryptography (9/9)

elif (good = 0) and (modem = 1) = cryptography (6/6)

elif (does = 0) and (crypto = 1) = cryptography (8/8)

elif (just = 0) and (don = 0) and (security = 1) => cryptography (7/7)

else: others (1145/1314)

(d) Rules for the cryptography class

Figure 5: Set of if-then-else rules that explain the test predictions of the neural network for the all the
classes when using sensitivity analysis for feature selection. Here the discrete test value 1 means a
positive correlation between a feature value (which we can approximate to relative frequency due to the
use of TF-IDF vectors) and the probability of the class, -1 means a negative correlation, and O shows the
absence of a feature. The values (a/b) mean that a of b instances covered by the rule are correct. The
rules with lower values of a/b are less trustworthy, and the rules with lower value of b, especially in the
first few conditions, are less generalized.

if (just = -1) and (use = 1) = electronics (24/24)

elif (circuit = 1) = electronics (32/32)

elif (just = -1) and (don = 1) = electronics (11/11)

elif (people = 0) and (used = 1) and (key = 0) and (don = 0) and (use = 0) and (edu = 0) and (medication
= 0) and (concept = 0) and (did = 0) = electronics (36/43)

elif (electronics = 1) = electronics (17/18)

elif (battery = 1) = electronics (23/23)

elif (radio = 1) and (shack = 1) = electronics (9/9)

elif (people = 0) and (thanks = 1) and (advance = 1) = electronics (12/14)

elif (signal = 1) = electronics (13/15)

elif (people = 0) and (company = 1) and (just = 0) = electronics (13/18)

elif (pc = 1) = electronics (16/19)

elif (people = 0) and (use = 1) and (just = 0) and (good = 0) and (clipper = 0) and (probably = 0) and
(center = 0) and (unless = 0) and (18084tm = 0) and (algorithms = 0) = electronics (29/33)

elif (appreciated = 1) and (time = 0) = electronics (11/16)

elif (voltage = 1) = electronics (8/8)

elif (program = -1) = electronics (10/15)

else: others (1134/1281)

(a) Rules for the electronics class
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if (medical = 1) = medicine (55/55)

elif (doctor = 1) = medicine (38/38)

elif (body = 1) = medicine (28/34)

elif (effects = 1) and (don = 0) and (earth = 0) —> medicine(18/19)
elif (disease = 1) —> medicine (19/19)

elif (photography = 1) —> medicine (13/13)

elif (med = 1) — medicine (15/15)

elif (cause = 1) and (station = 0) and (enforcement = 0) and (antennas = 0) and (attacks = 0) and
(battery = 0) = medicine (24/26)

elif (allergic = 1) = medicine (7/7)

elif (experience = 1) and (data = 0) =—> medicine (9/13)
elif (surgery = 1) = medicine (10/10)

elif (skin = 1) = medicine (7/7)

elif (blood = 1) = medicine (6/7)

elif (pain = 1) = medicine (6/8)

elif (therapy = 1) = medicine (4/4)

elif (cancer = 1) = medicine (5/5)

elif (food = 1) = medicine (4/4)

elif (just = -1) and (don = -1) —> medicine (4/4)

elif (cells = 1) = medicine (5/7)

else: others (1154/1284)

(b) Rules for the medicine class

if (space = 1) = space (116/118)

elif (orbit = 1) = space (29/29)

elif (earth = 1) = space (23/24)

elif (sky = 1) = space (17/17)

elif (nasa = 1) = space (12/12)

elif (launch = 1) = space (14/14)

elif (moon = 1) = space (7/7)

elif (solar = 1) = space (9/9)

elif (shuttle = 1) = space (6/6)

elif (spacecraft = 1) = space (6/6)

elif (atmosphere = 1) —> space (4/4)

elif (idea = 1) and (probably = -1) — space (3/3)
elif (18084tm = 1) —> space (4/4)

elif (gamma = 1) —> space (3/3)

elif (exploration = 1) = space (3/3)

elif (landing = 1) = space (3/3)

elif (aircraft = 1) = space (3/3)

elif (ground = -1) and (accepted = 0) —> space (4/4)
elif (materials = 1) and (aids = 0) = space (3/3)
elif (rocket = 1) = space (2/2)

else: others (1245/1305)

(c) Rules for the space class
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if (clipper = 1) and (delta = 0) =—> cryptography (90/90)
elif (key = 1) and (care = 0) = cryptography (49/54)
elif (government = 1) and (money = 0) and (develop = 0) —> cryptography (37/39)
elif (encryption = 1) = cryptography (23/23)

elif (nsa = 1) = cryptography (14/14)

elif (com = 1) and (metzger = 1) = cryptography (9/9)
elif (crypto = 1) = cryptography (11/11)

elif (time = 0) and (algorithm = 1) = cryptography (8/8)
elif (used = 0) and (court = 1) = cryptography (6/6)
elif (security = 1) = cryptography (8/9)

elif (used = 0) and (modem = 1) = cryptography (5/5)
else: others (1141/1311)

(d) Rules for the cryptography class

Figure 6: Set of if-then-else rules that explain the test predictions of the neural network for the all the
classes when using mutual information for feature selection. Here the discrete test value 1 means a
positive correlation between a feature value (which we can approximate to relative frequency due to the
use of TF-IDF vectors) and the probability of the class, -1 means a negative correlation, and O shows the
absence of a feature. The values (a/b) mean that a of b instances covered by the rule are correct. The
rules with lower values of a/b are less trustworthy, and the rules with lower value of b, especially in the
first few conditions, are less generalized.
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