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Abstract

The ever-increasing magnitude of biomedi-
cal information sources makes it difficult and
time-consuming for a human researcher to
find the most relevant documents and pin-
pointed answers for a specific question or topic
when using only a traditional search engine.
Biomedical Question Answering systems au-
tomatically identify the most relevant docu-
ments and pinpointed answers, given an in-
formation need expressed as a natural lan-
guage question. Generating a non-redundant,
human-readable summary that satisfies the in-
formation need of a given biomedical question
is the focus of the Ideal Answer Generation
task, part of the BioASQ challenge. This pa-
per presents a system for ideal answer genera-
tion (using ontology-based retrieval and a neu-
ral learning-to-rank approach, combined with
extractive and abstractive summarization tech-
niques) which achieved the highest ROUGE
score of 0.659 on the BioASQ 5b batch 2 test.

1 Introduction

In this paper, we describe our attempts to ad-
dress the Ideal Answer Generation task of the
sixth edition of the BioASQ challenge,1 which is
a large-scale semantic indexing and question an-
swering challenge in the biomedical domain. In
particular, the sub-task of Phase B of this an-
nual challenge is to develop a system for query-
oriented summarization. Traditionally, there are
two classes of summarization techniques, each
having their own merits and pitfalls: (1) extrac-
tive and (2) abstractive. While extractive tech-
niques patch relevant sentences together enabling
them to generate grammatically robust summaries,
they flounder on maintaining coherence and read-
ability. On the contrary, abstractive techniques ex-
tract relevant information from the original text,

∗denotes equal contribution
1bioasq.org

which is then used to generate a novel natural lan-
guage summary. While abstractive techniques are
more succinct and coherent, automatic text gener-
ation is prone to grammatical error. This directly
implies that extractive summarization techniques
should perform well on automatic evaluation met-
rics (such as ROUGE), but do less well on human
evaluation measures which account for precision,
repetition and readability. We explore the hypoth-
esis that a combination of these techniques will
provide better overall performance on the ideal an-
swer task, when compared with either approach
used in isolation.

The dataset we use for development of the cur-
rent work is released as a part of the sixth edi-
tion of the annual BioASQ challenge (Tsatsaronis
et al., 2012). The main categories of answers in
this data include summary, factoid, list and yes/no.
There are a total of 2,251 questions, each of which
is accompanied by a list of relevant documents and
a list of relevant snippets extracted from each of
these documents. Our model is an extension to
the highest ROUGE scoring model in the final test
batch of the fifth edition of the BioASQ challenge
(Chandu et al., 2017), which is based on Maximal
Marginal Relevance (MMR) (Carbonell and Gold-
stein, 1998). In addition, we attempted abstractive
techniques that are scoped to improve the readabil-
ity and coherence aspect of the problem. We made
4 submissions to the challenge.

The paper is organized as follows: Section 2 de-
scribes our overall system architecture and the im-
plementation details. Experiments and results are
discussed in Section 3 followed by conclusion and
future work in 4.

2 System Architecture

The main components of the QA pipeline are out-
lined in Figure 1. As illustrated, the first step is
pre-processing of the question to enrich it with
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Figure 1: System Architecture

features derived from standard NLP techniques
such as Part of Speech (POS) tagging, Named
Entity Recognition (NER) and Medical Entity
Recognition (MER). Subsequently an ontology-
based retrieval system is used to retrieve relevant
snippets for the question. The retrieved snippets
are combined with the given BioASQ snippets for
the question, and passed to the ranking module.
The ranked snippets are then input to the sen-
tence selection module from the existing OAQA
pipeline (Chandu et al., 2017), which implements
the CoreMMR (Zechner, 2002) and SoftMMR al-
gorithms, which use similarity measures to select
the most relevant and least redundant snippets.
The selected sentences are then passed to the sum-
marization module, which produces the final sum-
mary. Each of these modules is discussed in detail
below.

2.1 Ontology-Based Information Retrieval

Although a large amount of biomedical text is
available in resources such as NLM (NIH, 2018),
it can be difficult to leverage in the absence of su-
pervised or automatic labeling (annotation) of the
unstructured text content. Our hypothesis is that
an Ontology-based retrieval module which utilizes
entity and relation extraction techniques to repre-
sent and compare the content of questions and can-
didate answers can improve the recall of answer-
bearing documents from unstructured sources.

Our goal is to develop a graphical model that
can represent the content of the question and each
candidate answer. The nodes in the graph repre-
sent medical entities and the edges between them
represent the relations between the entities. We
extract relations from the text and index them
into the graph based on previously-published work

(Abacha and Zweigenbaum, 2015). The base ar-
chitecture for the Ontology-based Retrieval mod-
ule is shown in Figure 2.

Figure 2: Graph Generation Pipeline

For every edge present in the graph, we store the
ID of the source abstract, along with the ordinal
index of the source sentence.

2.1.1 Relation Extraction
Relation Extraction (RE) is a technology used by
an ontology-based retrieval system to capture the
semantic relations which exist between the named
entities mentioned in the text; both the entities and
relations are considered instances of a given set of
ontological types. In practice, various NLP toolk-
its are available for related tasks, such as depen-
dency parsing, semantic role labeling, and subject-
verb-object relation extraction.

However, common NLP tools aren’t easily
leveraged on biomedical text, due to dramatic dif-
ferences in the structure and content of the sen-
tences. There exist tools for relation extraction
in sub-domains such as Bacteria (Duclos et al.,
2007) and disease-cause ontologies (Schriml et al.,
2011), but these methods heavily rely on the pres-
ence of specific words or features at the sentence
level, and cannot be easily scaled to general bio-
text. Most neural methods for training relation ex-
tractors require a large (O(106)) corpus of labelled
examples, which is not available for general bio-
text (Yih et al., 2015). In order to explore the use
of ontology-based retrieval, we developed a novel



81

RE approach, which is described below. The base
architecture for the RE module is depicted in Fig-
ure 3.

The following 4 steps are employed for extract-
ing relations from a sentence:

1. Noun Phrase Chunking: The sentence is
parsed using the TreeTagger POS tagger (Schmid,
1995) to obtain all the Noun Chunks that form
the potential nodes of the graph. For our pur-
pose, the nodes of the graph are all Medical and
Named Entities. In order to perform this, the po-
tential nodes are passed through a Medical Entity
Recogniser (GRAM-CNN) (Zhu et al.) and the
Stanford NER (Manning et al., 2014) discarding
the chunks that are not recognized. For an exam-
ple, let us consider the following sentence: ‘Ge-
nomic microarrays have been used to assess DNA
replication timing in a variety of eukaryotic organ-
isms.’ which extract the following noun chunks:
‘Genomic Microarrays’, ‘DNA Replication Tim-
ing’ and ‘Eukaryotic Organisms’.
2. Relation Extraction: This step comprises of 2
sub parts.
(2a) RE using Predicate Argument Structures:
The Predicate Argument Structure (PAS) for the
sentence, obtained using the Enju parser (Miyao
et al., 2008), is further parsed in order to obtain
possible relations for the graph. Possible relations
are those that contain arguments related through a
verb or a preposition.
(2b) RE transformation through transitivity:
Transitivity is performed on relations obtained
from the Enju parser in order to ensure that the
arguments of the relations represent medical or
named entities in the graph. The potential nodes
are passed through the NER and MER. Nodes that
are not tagged or recognized by either undergo a
transitive transformation to give way to new re-
lations. For the example mentioned, the follow-
ing relations are formed post transitive formations:
‘Microarrays assess Timing’, ‘Timing in Organ-
isms’ and ‘Microarrays in Organisms.
3. Mapping to CUI: As the same medical en-
tity can be represented in many forms, we em-
ploy a mapping to the Concept Unique Identifier
(CUI) from the UMLS Metathesaurus (Bodenrei-
der, 2004) using the python wrapper for MetaMap
called pyMetamap (Aronson, 2001). For each of
the Noun Chunks present, the UMLS Metathe-
saurus is queried to check if a CUI is present. If
not, the individual CUIs are obtained for every
word forming the noun chunk and the following

rules are employed in order to form a hierarchical
node structure. For the Noun chunks obtained in
the example, CUIs are directly available for ‘DNA
Replication Timing’ and ‘Eukaryotic Organism’
and not for ‘Genomic Microarray’. To build the
tree structure for this node, the CUIs for ‘Microar-
ray’ and ‘Genomic’ are individually obtained and
since the latter is an adjective, the former becomes
the child of the latter. The final CUIs obtained and
the CUI node tree structure for ‘Genomic Microar-
rays’ are depicted in Table 4 and Figure 6 respec-
tively. For forming relations, the child nodes of all
trees are used for connecting edges.
4. Relation Formation: As the arguments in
the relations obtained through PAS are the base
noun forms that do not represent the whole Noun
Chunk, they are expanded to form the whole noun
chunk. For the example, the relations obtained
in 2b are expanded using the noun chunks to
form the final relations as follows: ‘Genomic Mi-
croarrays assess DNA Replication Timing’, ‘DNA
Replication Timing in Eukaryotic Organisms’ and
‘Genomic Microarrays in Eukaryotic Organisms’.
The entities in the relation are mapped to their
CUI based representation to form a complete re-
lation ready for insertion or retrieval from the
graph. The mapped relations for the exam-
ples look as follows: ‘C1709016, C0887950 as-
sess C1257780’, ‘C1257780 in C0684063’ and
‘C1709016, C0887950 in C0684063’. Here, the
root and children nodes are comma separated. The
final graph structure for the relations is depicted in
Figure 4.

Figure 4: Graph obtained by relation extraction.

In order to index the graph, the relation extrac-
tion process specified above is utilized. The edges
of the graph store additional information such as
the abstract ID and the sentence offset in the ab-
stract. In order to form a relation for a new query
to retrieve information from the graph, a back-off
mechanism is employed as follows.
1. Form relations using the process for indexing.
2. Query with all medical entities and obtain all
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Figure 3: Architecture of Relation Extraction Module

abstracts between pairs of them.
3. Query the medical entities with the verb forms
associated with them.
4. Query with just the medical entity and obtain
all abstracts related to each of the medical entities.

2.1.2 Graph Creation
Graph Framework: All PubMed abstracts are
tokenized and relations are extracted from them.
These are added as relations in the graph. We
create custom data structures for the Nodes and
Edges(Relations) in Neo4j (Webber, 2012). Every
relation has attributes which are comma separated
values of PubMed ID, location within the abstract.
This is stored in order to retrieve the exact sen-
tence that was used to create a particular relation.
We hypothesize that this can improve in getting
relevant snippets across the abstracts.
Phase I: Ontology Creation with UMLS Con-
cepts. Part of speech tagging is the most intuitive
way of approaching the problem of extracting the
relations from a given text. An initial strategy of
forming the Subject Verb Object (SVO) triplets
was formed based on a left-right parsing of the
text. For this purpose, an off-the-shelf POS tag-
ger (Schmid, 1994) was used. This is not an ef-
fective method to create a graph as it misses very
important clauses and fails to recognize the Noun
Chunks in sentences. In order to overcome the
limitations of this, we form a UMLS based map-
ping of the noun phrases to medical concept the-
saurus as in the UMLS Meta Thesaurus. Once the
CUI ids are mapped using metamap as in Section
2.1.1, these are prepared to be indexed into the
graph. These relations are added into the graph
by following standard database methods, i.e.,

• If the relation is already present in the graph,
then the relation attribute is appended with
the PubMed ID, and offset in the abstract.

• Every node in the relation is first queried
from the graph and then the relation is added
between the nodes retrieved. If no node is re-
trieved, then new nodes are created and the

relation is created.

Phase II: Adding transitivity to Relations. The
limitations of Phase I was that despite accurate re-
lations from the relation extractor, the mapping
in the graph for different clauses joined together
with different prepositions was not solved. We
solve it with the following method. First, a key
value pair is added as an attribute to the relation,
where every key is a preposition and the value is
the NodeID noun chunk that is associated with the
preposition. For example, in the sentence “Ge-
nomic microarrays have been used to assess DNA
replication timing in a variety of eukaryotic organ-
isms”, the clause “in a variety of eukaryotic organ-
isms” would be missed in the phase II of ontol-
ogy creation. But in Phase II, we convert such that
the verb “assess” has an attribute “{in, nodexyz}”
where nodexyz is the node pertaining to the CUI
of “eukaryotic organisms”.

2.2 Ranking

Information Retrieval is one of the essential com-
ponents of a Question Answering pipeline. It will
help provide relevant information to the pipeline
for more accurate answers. Ranking snippets
based on relevance to the question will improve
the answer selection process and in turn give more
relevant answers. Employing Learning to Rank
(LETOR)(Qin et al., 2010) methods to rank snip-
pets should help rank snippets according to the
questions.
The output of the Ontology based Information Re-
trieval is a set of relevant snippets. We combine
the given BioASQ snippets along with the Ontol-
ogy Retrieved snippets and rank them according
to relevance to the question. The ranking algo-
rithm finally gives a set of ranked snippets rele-
vant to the question. There is a possibility that the
Ontology based retrieved snippets may also have
irrelevant snippets. To prevent the error from fur-
ther propagating into the pipeline, we use a sim-
ple BM25(Robertson and Zaragoza, 2009) scoring
threshold between the snippets and the question.
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We discard the snippets which have a BM25 score
lower than a certain threshold. LETOR is highly
feature driven which necessitates a good amount
of feature engineering. The explored features are
listed in the next section. In this paper, we have
explored 2 LETOR approaches: a) RankSVM and
b) A Listwise Neural Approach.

2.2.1 Feature Engineering
Multiple features have been explored as inputs
to the LETOR framework. The features can be
divided into 3 major categories i.e. 1) Statisti-
cal Features 2) Semantic Features and 3) Syn-
tactic Features. The statistical features included
length of snippets, BM25 score between query and
snippet, dot product of tf-idf between query and
snippet, cosine similarity over the TF-IDF vectors
(along with log space representation), number of
bi-grams in the intersection of query and snippets
and Jaccard similarity score. The semantic fea-
tures include averaged word2vec representations
across snippets. The syntactic features are number
of medical entities and bag of words representa-
tion of medical entities.

2.2.2 Quasi Ground Truth Creation
An initial challenge while formulating the LETOR
framework is the ground truth ranking of the snip-
pets as that was not provided in the BioASQ train-
ing data. The primary purpose of the LETOR
model was to rank more relevant snippets higher
up to obtain a higher ROUGE score. Taking this
into account, we decided to create the ground truth
as the BM25 scores between the snippet and the
ideal answer. The scores were calculated accord-
ing to the formula in 1. The snippets were ranked
according to the scores for each question.

(1)RelevanceScore

= scoreBM25(idealanswer, snippet)

2.2.3 RankSVM
RankSVM(Cao et al., 2006) is a pairwise LETOR
approach towards ranking of documents. Each
pair of snippets was taken for a question and was
labeled as -1 if the second snippet was ranked
higher and +1 if the second snippet was ranked
lower. In a pairwise approach there is an over-
head of maintaining the metadata as we need to
know which set of snippets are going into the
SVM as input for validation of the model. Con-
sider F (Q,S1) as a feature representation of the
question Q and snippet S1. Similarly, F (Q,S2)

is a feature representation of the question Q and
snippet S2. F (Q,S1) and F (Q,S2) are inputs to
the SVM and the SVM predicts a -1 or +1 accord-
ing to the relative ranking of S1 and S2.

2.2.4 Neural Ranking Approach
The second approach that we implemented was
a list-wise ranking approach inspired from List-
Net(Cao et al., 2007). Every data point is a fea-
ture representation between the question Q and
nth snippet Sn. The neural network is trained
against the BM25 scores between the snippet and
the ideal answer. The architecture of the network
is a 2 layer MLP with ReLU activations. The final
layer is a linear layer of size 1.
In an ideal scenario, where we would have had the
ground truth rankings of the snippets, it would be
intuitive to use a probabilistic loss. In our case, as
we are using proxy golden ranks with the BM25
score, it would be more intuitive for the model to
learn to estimate the scores instead of the relative
ranking of the snippets. Hence, we use a RMSE
loss as we want our model to estimate the BM25
scores. The RMSE loss is calculated per ques-
tion as we would want to learn the distribution
of snippets with respect to a single question and
not across the complete dataset. The final ranking
of the snippets are determined with respect to the
scores the model predicts.

2.3 Summarization

Summarization is the final stage in the question
answering pipeline. The ranked snippet sentences
feed into the summarization module which finally
outputs the ideal answers.
For the case of ideal answer generation, two types
of summarization techniques can be employed;
extractive and abstractive summarization. Extrac-
tive summarization works by selecting the most
relevant sentences in a document to generate the
summary (Allahyari et al., 2017). The summaries
generated using this technique generally obtain
high ROUGE scores (Lin, 2004) due to the high
n-gram overlap between the generated summary
and the ideal answer. Abstractive summarization
on the other hand works by generating the sum-
mary word by word as opposed to picking sen-
tences in the case of extractive summarization.
Recent advances in abstractive summarization us-
ing Pointer Generator Coverage (PGC) networks
(See et al., 2017) have shown that neural sequence
to sequence models can generate abstractive sum-
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maries which are readable and have high ROUGE
scores. Given that these networks can gener-
ate human readable summaries with high ROUGE
scores, we decided to use this model as the ideal
answer generation module in our question answer-
ing pipeline. We show that the neural sequence
model is able to generate ideal answers in the
biomedical domain. More concretely, we see that
a pretrained PGC model can be transferred to the
biomedical domain to generate ideal answers i.e.,
the model is able to handle new words (mainly
biomedical words) and not generate any unknown
tags (<UNK>) in the summaries which would
hinder the readability. We also show that fine tun-
ing the model on the BioASQ data generates better
answers in terms of the ROUGE scores.

3 Experiments and Results

This section describes the experiments conducted
to evaluate each of the components in the ques-
tion answering pipeline. All the experiments have
been conducted on batch 2 of the fifth edition of
BioASQ and evaluated using the official Oracle2

developed by the organizers of the task.

3.1 Ontology based Information Retrieval

Ontology based retrieval has been evaluated for
providing summary answers to queries with zero
snippets provided. For example, the snippets re-
trieved for the question, ’Does metformin interfere
thyroxine absorption?’ has a ROUGE of 0.2044
compared with the ideal answer provided for it.

3.2 Ranking

3.2.1 RankSVM Feature Analysis
Ablation studies were carried out with respect to
the features to determine which set of features give
us the best results.

It is seen that the statistical features contributed
the most to the model. Another interesting obser-
vation from the graph is that even though BM25
and log(BM25) were the top contributing features,
the log(BM25) has a higher weight. This is mainly
because the log scale is known to be more stable
and therefore will help the model learn better.

3.2.2 Neural Ranking Approach Analysis
The Neural approach was evaluated against the
RankSVM results. We also added the syntac-
tic features and did a comparison study on them.

2BioASQ Oracle

From Table 1 it is seen that adding the syntactic
features have contributed to an overall increase in
the ROUGE scores for both the models. Also, it is
noticed that the Neural model has performed bet-
ter than the RankSVM. This is mostly due to the
fact that the Neural approach is trying to estimate
the BM25 scores between the snippet and the ideal
answer rather than trying to mimic the quasi rank-
ing. From the discussion of the results above, we
can confirm the hypothesis that ranking snippets in
an order of relevance will help improve the quality
of answers generated by the pipeline.

3.3 Summarization

Ranked snippet sentences from the ranking
pipeline are fed into the summarization module.
The following experiments were carried out:

1. Using the PGC network pretrained on
CNN/Daily Mail to generate the ideal an-
swers

2. Fine tuning the pretrained PGC network on
BioASQ data

Table 1 gives the ROUGE scores obtained by
both the models on the BioASQ dataset. For the
model fine tuning, the pretrained model is fur-
ther trained on BioASQ 5b training data. We
see that the fine tuned model obtains much higher
ROUGE-2 and ROUGE-SU4 scores when com-
pared to the pretrained model. This shows that
the fine tuned model generates better answers than
the pretrained model in terms of ROUGE score.
On closely analyzing the answers generated by the
PGC models, we see that there are no <UNK>s
generated by both the pretrained and fine tuned
models. The model is also able to effectively copy
the unknown words from the biomedical source
text. A detailed error analysis for the answers gen-
erated by the model is discussed in the upcoming
subsection 3.3.1.

3.3.1 Error Analysis
This subsection discusses the analysis on the ideal
answers generated by both the pretrained model
and fine tuned model for different question types
in the BioASQ dataset (Table 2). All the readabil-
ity judgments made in this subsection are an in-
dicator of the subjective judgments made by the
authors of this paper:

1. Yes/No type:

http://participants-area.bioasq.org/oracle/results/taskB/phaseB/
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RankSVM LETOR Framework ROUGE-2 ROUGE-SU4
BM25, Cosine Similarity, TF-IDF dot product 0.6442 0.6453
BM25, Cosine Similarity, TF-IDF dot product, word2vec dot product 0.6439 0.6460
BM25, Cosine Similarity, TF-IDF dot product,
word2vec dot product, Snippet Length, log(sum(TF-IDF)) 0.6471 0.6481
Neural LETOR Framework
Neural Approach 0.6565 0.6552
Neural Approach + MER Bag-of-words 0.6590 0.6581
Abstractive Summarization
Pretrained PGC 0.29 0.3
Fine tuned PGC 0.4640 0.4659

Table 1: Results on 5b batch 2

Question Ideal Answer Pre-trained model answer Fine tuned model answer
Do pro-
ton pump
inhibitors
affect thy-
roxine
absorption?
(Yes-No
type)

Proton-pump inhibitors, antacids and a long
list of drugs may decrease thyroxine absorp-
tion. Patients with hypothyroidism and nor-
mal TSH values during LT4 replacement ther-
apy may need additional thyroid function test-
ing after treatment with PPIs and may need
adjustment of their LT4 dose.

Ppis and a long list of drugs may decrease thyroxine absorption
. Many commonly used drugs , such as bile acid sequestrants , fer-
rous , phosphate binders , raloxifene and proton-pump inhibitors ,
have also been shown to interfere with the absorption of levothy-
roxine . Patients with hypothyroidism and normal tsh values during
short-term treatment .

Antacids inhibitors , antacids and a long list of drugs may de-
crease thyroxine absorption . Many commonly used drugs , such
as bile acid sequestrants , ferrous sulphate , calcium carbonate ,
aluminium-containing antacids , phosphate binders , raloxifene and
proton-pump inhibitors , have also been shown to interfere with
the absorption of levothyroxine . Pantoprazole did not influence
endocrine function in healthy male volunteers during short-term
treatment .

What is the
ubiquitin
proteome?
(Factoid
Type)

The ubiquitin proteome is the entire set ubiq-
uitinated proteins and of their respective
ubiquitination sites.

Tandem repeated ubiquitin binding entities tubes under non-
denaturing conditions followed by mass spectrometry analysis to
study global ubiquitylation events that may lead to the identifica-
tion of potential drug targets . To study the ubiquitin proteome
we have established an immunoaffinity purification method for
the proteomic analysis of endogenously ubiquitinated protein com-
plexes .

Mass spectrometry now allows high throughput approaches for the
identification of the thousands of ubiquitinated proteins and of their
ubiquitination sites . We used tandem repeated ubiquitin binding
entities tubes under non-denaturing conditions followed by mass
spectrometry analysis to study global ubiquitylation events that
may lead to the identification of potential drug targets .

What mem-
ory problems
are reported
in the "Gulf
war syn-
drome"?
(List Type)

Loss of memory and dysmnesia are memory
problems reported in the Gulf war syndrome.
Patients suffering from this syndrome often
have other nonspecific symptoms such as fa-
tigue, skin rash, headache, muscle and joint
pain and sexual dysfunction.

The strongest associations were for mood swings or 20.9. The
symptoms include fincapacitating fatigue , musculoskeletel and
joint pains , headaches , muscle and joint pain . His history re-
vealed several front-line operations in 1990 and 1991 during the
gulf war .

The gulf war syndrome gws is the beginning of what was to be
identified as the gulf war syndrome . In early 1992 , u.s. troops
returning from the gulf war began reporting a variety of nonspecific
symptoms such as fatigue , skin rash , muscle and joint pain , and
loss of memory .

What is the
treatment
of acute
pericarditis?
(Summary
Type)

A multidisciplinary approach is frequently
necessary to treat acute pericarditis; the most
frequent treatments are: antiinflammatory
steroid and non-steroid drugs, antibiotic
therapy, pericardial drainage and, less fre-
quently ,intrapericardial irrigation of fibri-
nolytics; antituberculous chemotherapy in
presence of Tuberculous Agent

The incidence of purulent pericarditis has decreased since the an-
tibiotic era . it is typically an acute and potentially lethal disease
, necessitating rapid diagnosis and adequate therapy to improve
prognosis . standard treatment combines appropriate antibiotic
therapy with surgical drainage.

Purulent pericarditis has decreased considerably since the antibi-
otic era . It is typically an acute and potentially lethal disease
, necessitating rapid diagnosis and adequate therapy to improve
prognosis . Standard treatment combines appropriate antibiotic
therapy with surgical drainage .

What causes
erucism?
(Summary
Type)

Erucism is defined as urtication by Lepi-
doptera larvae. It is a skin reaction to en-
venomation from certain poisonous caterpil-
lar bristles. The hair on the dorsum of the last
instar larvae of the moth may cause urticarial
reactions (erucism) as well as eye problems
and temporary blindness.

Tropical insects carry infectious diseases , cutaneous injury can oc-
cur by other mechanisms . the hair on the dorsum of the moth may
cause urticarial reactions . erucism is defined as urtication by lep-
idoptera larvae . erucism is defined as urtication by lepidoptera
larvae .

Tropical insects carry infectious diseases , cutaneous injury can
occur by other mechanisms . The hair on the dorsum of the last
instar larvae of the moth may cause urticarial reactions . Urticating
is defined as urtication by lepidoptera larvae . erucism is defined
as urtication by lepidoptera larvae .

Table 2: Examples of error types observed in the qualitative analysis

Here, we see that the model generated an-
swers address the question and also gives out
extra facts not described in the ideal answer,
but pertaining to the question. We see that the
answer given by the fine tuned model seems
more complete than that of the pretrained
model as it mentions that antacids (which
contain PPI) decrease thyroxine absorption
and also that they interfere with a specific
type of thyroxine, namely levothyroxine.

2. Factoid type:

Here, the generated summaries miss the an-
swer as exact answer is not present even
in the snippets. Fine tuned model on the
other hand, generates an answer more read-
able than the pretrained model generated an-
swer.
For most of the other factoid questions, we

saw that the question was answered correctly,
but the answer describes the facts very dif-
ferently and also gives different extra facts
compared to the ideal answer. Another obser-
vation was that presence of several acronyms
and abbreviations reduced the ROUGE score.

3. List type: Here, we see that the answer gen-
erated by the fine tuned model is more read-
able as there is a seamless flow in the an-
swer where the answer starts off by explain-
ing what the Gulf War Syndrome is and later
goes on to list the problems reported in the
Gulf War Syndrome. We also notice that the
pretrained model misses the symptom ’loss
of memory’ mentioned in the ideal answer
which is however picked up by the fine tuned
model.

4. Summary type: Here, the generated an-
swers partially answer the question as both
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Test Batch System ROUGE 2 ROUGE SU4
Batch 1 RankSVM 0.6372 0.6456
Batch 3 Neural Ranking + Extractive Summarization 0.5743 0.5883
Batch 4 Neural Ranking + Abstractive Summarization 0.4183 0.4281
Batch 5 Relation extraction + Ontology + Neural Ranking + Abstractive Summarization 0.4573 0.4637

Table 3: BioASQ Results for Task 6B

of them mention the surgical drainage treat-
ment which is a super set of the pericardial
drainage treatment. Other treatment types are
however missed by both the models in their
answers. This is mainly due to the fact that
there is no direct mapping between the ideal
answer and the snippets.

5. Summary type: Another error which occa-
sionally surfaces is repetition. In the pre-
trained model answer, we see that the last
sentence is repeated. In the fine tuned model
however, there is no repetition with respect to
the entire sentence. Although, a majority of
the last sentence is repeated in the fine tuned
model answer, we see that the term ’urtica-
tion’ is defined in terms of its own verb form
and urtication is later used to define erucism.

Table 3 comprises our results over the test
batches of the sixth edition. We believe the model
gave the best ROUGE scores for test batch 3 as
we have seen from the previous section that the
neural model along with domain specific features
performed the best among all the models.

4 Conclusion and Future Work

This paper discusses our system for summary type
answer generation using a knowledge graph and a
neural learning to rank approach. The ranked snip-
pets are further used to generate the answers us-
ing extractive and abstractive summarization tech-
niques. We also show that we can transfer the
abstractive summarization knowledge from the
CNN/Daily-Mail summarization task to the task of
biomedical summarization.

From a brief manual inspection of the gener-
ated summaries and their relevant documents, we
believe that from an NLP standpoint the follow-
ing are some of the promising directions to ex-
plore. Anaphora resolution would help provide
better relations. We also plan to use the ontology
indexing and retrieval system for factoid and list
types of questions. Incorporating the question type
as contextual information while generating sum-
maries could lead to improving precision. Instead

of a dual step of transfer learning with training and
fine tuning on PGC network, the abstracts of the
PUBMED articles and the entire document could
potentially be leveraged to train the end to end net-
work.

As an extension, we intend to pursue the follow-
ing tasks for BioASQ:

• The current pipeline of the work includes the
MMR algorithm while selecting sentences.
Experimentation with other diversification al-
gorithms like xQuAD(Santos et al., 2010)
and PM-2(Dang and Croft, 2012) can be used
for sentence selection.

• Exploration of more language model based
features in the LETOR pipeline like Point-
wise Mutual Information.
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Supplementary Material

For the example provided in section 2.1.1, the
Predicate Argument Structure provided by Enju is
shown in Figure 5, which forms the following re-
lations: ‘Microarrays assess Timing’, ‘Assess in
variety’ and ‘variety of organisms’.

Table 4: CUI Mapping
Concept CUI

Microarray C1709016
Genomic C0887950

DNA Replication Timing C1257780
Eukaryotic Organism C0684063

Figure 6 shows the node structure that is built
from the CUIs for Genomic Microarray.

Figure 6: CUI node structure for Genomic Microarray

The efficacy of the Relation Extraction module
depends on the tools it utilizes. The Enju parser
trained using the GENIA corpus has an F-score of
90.15 on the same (Hara et al., 2010). GRAM-
CNN has an F1-score of 87.26% on the Biocre-
ative II dataset, 87.26% on the NCBI dataset and
72.57% on the JNLPBA dataset (Zhu et al.). In ad-
dition to the hierarchical node structure, these can
also lead to the existence of incorrect nodes and
edges in the ontology. Every node is associated
with all abstracts containing a mention of them.
This results in the possibility of the retrieval logic
returning all abstracts containing just a mention of
the medical/named entity present in a query, rather
than only the relevant abstracts for that particular
query. The Ranking module filters these abstracts
to obtain those most relevant to the query.

We also graphed out the top contributing fea-
tures for our RankSVM model. Figure 7 displays
the contribution of the top 6 features which were
used in the model. The factors by which the top
6 features contributed were then normalized and
plotted. The top contributing features are depicted
in Figure 7.

Figure 7: RankSVM Top Contributing Features
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Figure 5: Predicate Argument Structure


