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Abstract
Randomized Controlled Trials (RCT) are a
common type of experimental studies in the
medical domain for evidence-based decision
making. The ability to automatically extract
the arguments proposed therein can be of valu-
able support for clinicians and practitioners in
their daily evidence-based decision making ac-
tivities. Given the peculiarity of the medical
domain and the required level of detail, stan-
dard approaches to argument component de-
tection in argument(ation) mining are not fine-
grained enough to support such activities. In
this paper, we introduce a new sub-task of the
argument component identification task: evi-
dence type classification. To address it, we
propose a supervised approach and we test it
on a set of RCT abstracts on different medical
topics.

1 Introduction

Evidence-based decision making in medicine has
the aim to support clinicians and practitioners to
reason upon the arguments in support or against a
certain treatment, its effects, and the comparison
with other related treatments for the same disease.
These approaches (e.g., (Hunter and Williams,
2012; Craven et al., 2012; Longo and Hederman,
2013; Qassas et al., 2015)) consider different kinds
of data, e.g., Randomized Controlled Trials or
other observational studies, and they usually re-
quire transforming the unstructured textual infor-
mation into structured information as input of the
reasoning framework. This paper proposes a pre-
liminary step towards the issue of providing this
transformation, starting from RCT, i.e., documents
reporting experimental studies in the medical do-
main. More precisely, the research question we
answer in this paper is: how to distinguish differ-
ent kinds of evidence in RCT, so that fine-grained
evidence-based decision making activities are sup-
ported?

To answer this question, we propose to resort
on Argument Mining (AM) (Peldszus and Stede,
2013; Lippi and Torroni, 2016a), defined as “the
general task of analyzing discourse on the prag-
matics level and applying a certain argumentation
theory to model and automatically analyze the data
at hand” (Habernal and Gurevych, 2017). Two
stages are crucial: (1) the detection of argument
components (e.g., claim, premises) and the iden-
tification of their textual boundaries, and (2) the
prediction of the relations holding between the ar-
guments. In the AM framework, we propose a
new task called evidence type classification, as a
sub-task of the argument component identification
task. The distinction among different kinds of ev-
idence is crucial in evidence-based decision mak-
ing as different kinds of evidence are associated to
different weights in the reasoning process. Such
information need to be extracted from raw text.

To the best of our knowledge, this is the first
approach in AM targeting evidence type classifi-
cation in the medical domain. The main contribu-
tions of this paper are: (i) we propose four classes
of evidence for RCT (i.e., comparative, signifi-
cance, side-effect, and other), and we annotate a
new dataset of 169 RCT abstracts with such labels,
and (ii) we experiment with supervised classifiers
over such dataset obtaining satisfactory results.

2 Evidence type classification

In (Mayer et al., 2018), as a first step towards the
extraction of argumentative information from clin-
ical data, we extended an existing corpus (Trenta
et al., 2015) on RCT abstracts, with the annota-
tions of the different argument components (evi-
dence, claim, major claim). The structure of RCTs
should follow the CONSORT policies to ensure
a minimum consensus, which makes the studies
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comparable and ideal for building a corpus1. RCT
abstracts were retrieved directly from PubMed2 by
searching for the disease name and specifying that
it has to be a RCT. This version of the corpus with
coarse labels contains 927 argument components
(679 evidence and 248 claims) from 159 abstracts
comprising 4 different diseases (glaucoma, hyper-
tension, hepatitis b, diabetes).

In particular, an evidence in a RCT is an obser-
vation or measurement in the study (ground truth),
which supports or attacks another argument com-
ponent, usually a claim. Those observations com-
prise side effects and the measured outcome of the
intervention and control arm. They are observed
facts, and therefore credible without further justi-
fications, since this is the ground truth the argu-
mentation is based on. In Example 1, evidence
are in italic, underlined and surrounded by square
brackets with subscripts, while claims are in bold.

Example 1: To compare the intraocular pressure-
lowering effect of latanoprost with that
of dorzolamide when added to timolol.
[. . . ] [The diurnal intraocular pressure
reduction was significant in both groups
(P < 0.001)]1. [The mean intraocular pres-
sure reduction from baseline was 32% for the
latanoprost plus timolol group and 20% for
the dorzolamide plus timolol group]2. [The
least square estimate of the mean diurnal in-
traocular pressure reduction after 3 months
was -7.06 mm Hg in the latanoprost plus
timolol group and -4.44 mm Hg in the dor-
zolamide plus timolol group (P < 0.001)]3.
Drugs administered in both treatment groups
were well tolerated. This study clearly
showed that [the additive diurnal intraocu-
lar pressure-lowering effect of latanoprost
is superior to that of dorzolamide in pa-
tients treated with timolol]1.

Example 1 shows different reports of the experi-
mental outcomes as evidence. Those can be re-
sults without concrete measurement values (see
evidence 1), or exact measured values (see evi-
dence 2 and 3). Different measures are annotated
as multiple evidence. The reporting of side effects
and negative observations are also considered as
evidence. Traditionally evidence-based medicine
(EBM) focuses mainly on the study design and

1http://www.consort-statement.org/
2https://www.ncbi.nlm.nih.gov/pubmed/

risk of bias, when it comes to determining the
quality of the evidence. As stated by (Bellomo
and Bagshaw, 2006) there are also other aspects
of the trial quality, which impinge upon the truth-
fulness of the findings. As a step forward, in this
work we extend the corpus annotation, specifying
four classes of evidence, which are most promi-
nent in our data and assist in assessing these com-
plex quality dimensions, like reproducibility, gen-
eralizability or the estimate of effect:

comparative: when there is some kind of com-
parison between the control and intervention arms
(Table 1, example 2). Supporting the search for
similarities in outcomes of different studies, which
is an important measure for the reproducibility.

significance: for any sentence stating that the re-
sults are statistically significant (Table 1, example
3). Many comparative sentences also contain sta-
tistical information. However, this class can be
seen more as a measure for the strength of ben-
eficial or potentially harmful outcomes.

side-effect: captures all evidence reporting any
side-effect or adverse drug effect to see if poten-
tial harms outweigh the benefits of an intervention
(Table 1, example 4).

other: all the evidence that do not fall under the
other categories, like non-comparative observa-
tions, risk factors or limitations of the study (too
rare occurrences to form new classes). Especially
the latter can be relevant for the generalizabil-
ity of the outcome of a study (Table 1, example 5).

Table 2 shows the statistics of the obtained dataset.
Three annotators have annotated the data after a
training phase. Inter Annotator Agreement has
been calculated on 10 abstracts comprising 47 ev-
idence, resulting in a Fleiss’ kappa of 0.88.

3 Proposed methods

In (Mayer et al., 2018), we addressed the argument
component detection as a supervised text classifi-
cation problem: given a collection of sentences,
each labeled with the presence/absence of an argu-
ment component, the goal is to train a classifier to
detect the argumentative sentences. We retrainedT
an existing system, i.e. MARGOT (Lippi and Tor-
roni, 2016b), to detect evidence and claims from
clinical data. The methods we used are SubSet
Tree Kernels (SSTK) (Collins and Duffy, 2002),

http://www.consort-statement.org/
https://www.ncbi.nlm.nih.gov/pubmed/
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1. Brimonidine provides a sustained long-term ocular
hypotensive effect, is well tolerated, and has a low rate
of allergic response.

2. The overall success rates were 87% for the 350-mm2
group and 70% for the 500-mm2 group (P = 0.05).

3. All regimens produced clinically relevant and
statistically significant (P < .05) intraocular pressure
reductions from baseline.

4. Allergy was seen in 9 % of subjects treated with
brimonidine.

5. Risk of all three outcomes was higher for participants
with chronic kidney disease or frailty.

Table 1: Sample of each class represented in the corpus
(claim, comparative, significance, side-effect, other).

Figure 1: Normalized confusion matrix of the com-
bined test set.

which offer a reasonable compromise between ex-
pressiveness and efficiency (Lippi and Torroni,
2016b). In SSTK, a fragment can be any sub-
tree of the original tree, which terminates either at
the level of pre-terminal symbols or at the leaves.
Data was pre-processed (tokenisation and stem-
ming), and the constituency parse tree for each
sentence was computed. Furthermore, the Bag-
of-Words (BoW) features with Term Frequency
and Inverse Document Frequency (TF-IDF) values
were also computed. All the pre-processing steps
were performed with Stanford CoreNLP (version
3.5.0). We conducted experiments with different
classifiers and feature combinations. Two datasets
were prepared to train two binary classifiers for
each approach: one for claim detection, and one
for evidence detection. Both training sets only dif-
fer in the labels, which were assigned to each sen-
tence. 5-fold cross validation was performed opti-
mizing for the F1-score. The model was evaluated
on the test set in Table 2 obtaining 0.80 and 0.65
F1-score for evidence and claim detection respec-
tively.

As a step forward - after the distinction be-
tween argumentative (claims and evidence) and
non-argumentative sentences - we address the task
of distinguishing the different types of evidence
(see Section 2). We cast it as a multi-class classi-
fication problem. For that we use Support Vector
Machines (SVMs)3 with a linear kernel and dif-
ferent strategies to transform the multi-class into
a binary classification problem: (i) ONEVSREST,
and (ii) ONEVSONE. The first strategy trains one
classifier for each class, where the negative exam-
ples are all the other classes combined, outputting
a confidence score later used for the final deci-
sion. The second one trains a classifier for each
class pair and only uses the correspondent subset
of the data for that. As features, we selected lex-
ical ones, like TF-IDF values for BoW, n-grams
and the MedDRA4 dictionary for adverse drug ef-
fects. As for the argument component classifi-
cation, the model was evaluated on different test
sets with respect to the weighted average F1-score
for multi-class classification. The models were
compared against a random baseline, based on the
class distribution in the training set and a majority
vote classifier, which always assigns the label of
the class with the highest contingent in the training
set. The first dataset consisting only of the glau-
coma data, and the second one comprising all the
other maladies as well (see Table 2).

4 Results and Discussion

We run two sets of experiments. In the first one,
we test the evidence type classifier on the gold
standard annotations of the evidence. In the sec-
ond one, we test the whole pipeline: the evidence
type classifier is run on the output of the argument
component classifier described in the previous sec-
tion. In both cases, the best feature combination
was a mix of BoW and bi-grams. The dictionary
of adverse drug effects did not increase the perfor-
mance. Together with the fact that the data con-
tains just a small group of reoccurring side-effects,
this suggests that the expected discriminative in-
formation from the dictionary is captured within
the uni- and bi-gram features. This might change
for bigger datasets with a broader range of ad-
verse effects. Results of the best feature combina-
tions and the random baseline are reported in Ta-
ble 3. For the evidence type classifier on gold stan-

3scikit-learn, version 0.19.1
4https://www.meddra.org/

https://www.meddra.org/
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Dataset Topic #abstract #comp. #sign. #side-eff. #other
Training set glaucoma 79 151 83 65 10

Test set glaucoma, diabetes, 90 160 98 79 33
hepatitis, hypertension (resp. 30, 20, 20, 20)

Table 2: Statistics on the dataset showing the class distributions.

Dataset Method glaucoma combined.
Gold standard RANDOM 0.33 0.32

MAJORITY 0.27 0.26
N-GRAMS 0.80 0.74

whole pipeline RANDOM 0.38 0.38
MAJORITY 0.38 0.39
N-GRAMS 0.71 0.66

Table 3: Results (weighted average F1-score).

dard annotations, the observed results regarding
the different multi-class strategies did not differ
significantly. A F1-score of 0.80 and 0.74 respec-
tively for the glaucoma and combined test set was
achieved. Reviewing the best n-grams, they con-
tain very specific medical terminology, explaining
the performance difference between the two test
sets. For the future, another pre-processing step
with better abstraction capability, e.g., substituting
concrete medical related terms with more general
tags, could provide benefits for the trained model
on the out-of-domain task. The F1-score of the
whole pipeline is 0.71 for the glaucoma and 0.66
for the combined test set. As expected, the errors
of the argument component classifier have an im-
pact on the performances of the second step, but
that corresponds to a more realistic scenario.
Error analysis. As shown in Figure 1, side-effect
were often misclassified as comparative. Certain
types of side-effect comprise comparisons of side-
effects between the two groups including state-
ments of their non-existence. The structure and
wording of those sentences are very similar to cor-
rect comparative examples and only differ in the
comparison criteria (side-effect vs. other measure-
ment), see Examples 2 and 3. Furthermore, com-
parative and significance labels were often con-
fused. As explained above, comparisons can also
state information about the statistical significance
and could therefore belong to both classes, see
Example 4. For future work, we plan to adopt a
multi-label approach to overcome this problem.

Example 2: Headache, fatigue, and drowsiness
were similar in the 2 groups.

Example 3: The number of adverse events did
not differ between treatment groups, with a

mean (SD) of 0.21 (0.65) for the standard
group and 0.32 (0.75) for the intensive group
(P=0.44).

Example 4: The clinical success rate was 86.2%
in the brimonidine group and 81.8% in the
timolol group, making no statistically signif-
icant difference between them (p=0.817).

5 Concluding remarks

We have presented a first step towards mining fine-
grained evidence from RCTs, contributing in i) the
definition of the AM sub-task of evidence type
classification for medical data, ii) a new dataset
of RCT annotated with claims and four kinds of
evidence, and iii) a supervised classifier to address
this task.

A similar task is comparative structure identifi-
cation in clinical trials. It relies on under-specified
syntactic analysis and domain knowledge (Fisz-
man et al., 2007). (Gupta et al., 2017) applied
syntactic structure and dependency parsers to ex-
tract comparison structures from biomedical texts.
(Trenta et al., 2015) built an information extrac-
tion system based on a maximum entropy clas-
sifier with basic linguistic features for the tasks
of extracting the patient group, the intervention
and control arm, and the outcome measure de-
scription. Differently from us, they extract in-
formation to fill in evidence tables, ignoring the
linguistic phrases to reconstruct the whole argu-
mentation. (Dernoncourt et al., 2017) developed a
neural network with word embeddings to assign
PubMed RCT abstract labels to sentences showing
that considering sequential information to jointly
predict sentence labels improves the results. How-
ever, their task differs from ours as they predict
the abstracts structure, which depends on contex-
tual information. Concerning the evidence classi-
fication, (Rinott et al., 2015) tackled this problem
on Wikipedia based data, dividing the evidence
into study, anecdotal and expert evidence. This
taxonomy is not applicable for the here presented
type of data. Beside the extraction of evidence,
another relevant task is their qualitative evalua-
tion. The traditional quality-based hierarchy for
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medical evidence grades them based on the em-
ployed research method, e.g., the applied statis-
tical principles (Schünemann et al., 2008). Top
ranked methods comprise systematic reviews and
meta-analyses of RCTs (Manchikanti et al., 2009).
While they focus on collecting and using meta-
data from the studies to draw general conclusions
to define, e.g., recommendation guidelines, they
do not consider ’why’ an author came to certain
conclusion. This issue is tackled in our paper.

For future work, we plan to weight the argument
strength based on the different evidence types
(similar to the categories proposed in (Wachsmuth
et al., 2017) and (Gurevych and Stab, 2017)). A
scale for side-effects could be based on a weighted
taxonomy of adverse drug effects. Furthermore,
we plan to mine the full RCT reports, to get rel-
evant information on the limitations of the study
and risk factors, currently annotated with the other
label since they rarely appear in the abstracts.
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