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Macquarie University

Sydney, Australia
diego.molla-aliod@mq.edu.au

Abstract
This paper describes Macquarie Univer-
sity’s contribution to the BioASQ Challenge
(BioASQ 6b, Phase B). We focused on the
extraction of the ideal answers, and the task
was approached as an instance of query-based
multi-document summarisation. In particu-
lar, this paper focuses on the experiments
related to the deep learning and reinforce-
ment learning approaches used in the submit-
ted runs. The best run used a deep learn-
ing model under a regression-based frame-
work. The deep learning architecture used fea-
tures derived from the output of LSTM chains
on word embeddings, plus features based on
similarity with the query, and sentence po-
sition. The reinforcement learning approach
was a proof-of-concept prototype that trained a
global policy using REINFORCE. The global
policy was implemented as a neural network
that used tf.idf features encoding the candi-
date sentence, question, and context.

1 Introduction

The BioASQ Challenge1 consists of various tasks
related to biomedical semantic indexing and ques-
tion answering (Tsatsaronis et al., 2015). Our par-
ticipation in BioASQ for 2018 focused on Task B
Phase B, where our system attempted to find the
ideal answer given a question and a collection
of relevant snippets of text. We approached this
task as an instance of query-based multi-document
summarisation, where the ideal answer is the sum-
mary to produce.

The BioASQ challenge focuses on a restricted
domain, namely biomedical literature. Neverthe-
less, the techniques developed for our system were
domain-agnostic and can be applied to any do-
main, provided that the domain has enough train-
ing data and a specialised corpus large enough to
train word embeddings.

1http://www.bioasq.org/

Summary Factoid Yesno List

n 6 2 2 3

Table 1: Value of n (the number of sentences returned
as the ideal answer) for each question type.

We were interested in exploring the use of deep
learning and reinforcement learning for this task.
Thus, Section 2 explains our experiments using
deep learning techniques. Section 3 details our ex-
periments using reinforcement learning. Section 4
specifies the settings used in the experiments. Sec-
tion 5 shows and discusses the results, and Sec-
tion 6 concludes the paper.

2 Deep Learning

The deep learning experiments followed the gen-
eral framework introduced by Mollá (2017a),
which can be summarised as a regression approach
that follows these three main steps:

1. Split the input text into candidate sentences.

2. Score each candidate sentence independently.

3. Return the n sentences that have the highest
score.

In all of the experiments reported in this pa-
per, the input text is the set of relevant snippets
that are associated with the question. These snip-
pets are pre-processed by splitting them into sen-
tences. The sentences are then scored using the
deep learning approaches described below. Then,
after all candidate sentences are scored, the top n
sentences are returned as the ideal answer. The
value of n is determined empirically and it de-
pends on the question type as shown in Table 1.
These are the same settings as in Mollá (2017a)’s
framework.

http://www.bioasq.org/
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The deep learning experiments predict the score
of an input sentence by applying supervised re-
gression techniques. Following Mollá (2017a)’s
framework, the training data was annotated with
the F1 ROUGE-SU4 score of each individual sen-
tence using the ideal answer as the target. Also
following Mollá (2017a)’s framework, the archi-
tecture of our system architecture was based on the
following main stages:

1. Obtain the word embedding of every word in
the input sentence and the question.

2. Given the word embeddings of the input sen-
tence and the question, obtain the sentence
and question embeddings.

3. Feed the sentence embeddings and the simi-
larity between the sentence and question em-
beddings to a fully connected layer and final
linear combination. In this stage, as an ex-
tension to Mollá (2017a)’s approach, we also
incorporated information about the sentence
position.

The word embeddings were obtained by pre-
training word2vec (Mikolov et al., 2013) on a col-
lection of PubMed documents made available by
the organisers of BioASQ. Given a sentence (or
question) i with ni words and vectors of word em-
beddingsm1 tomni , we ran experiments using the
following two alternative approaches to obtain the
sentence (or question) vector of embeddings si:

NNR Mean. Compute the mean of the word em-
beddings:

si =
1

ni

ni∑
j=1

mj

NNR LSTM. Feed the sequence of word embed-
dings to bidirectional Recurrent Neural Net-
works with LSTM cells. We used Tensor-
Flow’s LSTM implementation, which is re-
portedly based on Hochreiter et al. (1997)’s
seminal work. More explicitly, the embed-
ding si of sentence i is the concatenation of
the output of the last cell in the forward chain
(
−→
h ni) and the first cell in the backward chain

(
←−
h 1):

si =
[−→
h ni ;

←−
h 1

]
Cell at position t of the forward chain re-
ceives its input from the embedding of word

at position t and cell at position t− 1:

−→c t =
−→
f �−→c t+1 +

−→
i �−→z

−→
h t = −→o � tanh(−→c t)−→
i = σ(

−→
W i ·mt +

−→
U i ·
−→
h t+1 +

−→
b i)−→

f = σ(
−→
W f ·mt +

−→
U f ·

−→
h t+1 +

−→
b f )

−→o = σ(
−→
W o ·mt +

−→
U o ·

−→
h t+1 +

−→
b o)

−→z = tanh(
−→
W z ·mt +

−→
U z ·

−→
h t+1 +

−→
b z)

where σ is the logistic sigmoid function, � is
the element-wise multiplication of two vec-
tors, and · is the dot product between a matrix
and a vector.

Cell at position t in the backward chain re-
ceives its input from mt and cell at position
t+ 1:

←−c t =
←−
f �←−c t+1 +

←−
i �←−z

←−
h t = ←−o � tanh(←−c t)←−
i = σ(

←−
W i ·mt +

←−
U i ·
←−
h t+1 +

←−
b i)←−

f = σ(
←−
W f ·mt +

←−
U f ·

←−
h t+1 +

←−
b f )

←−o = σ(
←−
W o ·mt +

←−
U o ·

←−
h t+1 +

←−
b o)

←−z = tanh(
←−
W z ·mt +

←−
U z ·

←−
h t+1 +

←−
b z)

As is often done with bidirectional LSTM
chains, all weights of the parameter matri-
ces in the forward chain−→W,

−→
U ,
−→
b are shared

among all cells of the forward chain, and
all weights of the parameter matrices in the
backward chain←−W,

←−
U ,
←−
b are shared among

all cells of the backward chain. As in Mollá
(2017a)’s framework, there are separate sets
of parameter matrices for the sentence and for
the question.

Mollá (2017a) used all the sentences of the full
abstracts as the candidate input. Given that sub-
sequent experiments observed an improvement of
results by using the snippets only, our entries to
BioASQ 6b used the snippets only. Also, Mollá
(2017a) observed very competitive results of a
simple baseline that returned the first n sentences.
This suggests that sentence position is a useful
feature and we consequently incorporated the sen-
tence position as a feature in stage 3.

Given the sentence embedding si and question
embedding qi, each obtained either by the mean of
embeddings or by applying LSTM chains as de-
scribed above, and given the sentence position pi,
stage 3 is implemented as a simple neural network
with one hidden layer with a relu activation, fol-
lowed by a linear combination:
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Figure 1: Comparison of deep learning experiments
with several baselines. The error bars indicate the stan-
dard deviation of 10-fold cross-validation.

ri = max(0,Wr [si; qi � si; pi] + br)
scorei = Wscoreri + bscore

Following Mollá (2017a)’s framework, we used
the element-wise multiplication between qi and
si as a way to encode the similarity between the
question and the input sentence.

Figure 1 compares the results of the deep learn-
ing approaches against the following baselines:

Firstn. Return the first n sentences. As men-
tioned above, this baseline is often rather hard
to beat.

Random. Return n random sentences. This is the
lower bound of any extractive summarisation
system.

Cos LSA. Return the n sentences that have the
highest cosine similarity with the question.
The feature vectors for the computation of
the cosine similarity were obtained by com-
puting tf.idf , followed by a dimension re-
duction step that selected the top 200 com-
ponents after Latent Semantic Analysis.

Cos Embeddings. Return the n sentences that
have the highest cosine similarity with the
question. The cosine similarity was based
on the sum of the word embeddings (using
embeddings with 200 dimensions) in the sen-
tence/question.

SVR. Train a Support Vector Regression system
that uses as features a combination of tf.idf ,

Figure 2: Scatter-plot comparing the F1 ROUGE-SU4
score of two oracles using a random sample of 500
questions.

Figure 3: Violin plots of the F1 ROUGE-SU4 scores of
two oracles.

word embeddings and distance metrics as de-
scribed by Mollá (2017a), plus the position of
the snippet.

Figure 1 shows that the ”firstn” baseline is in-
deed hard to beat, and was matched only by the
deep learning frameworks. Of these, the system
using LSTM obtained the best results and was cho-
sen for submission to BioASQ.

3 Reinforcement Learning

While the results using deep learning are encour-
aging, the models are trained on individually an-
notated sentences, and a summary is obtained by
selecting the top k sentences. An upper bound of
the results obtained using such an approach would
be an oracle that selects the k sentences with high-
est individual ROUGE scores. Figures 2 and 3
show a comparison between the following two or-
acles:

Oracle 1. Return the k snippets with highest in-
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dividual ROUGE score. This is a reasonable
upper bound of supervised machine learning
approaches such as presented in Section 2.

Oracle 2. Return the combination of k snippets
with highest collective ROUGE score. In
particular, the oracle calculates the ROUGE
score of every combination of k snippets, and
selects the combination with highest ROUGE
score. This is an upper bound of any conceiv-
able extractive summarisation system that re-
turns k snippets.

Figure 2 shows the scatter-plot between ora-
cles 1 and 2. It shows that oracle 1 under-performs
oracle 2 in a number of questions. Figure 3 plots
the distributions of the ROUGE scores of each ora-
cle side by side, and it clearly shows that the mean
of the ROUGE scores of oracle 1 is lower than that
of oracle 2.

Reinforcement learning allows to train the sys-
tem on the ROUGE score of the final summary.
This is done by iteratively allowing the system to
extract a summary based on its current policy, and
then updating the policy based on the feedback
given by the ROUGE score of the extracted sum-
mary.

The reinforcement learning approach in our sys-
tem is based on Mollá (2017b)’s method. In par-
ticular, the reinforcement learning agent receives
as input a candidate sentence and additional con-
text information, and uses a global policy to de-
termine the best possible action (either to select
the sentence or not to select it). The global policy
is implemented as a neural network with a hidden
layer and is trained on a training partition of the
development data by applying a variant of REIN-
FORCE (Williams, 1992).

More specifically, the global policy learns a set
of parameters θ so that the policy predicts the
probability of not selecting the sentence (Pr(a =
0; θ)) by applying the following neural network:

Pr(a = 0; θ) = σ(Whh+ bh)
h = max(0,Wss+ bs)

where θ = [Wh;Ws; bh; bs] and the input h is the
concatenation of the following features:

1. tf.idf of candidate sentence i;

2. tf.idf of the entire input text to summarise;

3. tf.idf of the summary generated so far;

4. tf.idf of the candidate sentences that are yet
to be processed;

5. tf.idf of the question; and

6. Length (in number of sentences) of the sum-
mary generated so far.

The features chosen are such that the global
policy has information about the candidate sen-
tence (1), the entire list of candidate sentences
(2), the summary that has been generated so far
(3), the input sentences that are yet to be pro-
cessed (4), and the question (5). Experiments
by Mollá (2017b) show that this information suf-
fices to learn a global policy. In addition, we added
the length of the summary generated so far (6).
Our preliminary experiments showed that this ad-
ditional feature facilitated a faster learning of the
policy, and produced better results overall.

The specific algorithm that learns the global
policy is presented in Figure 1. The system

Data: train data

Result: θ
1 sample ∼ Uniform(train data);
2 s← env.reset(sample);
3 all gradients← ∅;
4 initialise(θ);
5 episode← 0;
6 while True do
7 ξ ∼ Bernoulli

(
Pr(a=0;θ)+p

1+2×p

)
;

8 y ← 1− ξ;
9 gradient←

∇(cross entropy(y,Pr(a=0;θ))
∇θ ;

10 all gradients.append(gradient);
11 s, r, done← env.step(ξ);
12 episode← episode+ 1;
13 if done then
14 θ ←

θ−α× r×mean(all gradients);
15 sample ∼ Uniform(train data);
16 s← env.reset(sample);
17 all gradients← ∅;
18 end
19 end

Algorithm 1: Training by Policy Gradient,
where θ = [Wh;Ws; bh; bs].

first chooses one question from the training data
(line 1). Then, after randomly initialising the pa-
rameters of the global policy (line 4), it iteratively
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Figure 4: Comparison between the Python and Perl im-
plementations of ROUGE for a random sample of 5000
snippets and their respective ideal answers. The Python
implementation uses ROUGE-L. The Perl implementa-
tion uses ROUGE-SU4.

samples an action from the current global policy
plus some perturbation p (line 7) and applies the
action (line 11). When all the candidate sentences
related to the question have been processed and ac-
tioned on (line 13), the resulting summary is eval-
uated and a reward r produced (done previously,
in line 11). Then, the policy parameters are up-
dated by multiplying the mean of all gradients ob-
tained at every step by the reward (line 14), and
a new question is selected from the training data
(line 15). Each iteration step is called an episode
(lines 5 and 12).

The perturbation p forces a wide exploration of
the action space during the first episodes and is
gradually reduced at every episode according to
this formula:

p = 0.2× 3000/(3000 + episode)

3.1 ROUGE Variants

The evaluation scripts of the BioASQ task used
the original Perl implementation of ROUGE-2
and ROUGE-SU4 (Lin, 2004). Our experiments
aimed to use ROUGE-SU4. Whereas the Perl im-
plementation of ROUGE was used for the deep
learning experiments described in section 2, as
an implementation decision we used Python’s
pyrouge library for the reinforcement learn-
ing experiments. Python’s pyrouge provides
ROUGE-1, ROUGE-2 and ROUGE-L, but not
ROUGE-SU4.

Figures 4 and 5 compare the ROUGE F1 scores
of the Python libraries against the ROUGE-SU4
F1 score of the Perl implementation. Figure 4

Figure 5: Comparison between the Python and Perl im-
plementations of ROUGE for a random sample of 5000
snippets and their respective ideal answers. The Python
implementation uses (ROUGE-2 + ROUGE-L) / 2. The
Perl implementation uses ROUGE-SU4.

Kernel C gamma

rbf 1.0 0.1

Table 2: Settings used in the SVR experiments.

uses the Python library for ROUGE-L, and Fig-
ure 5 uses the Python library for the mean be-
tween ROUGE-2 and ROUGE-L. We can observe
some noise in the correlation between the Perl
and Python implementations, but in general the
mean between ROUGE-2 and ROUGE-L was a
better approximation of the Perl implementation
of ROUGE-SU4.

In general, we observed lower results of the
Python versions of ROUGE-L and ROUGE-2
compared with the Perl versions. On the light of
this, we strongly advise always to specify the im-
plementation of ROUGE being used, since the re-
sults produced by different versions may not be
comparable.

4 Settings

The snippets were split into sentences using
NLTK’s sentence tokeniser.

The tf.idf information used for the baselines
was computed using NLTK’s TfidfVectorizer. As
in the system by Mollá (2017a), this vectoriser was
trained using a collection of text consisting of the
questions and the ideal answers.

The SVR experiments were implemented using
Python’s sklearn library and used word embed-
dings with 200 dimensions. The specific settings
of the SVR model are shown in Table 2.

The deep learning experiments were imple-
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System Batch Dropout Epochs

Mean 4096 0.4 5
LSTM 4096 0.8 10

Table 3: Settings used in the deep learning experi-
ments.

mented using TensorFlow’s libraries. The specific
details of the model are:

• Dimension of embeddings: 100

• Length of the LSTM chain: 300. Sentences
with more than 300 words were truncated.

• Dimension of
−→
h and

←−
h : 100

• Number of cells in the final hidden layer: 50

Table 3 shows the training settings used by the
deep learning architectures. These settings were
obtained empirically in a fine-tuning stage.

The reinforcement learning experiments were
implemented in TensorFlow. Due to hardware
constraints, the reinforcement learning approach
only processed the first 20 sentences. The specific
details of the architecture of the global policy are:

• Number of cells in the hidden layer: 200

The global policy was trained using a training
partition and evaluated on a separate partition. The
global policy parameters that generated the best
results in the evaluation partition were used for the
final runs to BioASQ.

5 Results

We submitted 5 runs for each batch as listed below.

MQ-1: Return the first n sentences. This is the
Firstn baseline described in Section 2.

MQ-2: Return the n sentences with highest co-
sine similarity with the question. This is the
Cos Embeddings baseline described in Sec-
tion 2.

MQ-3: Return the n sentences according to the
SVR baseline described in Section 2.

MQ-4: Score the sentences using the LSTM-
based deep learning approach as described in
Section 2.

MQ-5: Apply reinforcement learning as de-
scribed in Section 3, with the variations de-
scribed below.

Figure 6: Reinforcement Learning model trained for
batch 1. The reward (y axis) is ROUGE-L.

The policy trained for the reinforcement learn-
ing approach of run MQ-5 varied in several of the
batches. In particular, the first batch was trained
on ROUGE-L while batches 2 to 5 were trained on
(ROUGE-2 + ROUGE-L) / 2. Also, to test the im-
pact of different initialisation settings, we trained
the system twice and generated two separate mod-
els. Batch 2 used one model, whereas batches 3
to 5 used the other model.

Figures 6 and 7 show the evolution of the re-
sults of the policies during the training stage for
batches 1 and 2. We observe some differences
during training, but in general the best model on
the test set achieved a ROUGE score between 0.25
and 0.26.2 This is higher than the results reported
by Mollá (2017b), who reported a ROUGE score
of about 0.2. The likely cause of the improvement
in the results is the inclusion of the length of the
summary generated so far in the context available
by the policy.

Figure 8 shows the results of the submissions to
BioASQ. In general, the deep learning approach
(MQ-4) achieved the best results. While the
”first n” baseline (MQ-1) was fairly competitive
and outperformed some of the runs of other partic-
ipants to BioASQ, the baseline was not as strong
as reported by Mollá (2017a) on BioASQ5b.

We can also observe that the evaluation re-

2The training stage for batches 3 to 5 achieved a best re-
sult slightly over 0.26.
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Figure 7: Reinforcement Learning model trained for
batch 2. The reward (y axis) is (ROUGE-2+ROUGE-
L)/2.

Figure 8: ROUGE-SU4 results of the BioASQ runs.

sults of the submissions to BioASQ give higher
ROUGE scores than those obtained in our experi-
ments, both using the original Perl implementation
of ROUGE, and the Python version. In fact, all of
the runs except for MQ-5 reported better BioASQ
results than our experiments with the oracles. This
is worth investigating.

The runs using reinforcement learning (MQ-5)
gave worse results than the other runs. The cause
for this is also worth investigating, especially con-
sidering that, in our experiments, the results of the
reinforcement learning approach were very com-
petitive compared with the results of the other ap-
proaches.

6 Conclusions

In this paper we have described the deep learn-
ing and reinforcement learning approaches used
for the runs submitted to BioASQ 6b, phase B, for
the generation of ideal answers.

The deep learning approach used a supervised
regression set-up to score the individual candi-
date sentences. The training data was generated
by computing the ROUGE score of each individ-
ual candidate sentence, and the summary was ob-
tained by selecting the top-scoring sentences. The
results of the deep learning runs outperformed all
other runs.

The reinforcement learning approach trained a
global policy using as a reward the ROUGE score
of the summary generated by the policy. The re-
sults of our experiments were very competitive but
the submission results were lower than those of the
other runs.

Further work will focus on the refinement of
the reinforcement learning approach. In particular,
further work will include the addition of a baseline
in the training of the policy, as it has been shown
to reduce the variance and to speed up the train-
ing process. Also, the architecture of the neural
network implementation of the policy will be re-
vised and enhanced by incorporating a more so-
phisticated model.

Further work on the deep learning runs will fo-
cus on the incorporation of more complex models.
For example, preliminary experiments seem to in-
dicate that a classification-based approach could
outperform the current regression-based approach.
Also, it is expected that a sequence-labelling ap-
proach would produce better results since the can-
didate sentences would not be processed indepen-
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dently.
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