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Introduction

Argument mining (also, “argumentation mining”) is a relatively new research field within the rapidly
evolving area of Computational Argumentation. The tasks pursued within this field are highly
challenging with many important practical applications. These include automatically identifying
argumentative structures within discourse, e.g., premises, conclusion, and argumentation scheme of
each argument, as well as relationships between pairs of arguments and their components. To date,
researchers have investigated a plethora of methods to address these tasks in various areas, including
legal documents, user generated Web discourse, on-line debates, product reviews, academic literature,
newspaper articles, dialogical domains, and Wikipedia articles. Relevant manually annotated corpora are
released at an increasing pace, further enhancing the research in the field. In addition, argument mining
is inherently tied to sentiment analysis, since an argument frequently carries a clear sentiment towards
its topic. Correspondingly, this year’s workshop will be coordinated with the corresponding WASSA
workshop, aiming to have a joint poster session.

Argument mining can give rise to various applications of great practical importance. For instance, by
developing methods that can extract and visualize the main pro and con arguments raised in a collection
of documents towards a query of interest, one can enhance data-driven decision making. In instructional
contexts, argumentation is a pedagogically important tool for conveying and assessing the students’
command of course material, as well as for advancing critical thinking. Written and diagrammed
arguments by students represent educational data that can be mined for purposes of assessment and
instruction. This is especially important given the wide-spread adoption of computer-supported peer
review, computerized essay grading, and large-scale online courses and MOOCs. Additionally, mining
pros and cons may be useful in multiple business applications, for instance, for researching a company
or considering the potential of a possible investment.

Success in argument mining requires interdisciplinary approaches informed by natural language
processing technology, artificial intelligence approaches, theories of semantics, pragmatics and
discourse, knowledge of discourse of domains such as law and science, argumentation theory,
computational models of argumentation, and cognitive psychology. The goal of this workshop is to
provide a follow-on forum to the last four years’ Argument Mining workshops at ACL and EMNLP, the
major research forum devoted to argument mining in all domains of discourse.
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Abstract
We explore the use of residual networks for ar-
gumentation mining, with an emphasis on link
prediction. The method we propose makes no
assumptions on document or argument struc-
ture. We evaluate it on a challenging dataset
consisting of user-generated comments col-
lected from an online platform. Results show
that our model outperforms an equivalent deep
network and offers results comparable with
state-of-the-art methods that rely on domain
knowledge.

1 Introduction

Argumentation mining is a growing sub-area of ar-
tificial intelligence and computational linguistics
whose aim is to automatically extract arguments
from generic textual corpora (Lippi and Torroni,
2016a). The problem is typically broken down
into focused sub-problems such as the identifica-
tion of sentences containing argument components
like claims and premises, of the boundaries of ar-
gument components within such sentences, and
the prediction of the argumentative structure of the
document at hand.

In spite of significant results achieved in com-
ponent identification tasks, such as claim/evidence
detection (Rinott et al., 2015; Lippi and Torroni,
2015; Park and Cardie, 2014; Park et al., 2015b;
Stab and Gurevych, 2014), classification (Eckle-
Kohler et al., 2015; Niculae et al., 2017) and
boundary detection (Sardianos et al., 2015; Levy
et al., 2014; Lippi and Torroni, 2016b; Habernal
and Gurevych, 2017), comparatively less progress
has been made in the arguably more challeng-
ing argument structure prediction task (Cabrio and
Villata, 2012; Stab and Gurevych, 2014).

Again due to the challenging nature of the
general argumentation mining problem, solutions
have typically addressed a specific genre or ap-
plication domain, such as legal texts (Mochales

Palau and Moens, 2011), persuasive essays (Stab
and Gurevych, 2017), or Wikipedia articles (Levy
et al., 2014; Rinott et al., 2015) and have heav-
ily relied on domain knowledge. One particu-
lar aspect of the domain is the argument model.
While argumentation as a discipline has devel-
oped rather sophisticated argument models, such
as Toulmin’s (1958), the majority of the available
argumentation mining data sets refer to ad-hoc,
usually simpler argument models, often in an ef-
fort to obtain a reasonable inter-annotator agree-
ment. Another crucial aspect is the document
structure. For instance, in some domains, certain
argument components occupy a specific position
in the document.

Moreover, until recently, approaches have
mostly used traditional methods such as support
vector machines, logistic regression and naive
Bayes classifiers. Only in the last couple of years
the field has started to look more systematically
into neural network-based architectures, such as
long short-memory networks and convolutional
neural networks, and structured output classifiers.

The aim of this study is to investigate the appli-
cation of residual networks–a deep neural network
architecture not previously applied to this domain–
to a challenging structure prediction task, namely
link prediction. Our ambition is to define a model
that does not exploit domain-specific, highly en-
gineered features, or information on the underly-
ing argument model, and could thus be, at least
in principle, of general applicability. Our results
match those of state-of-the-art methods that rely
on domain knowledge, but use much less a-priori
information.

The next section reviews recent applications of
neural networks to argumentation mining. Sec-
tion 3 presents our model, Section 4 the bench-
mark, and Section 5 discusses results. Section 6
concludes.
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2 Related work

The application of neural network architectures
in argumentation mining is relatively recent. A
study most closely related to ours was presented
by Niculae et al. (2017) and will be described
in greater detail in Section 4. The authors pro-
pose a structured learning framework based on
factor graphs. Their approach imposes constraints
to the graph according to the underlying argu-
ment model, and it includes a joint optimiza-
tion method based on the AD3 algorithm (Mar-
tins et al., 2015), structured Support Vector Ma-
chines (Tsochantaridis et al., 2005) and Recurrent
Neural Networks (Rumelhart et al., 1986). Link
prediction and argument component classification
are performed jointly, reaching state-of-the-art re-
sults on two distinct corpora. In contrast to our
method, Niculae et al.’s heavily relies on a-priori
knowledge.

In the domain of persuasive essays, Eger et al.
(2017) consider several sub-tasks of argumenta-
tion mining, making use of various neural archi-
tectures. These include neural parsers (Dyer et al.,
2015; Kiperwasser and Goldberg, 2016), LSTMs
for joint entity and relation extraction (LSTM-
ER) (Miwa and Bansal, 2016), and Bidirectional
LSTM coupled with Conditional Random Fields
and Convolutional Neural Networks (BLCC) (Ma
and Hovy, 2016) in a multi-task learning frame-
work (Søgaard and Goldberg, 2016). Eger et al.
conclude that neural networks can outperform
feature-based techniques in argumentation mining
tasks.

Convolutional Neural Networks and LSTMs
have been used by Guggilla et al. (2016) to per-
form claim classification, whereas bidirectional
LSTMs have been exploited by Habernal and
Gurevych (2016) to assess the persuasiveness of
arguments. More recently, neural networks have
been applied to the task of topic-dependent ev-
idence detection (Shnarch et al., 2018), improv-
ing the performance on a manually labelled corpus
through the use of unsupervised data. Potash et al.
(2017) have applied Pointer Networks (Vinyals
et al., 2015) to argumentation mining.

Looking beyond argumentation mining, Lei
et al. (2018) reviews the application of several
deep learning techniques for sentiment analysis,
while Conneau et al. (2017) for the first time ap-
plies very deep residual networks to NLP-related
task and successfully performs text classification

at the character level. Small residual convolu-
tional networks have been successfully applied
by Zhang et al. (2018) to multi-label classification
on medical notes and by Huang and Wang (2017)
to distantly-supervised relation extraction, where
a knowledge base is used to generate a noisy set of
positive relations among unlabeled data.

3 Residual networks for argument
mining

Residual networks (He et al., 2016a,b) are a recent
family of deep neural networks that achieved out-
standing results in many machine learning tasks,
in particular in computer vision applications such
as medical imaging (Yu et al., 2017), computa-
tional linguistics (Bjerva et al., 2016), crowd flow
prediction (Zhang et al., 2017), and game play-
ing (Cazenave, 2018; Chesani et al., 2018).

The core idea behind residual networks, illus-
trated by Figure 1, is to create shortcuts that link
neurons belonging to distant layers, whereas stan-
dard feed-forward networks typically link neurons
belonging to subsequent layers only. This kind of
architecture usually results in a speedier training
phase, and it usually allows to train networks with
a very large number of layers. The original ar-
chitecture exploits convolutional layers, but it can
be generalized to dense (fully-connected) layers.
The motivation behind residual networks is that if
multiple non-linear layers can asymptotically ap-
proximate a complex functionH(x), they can also
asymptotically approximate its residual function
F (x) = H(x)− x. The original function is there-
fore obtained by simply adding back the residual
value: H(x) = F (x) + x.

The architecture we propose in this paper makes
use of the dense residual network model, along
with an LSTM (Hochreiter and Schmidhuber,
1997), to jointly perform link prediction and argu-
ment component classification. More specifically,
our approach works at a local level on pairs of sen-
tences, without any document-level global opti-
mization, and without imposing model constraints
induced, e.g., by domain-specific or genre-specific
hypotheses. For that reason, it lends itself to inte-
gration with more complex systems.

3.1 Model description

One of our aims is to propose a method that ab-
stracts away from a specific argument model. We
thus reason in terms of abstract entities, such as

2



Figure 1: General schema of a residual network with a
single residual block with three hidden layers.

argumentative propositions and the links among
them. Such abstract entities are instantiated into
concrete categories, such as claims and premises,
supports or attacks, as soon as we apply the
method to a domain described by a specific dataset
whose annotations follow a concrete argument
model. In particular, in this work we instantiate
our model with the categories proposed by Nicu-
lae et al. (2017) for the annotation of the CDCP
corpus.

In general, a document D is a sequence of to-
kens, i.e., words and punctuation marks. An ar-
gumentative proposition a is a sequence of con-
tiguous tokens within D, which represents an ar-
gument, or part thereof. A labeling of propositions
is induced by the chosen argument model. Such a
labeling associates each proposition with the cor-
responding category of the argument component it
contains.

Given two propositions a and b belonging to the
same document, a directed relation from the for-
mer (source) to the latter (target) is represented as
a → b. Reflexive relations (a → a) are not al-
lowed.

Each relation a → b is characterized by two la-
bels: a (Boolean) link label, La→b, and a relation
label, Ra→b. The link label indicates the presence
of a link, and is therefore true if there exists a di-
rected link from a to b, and false otherwise. The
relation label instead contains information on the
nature of the link connecting a and b. In particu-
lar, it represents the direct or inverse relation be-
tween the two propositions, according to the links

that connect a to b or b to a. In other words, its
domain is composed, according to the underlying
argument model, not only by all the possible link
types (e.g., attack and support), but also by their
opposite types (e.g., attackedBy and supportedBy)
as well as by a category, none, meaning absence
of link in either direction.1

One objective is to establish the value of the link
label La→b for each possible input pair of propo-
sitions (a, b) belonging to the same document D.
Such a link prediction task can be considered as
a sub-task of argument structure prediction. An-
other objective is the classification of propositions
and relations, i.e., the prediction of labels Pa, Pb,
Ra→b. That is also jointly performed, as in (Nic-
ulae et al., 2017). Notice, however, that Niculae
et al. do not predict Ra→b relations, but only link
and proposition labels.

3.2 Embeddings and features
Since the purpose of this work is to evaluate deep
residual networks as an instrument for argumen-
tation mining, without resorting to domain- or
genre-specific information, the system relies on a
minimal set of features that do not require elabo-
rate processing.

Any input token is transformed into a 300-
dimensional embedding by exploiting the GloVe
pre-trained vocabulary (Pennington et al., 2014).
Input sequences are zero-padded to the length of
the longest sequence (153 tokens). The distance
between two propositions could also be relevant to
establishing whether two components are linked.
We thus employed the number of propositions that
separate two given propositions as an additional
feature. Following previous works in the game do-
main, where scalar values have been encoded in
binary form (Silver et al., 2016; Cazenave, 2018;
Chesani et al., 2018), we represented distance us-
ing as a 10-bit array, where the first 5 bits are
used in case that the source precedes the target,
and the last 5 bits are used in the opposite case.
In both cases, the number of consecutive “1” val-
ues encodes the value of the distance (distances
are capped by 5). For example, if the target pre-
cedes the source by two sentences, the distance is
−2, which produces encoding 0001100000; if the
source precedes the target by three sentences, the
distance is 3, with encoding 0000011100. In this

1Given the none category, label La→b could, in principle,
be induced by label Ra→b, but it is still convenient to keep
both during the optimization process.
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way, the Hamming distance between two distance
value encodings is equal to the difference between
the two distance values.

3.3 Residual Network Architecture
The network architecture is illustrated in Figure 2.
It is composed by the following macro blocks:

• two deep embedders, one for sources and
one for targets, that manipulate token embed-
dings;

• a dense encoding layer for feature dimension-
ality reduction;

• an LSTM to process the input sequences;

• a residual network;

• the final-stage classifiers.

Source and target propositions are encoded sepa-
rately by the first three blocks, then they are con-
catenated together, along with the distance, and
given as input to the residual network.

The deep embedders refine the token embed-
dings, thus creating new, more data-specific em-
beddings. Relying on deep embedders instead
of on pre-trained autoencoders, aims to achieve a
better generality, at least in principle, and avoid
excessive specialization, thus limiting overfitting.
The dimensionality reduction operated by the
dense encoding layer allows to use an LSTM with
fewer parameters, which has two positive effects:
it reduces the time needed for training, and again
it limits overfitting.

The deep embedders are residual networks
composed by a single residual block, composed by
4 pre-activated time-distributed dense layers. Ac-
cordingly, each layer applies the same transforma-
tion to each embedding, regardless of their posi-
tion inside the sentence. All the layers have 50
neurons, except the last one, which has 300 neu-
rons.

The dense encoding layer reduces the size of
the embedding sequences by applying a time-
distributed dense layer, which reduces the em-
bedding size to 50, and a time average-pooling
layer (Collobert et al., 2011), which reduces the
sequence size to 1/10 of the original. The result-
ing sequences are then given as input to a single
bidirectional LSTM, producing a representation of
the proposition of size 50. Thus, for each proposi-
tion, 153 embeddings of size 300 are transformed

first into 153 embeddings of size 50, then into 15
embeddings of size 50, and finally in a single fea-
ture of size 50.

Source and target features, computed this way,
alongside with the distance encoding, are then
concatenated together and given as input to the
residual network. The first level of the network
is a dense encoding layer with 20 neurons, while
the residual block is composed by a layer with 5
neurons and one with 20 neurons. The sums of the
results of the first and the last layers of the residual
networks are provided as input to the classifiers.

The final layers of the system are three indepen-
dent softmax classifiers used to predict the source,
the target, and the relation labels. The output of
each classifier is a probability distribution along
all the possible classes of that label. The pre-
dicted class is the one with the highest score. All
these three classifiers, which predict labels for two
different tasks, contribute simultaneously to our
learning model. The link classifier is obtained by
summing the relevant scores produced by the rela-
tion classifier.2

All the dense layers use the rectifier activa-
tion function (Glorot et al., 2011), and they ran-
domly initialize weights with He initialization (He
et al., 2015). The application of all non-linearity
functions is preceded by batch-normalization lay-
ers (Ioffe and Szegedy, 2015) and by dropout lay-
ers (Srivastava et al., 2014), with probability p =
0.1.

4 Benchmark

4.1 Dataset

We evaluated our model against the Cornell eRule-
making Corpus (CDCP) (Niculae et al., 2017).
This consists of 731 user comments from a eRule-
making website, for a total of about 4,700 proposi-
tions, all considered to be argumentative.3 The ar-
gument model adopted is the one proposed by Park
et al. (2015a), where links are constrained to form
directed graphs. Propositions are divided into 5
classes: POLICY (17%), VALUE (45%), FACT

2For instance, if our model considers attack and support
relations as the only possible links, and the relation classifier
scores are attack = 0.15, support = 0.2, attackedBy = 0.1,
supportedBy = 0.05, none = 0.5, then the link classifier
scores are: true = 0.35, false = 0.65.

3In an effort to obtain comparable results, we applied
same preprocessing steps described in (Niculae et al., 2017),
enforcing transitive closure and removing nested proposition,
even though our approach does not take into account the ar-
gumentation model, nor its properties.
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Figure 2: A block diagram of the proposed architec-
ture. The figure shows, next to each arrow, the dimen-
sionality of the data involved, so as to clarify the size
of the inputs and the outputs of each block.

(16%), TESTIMONY (21%) and REFERENCE
(1%). Links are divided between REASON (97%)
and EVIDENCE (3%). Figure 3 shows an anno-
tated document from the CDCP corpus.

Link prediction is a particularly difficult task
in the CDCP dataset, where only 3% of all the
possible proposition pairs (more than 43,000) are
linked. A preliminary analysis of the data suggests
that the number of propositions separating source
and target (distance) could be a relevant feature,
since most linked propositions are not far from
each other. Indeed, as Figure 4 shows, around 70%
of links are between adjacent propositions.

We tokenized documents using a hand-crafted
parser based on the progressive splitting of the to-
kens and search within the GloVe vocabulary. We
preferred not to use existing tools because of the
nature of the data, since the CDCP documents of-
ten do not follow proper writing conventions (such
as the blank space after the period mark), leading
in some cases to a wrong tokenization. As a result,
the number of tokens not contained in the GloVe
dictionary dramatically reduced from 384, origi-
nally obtained with the software provided by Nic-
ulae et al. (2017), to 84. Each of these tokens was
mapped into a randomly-generated embedding.

Table 1: Experimental dataset composition.

Split Train Valid. Test Total

Documents 513 68 150 731

Propositions 3,338 468 973 4,779
Values 1438 231 491 2160
Policies 585 77 153 815
Testimonies 738 84 204 1026
Facts 549 73 124 746
References 28 3 1 32

Couples 30,056 3,844 9,484 43,384
Links 923 143 272 1,338
Reasons 888 139 265 1292
Evidences 35 4 7 46

4.2 Structured Learning
The state of the art for the CDCP corpus is the
work described by the corpus authors themselves
(Niculae et al., 2017). They use a structured learn-
ing framework to jointly classify all the proposi-
tions in a document and determine which ones are
linked together. To perform the classification, the
models can rely on many factors and constraints.
The unary factors represent the model’s belief in
each possible class for each proposition or link,
without considering any other proposition or link.
For each link between two propositions, the com-
patibility factors influence link classification ac-
cording to the proposition classes, taking into ac-
count adjacency between propositions and prece-
dence between source and target. The second-
order factors influence the classification of pairs of
links that share a common proposition, by mod-
eling three local argumentation graph structures:
grandparent, sibling and co-parent. Furthermore,
constraints are introduced to enforce adherence to
the desired argumentation structure, according to
the argument model and domain characteristics.

The authors discuss experiments with 6 dif-
ferent models, which differ by complexity (the
type of factors and constraints involved) and by
how they model the factors (SVMs and RNNs).
The RNN models compute sentence embeddings,
by exploiting initialization with GloVe word vec-
tors, while the SVMs models rely on many spe-
cific features. The first-order factors rely on the
same features used by Stab and Gurevych (2017),
both for the propositions and the links. These
are, among the others, unigrams, dependency tu-
ples, token statistics, proposition statistics, propo-
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Figure 3: Argumentation structure in one of the documents of the CDCP corpus.

Figure 4: Link distribution in the CDCP dataset with
respect to distance. The distance is considered posi-
tive when the source precedes the target, negative oth-
erwise.

sition location, indicators from hand-crafted lex-
icons and handcrafted ones, shared phrases, sub-
clauses, depth of the parse tree, tense of the main
verb, modal verbs, POS, production rules, type
probability, discourse triplets (Lin et al., 2014),
and average GloVe embeddings. The higher-
order factors exploit the following features be-
tween all three propositions and between each
pair: same sentence indicators, proposition order,
Jaccard similarity, presence of any shared nouns,
and shared noun ratios. The overall feature di-
mensionality is reportedly 7000 for propositions
and 2100 for links, not counting 35 second-order
features.

5 Results

5.1 Experimental setting

We created a validation set by randomly select-
ing documents from the original training split with
10% probability. We used the remaining docu-
ments as training data and the original test split
as is. Table 1 reports the statistics related to the
three splits.

We defined the learning problem as a multi-
objective optimization problem, whose loss func-

tion is given by the weighted sum of four differ-
ent components: the categorical cross-entropy on
three labels (source and target categories, link re-
lation category) and an L2 regularization on the
network parameters. The weights of these compo-
nents were, respectively, 1, 1, 10, 10−4.

We performed mini-batch optimization using
Adam (Kingma and Ba, 2014) with parameters
b1 = 0.9 and b2 = 0.9999, and by applying pro-
portional decay of the initial learning rate α0 =
5 × 10−3. Training was early-stopped after 200
epochs with no improvements on the validation
data. We chose the numerous hyper-parameters of
the architecture and of the learning model after an
initial experimental setup phase, based on the per-
formance on the validation set for the link predic-
tion task. Results obtained in this phase confirmed
that the presence of the deep embedder block and
of the distance feature lead to better results.

We compared the results of the residual network
model against an equivalent deep network with
the same number of layers and the same hyper-
parameters, but without the shortcut that charac-
terize the residual network block. We applied two
different training procedures for both this deep
network baseline and the residual network. In par-
ticular, as the criterion for early stopping we used
once the error on link prediction and once the error
on proposition classification. In the presentation
of our results we will refer to these two models as
link-guided (LG) and proposition-guided (PG).

Following (Niculae et al., 2017), we measured
the performance of the models by computing the
F1 score for links, propositions, and the aver-
age between the two, in order to provide a sum-
mary evaluation. More specifically, for the links
we measured the F1 of the positive classes (as
the harmonic mean between precision and recall),
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whereas for the propositions we used the score
of each class and then we computed the macro-
average. We also reported the F1 score for each
direct relation class, alongside with their macro-
average.

Since each proposition is involved in many
pairs, both as a source and as a target, its classi-
fication is performed multiple times. To classify
it uniquely, we considered the average probability
score assigned to each class and we have assigned
the most probable class. That is of course not the
only option. Another possibility could be to assign
the class that results to be the most probable in
most of the cases, thus relying on a majority vote.
A further option could be to simply consider the
label with highest confidence. However, this pro-
cedure might be more sensitive to outliers, because
the misclassification of a sentence in just one pair
would lead to the misclassification of the sentence,
regardless of all the other pairs. A deeper analysis
of different techniques to address this issues is left
to future research.

5.2 Discussion and analysis

Table 2 summarizes the evaluation of baselines
and residual networks,4 also showing the best
scores obtained by the structured learning config-
urations presented in (Niculae et al., 2017).

Results highlight how the proposed approach
based on residual networks outperforms the state
of the art for what concerns link prediction. In ad-
dition, residual link-guided network training con-
sistently performs better than both deep networks
baselines in all the three tasks.

As for proposition label prediction, the results
obtained through structured approaches still main-
tain a slight advantage over residual networks.
This could be partially explained by the fact that
hyper-parameter tuning was done with the aim
to select the best model for link prediction. It
should also be considered that we perform propo-
sition classification relying on the merging of la-
bels obtained through local optimization, while
the structured learning approach exploits a global
optimization. Nonetheless, the average score of
residual networks is better than that of structured

4We report the results obtained on just one trained model.
As explained in (Reimers and Gurevych, 2017), due to the
non-deterministic behavior of the neural networks, this scores
are influenced by the random seed of the training. Evaluat-
ing the same model trained many times with different seeds,
and reporting the average scores would clearly yield a more
robust evaluation.

Figure 5: Confusion matrix for proposition prediction.
Top: baseline networks; middle: residual networks;
bottom: structured prediction by (Niculae et al., 2017).

RNNs, thus proving the generality of the ap-
proach.

We shall also remark that our approach can
achieve such results without exploiting any spe-
cific hypothesis or a-priori knowledge of the
genre or domain. This could be an added value
in contexts where arguments may be laid out
freely, without following a pre-determined argu-
ment model, yet it would be interesting to uncover
the underlying argumentation’s structure.

Results also indicate that the most common mis-
take regards the prediction of facts as values (see
Figure 5). That should come as no surprise, since
VALUE is by far the largest class in the corpus,
and it is therefore also affected by many false pos-
itives. Interestingly, baselines completely avoid to
classify any proposition as a FACT.

As far as relation label prediction is concerned,
this model apparently fails to predict the EVI-
DENCE relation. That negative result was also to
be expected, since such a class is scarcely present
in the whole dataset (less than 1%).

6 Conclusion and future work

We presented the first application of residual net-
works in the argumentation mining domain. We
proposed a model that outperforms an equivalent
deep network and competes with state-of-the-art
techniques in a challenging dataset.

Considering that the model makes use of only
one simple feature – the argumentative distance
between two proposition – a natural extension of
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Table 2: F1 scores computed on the test set. For each class, the number of instances is reported in parenthesis.
For the comparison with structured learning, the best scores obtained by any of the structured configurations are
reported.

Deep Baseline Deep Residual Structured
Metric LG PG LG PG SVM RNN

Average (Link and Proposition) 33.18 42.88 47.28 46.37 50.0 43.5

Link (272) 22.56 22.45 29.29 20.76 26.7 14.6

Proposition (973) 43.79 63.31 65.28 71.99 73.5 72.7
VALUE (491) 73.77 74.45 72.19 73.24 76.4 73.7
POLICY (153) 73.85 76.09 74.36 76.43 77.3 76.8
TESTIMONY (204) 71.36 65.98 72.86 68.63 71.7 75.8
FACT (124) 0 0 40.31 41.64 42.5 42.2
REFERENCE (1) 0 100 66.67 100 100 100

Relation (272) 11.68 11.52 15.01 10.31
REASON (265) 23.35 23.04 30.02 20.62
EVIDENCE (7) 0 0 0 0

this study would be its integration in a more struc-
tured and constrained argumentation framework.

Since in argumentation it is often the case that
single propositions cannot contain all the relevant
information to predict argument components and
relations, it could be useful to provide also the
context of argumentation as an input. Hence, an-
other interesting direction of investigation could
be the integration of the whole document text in
the model.
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Abstract

Argument Mining (AM) is a relatively recent
discipline, which concentrates on extracting
claims or premises from discourses, and infer-
ring their structures. However, many existing
works do not consider micro-level AM studies
on discussion threads sufficiently. In this pa-
per, we tackle AM for discussion threads. Our
main contributions are follows: (1) A novel
combination scheme focusing on micro-level
inner- and inter- post schemes for a discus-
sion thread. (2) Annotation of large-scale civic
discussion threads with the scheme. (3) Par-
allel constrained pointer architecture (PCPA),
a novel end-to-end technique to discriminate
sentence types, inner-post relations, and inter-
post interactions simultaneously.1 The exper-
imental results demonstrate that our proposed
model shows better accuracy in terms of re-
lations extraction, in comparison to existing
state-of-the-art models.

1 Introduction

Argument Mining (AM) is a discipline which
concentrates on extracting claims or premises,
and inferring their structures from a discourse.
In (Palau and Moens, 2009; Stab and Gurevych,
2014; Peldszus and Stede, 2013), they construed
an argument as the pairing of a single claim and
a (possibly empty) set of premises, which justifies
the claim.

Generally, identifying structures for argu-
ment components (i.e., premises and claims)
is categorized as a micro-level approach, and
among complete arguments as a macro-level
approach. There are some micro-level approaches
(Palau and Moens, 2009; Stab and Gurevych,
2014, 2017), however, few AM studies aggres-
sively consider a scheme of micro-level reply-to

1Available at:
https://github.com/EdoFrank/EMNLP2018-ArgMining-Morio
including source codes.

interactions in a thread. Though Hidey et al.
(2017) provided a micro-level thread structured
dataset, they considered an entire thread as a
discourse. Thus, they allowed a premise that links
to a claim in another post, while a post should be
considered as a stand-alone discourse because a
writer for each post is different. Also, we need
to consider post-to-post interactions with the
stand-alone assumption as a backdrop. Moreover,
the dataset of (Hidey et al., 2017) with only 78
threads is too small to apply state-of-the-art neural
discrimination models.

In addition to the shortage of micro-level ano-
tations for discussion threads, no empirical study
on end-to-end discrimination models which tackle
discussion threads exist, to the best of our knowl-
edge.

Motivated by the weaknesses above, this pa-
per commits to the empirical study for discussion
threads. Our main three contributions are as fol-
lows: (1) A novel combination scheme to apply
AM to discussion threads. We introduce inner-
post and inter-post schemes in combination. This
combination enables us to discriminate arguments
per post, rather than per thread as in (Hidey et al.,
2017). In the former scheme, a post is assumed
as a stand-alone discourse and a micro-level an-
notation is provided. In the second scheme, we
introduce inter-post micro-level interactions. The
introduction of the interactions allows us to cap-
ture informative argumentative relations between
posts. (2) Large-scale online civic discussions
are annotated by the proposed scheme. Specifi-
cally, we provide two phase annotation, and eval-
uate inter-annotator agreements. (3) A parallel
constrained pointer architecture (PCPA) is pro-
posed, which is a novel end-to-end neural model.
The model can discriminate types of sentences
(e.g., claim or premise), inner-post relations and
inter-post interactions, simultaneously. In particu-
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Figure 1: Example of our scheme for a thread.

lar, our PCPA achieved a significant improvement
on challenging relation extractions in comparison
to the existing state-of-the-art models (Eger et al.,
2017; Potash et al., 2017). An advantage of our
model is that the constraints of a thread structure
are considered. The constraints make our archi-
tectures effective at learning and inferring, unlike
existing pointer models.

While our dataset of discussion threads will
make further advances in AM, the proposed PCPA
will make end-to-end AM studies going forward.

2 Related Works

Stab and Gurevych (2017) argue that the task of
AM is divided into the following three subtasks:

• Component identification focuses on separation of
argumentative and non-argumentative text units and
identification of argument component boundaries.

• Component classification addresses the function of ar-
gument components. It aims at classifying argument
components into different types, such as claims and
premises.

• Structure identification focuses on linking arguments
or argument components. Its objective is to recognize
different types of argumentative relations, such as sup-
port or attack relations.

The structure identification can also be divided to
macro- and micro-level approaches. The macro-
level approach as in (Boltužić and Šnajder, 2014;
Ghosh et al., 2014; Murakami and Raymond,
2010) addresses relations between complete
arguments and ignores the micro-structure
of arguments (Stab and Gurevych, 2017). In
(Ghosh et al., 2014), the authors introduced
a scheme to represent relations between two
posts by target and callout; however, their study
discards micro-level structures in arguments
because of their macro-level annotation. The
micro-level approach as in (Palau and Moens,
2009; Stab and Gurevych, 2014, 2017) focuses
on the relations between argument components.

In (Palau and Moens, 2009), arguments are con-
sidered as trees. In (Stab and Gurevych, 2017),
the authors also represented relations of argument
components in essays as tree structures. However,
they addressed discourses of a single writer (i.e.,
an essay writer) rather than multiple authors in
a discussion thread. Therefore, we can’t simply
apply their scheme to our study.

Recently, the advances of automatic detec-
tion of argument structures have been seen
in the discipline of AM. Some recent pa-
pers (Lippi and Torroni, 2015; Eckle-Kohler et al.,
2015) propose argument component identification
to extract argumentative components in the entire
discourse. These works (Persing and Ng, 2016;
Eger et al., 2017; Potash et al., 2017) showed link
extraction task to find argumentative relations be-
tween argument components.

End-to-end discrimination models are also
highlighted in AM. The reason is low er-
ror propagation compared with the other ends
(pipeline). The pipeline models have to
discriminate argument component identification
and link extraction subtasks independently, and
thus cause the error propagation (Eger et al.,
2017). The authors propose manners to apply
multi-task learning (Søgaard and Goldberg, 2016;
Martínez Alonso and Plank, 2017) and LSTM-
ER (Miwa and Bansal, 2016) to the end-to-
end AM. Another end-to-end work for AM,
Potash et al. (2017) argues that Pointer Networks
(Vinyals et al., 2015; Katiyar and Cardie, 2017)
which incorporate a sequence-to-sequence model
in their classifier is a state-of-the-art model for ar-
gument component type prediction and link ex-
traction tasks.
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3 Argument Mining for Discussion
Thread

3.1 Scheme

In this work, we present a novel scheme combin-
ing inner-post scheme of a stand-alone post with
inter-post scheme that considers a reply-to argu-
mentative relation. In the inner-post scheme (e.g.,
claim/premise types and inner-post relations),
"one-claim" approach from (Stab and Gurevych,
2017) is adopted. In the inter-post scheme,
the micro-level interaction in the spirit of
(Ghosh et al., 2014) is employed. The definitions
of inner-post relation and inter-post interaction are
follows:

• Inner-post relation (IPR) is a directed argumentative re-
lation in a post. Each IPR:(target ← source) indicates
that the source component is either a justification for or
a refutation of the target component. Thus, a source
should be a premise, and each premise has a single out-
going link to another premise or claim (Eger et al., 2017).

• Target is a head of IPI that has been called out by a sub-
sequent claim in another post that replies to the post of the
target.

• Callout is a tail of IPI that refers back to a prior target. In
addition to referring back to the target, a callout must be a
claim.2

• Inter-post interaction (IPI) is the micro-level relation-
ship of two posts: parent post and child post that replies to
the parent post. A relation (parent ← child) represents
the child is a callout and parent is a target.

Figure 1 shows our combination scheme for a dis-
cussion thread.

3.2 Dataset

To develop a sufficient AM corpus for discussion
threads, we have annotated an original large-scale
online civic discussion (Morio and Fujita, 2018a).
The civic discussion data is obtained by an online
civic engagement on the COLLAGREE (Ito et al.,
2014; Morio and Fujita, 2018b) including a thread
structure. The discussion was held from the end of
2016 to the beginning of 2017, and co-hosted by
the government of Nagoya City, Japan. The accu-
mulated data includes 204 citizens, 399 threads,
1327 posts, 5559 sentences and 120241 tokens
spelled in Japanese.3 To the best of our knowl-

2To restrict a callout to a claim makes our problem more
simple because the number of outgoing links from a claim
becomes one at a maximum. Thus, we introduced the restric-
tion.

3The average of the number of posts per thread is 3.33
(standard deviation is 3.29), the depth of threads is 1.09 (stan-
dard deviation is 1.19), the number of sentences per post is
4.19 (standard deviation is 3.33) and the number of words
per sentence is 21.63 (standard deviation is 19.92).

edge, this work is the first approach which anno-
tates large-scale civic discussions for AM.4

3.3 Annotation Design

In (Peldszus and Stede, 2013), the authors argue
that the annotation task for AM contains the fol-
lowing three subtasks: (1) segmentation, (2) seg-
ment classification and (3) relationship identifica-
tion. The segmentation requires extensive human
resources, time, and cost. Therefore, we apply a
rule-based technique for the segmentation. Then,
we consider each sentence as an argument com-
ponent candidate (ACC). For classifying the argu-
ment component, the ACC types (claim, premise
or non-argumentative (NonArg)) for each ACC are
annotated. Finally, the relationship identification
needs to annotate IPRs and IPIs.

Using multiple processes for multiple annota-
tion subtasks is common (Meyers and Brashers,
2010; Stab and Gurevych, 2014, 2017). To anno-
tate our data, we provide two phases. In the first
phase, we concentrate on annotating ACC type
and IPR, and create a temporal gold standard. In
the second phase, IPI is annotated using the tem-
poral gold standard.

We employed a majority vote to create the gold
standard. All three annotators independently an-
notated in this work. The procedure of the first
phase for compiling the temporal gold standard is
as follows.

A1: Each ACC type is decided on a majority vote. When the
ACC type of the sentence cannot be decided by majority
vote, NonArg is assigned to them.

A2: Each IPR (link existence) is decided on a majority vote.
A3: Merging the results from A1 and A2, and obtaining trees

where root is a claim. Thus, we have trees to the number
of claims in a post.

A4: Eliminating premise tags that do not belong to any trees,
assigning them to NonArg, and eliminating their IPR.

3.4 Annotation Result

Inter-annotator agreement for ACC type, IPR
and IPI annotations are calculated using Fleiss’s
κ (Fleiss, 1971). First, we attempt to eval-
uate the agreement of the first phase anno-
tations, however, the κ of IPR is relatively
low: 0.420. The annotators are less likely to
agree on serial arguments (Stab and Gurevych,
2017) like (premise ← premise) relations.5

4Recently, Park and Cardie (2018) provide a similar
dataset of civic engagement, while their dataset doesn’t con-
sider post-to-post relations sufficiently.

5Unlike with Persuasive Essays (Stab and Gurevych,
2017), citizen’s documents for civic discussions are seldom
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Corpus Type Size κ

COLLAGREE

Claim 1449 .531
Premise 2762 .554
NonArg 1348 .529
IPR w/ A0 2762 .466
IPI 745 .430

Persuasive Essays
Claim 1506 .635
Premise 3832 .833
Inner-essay rel 3832 .708-.737

Table 1: Inter-annotator agreement scores for the
two corpora.

Therefore, we introduce an initial process A0,
transforming (premise1 ← premise2) into
(root claim of premise2 ← premise2), before
A1.6

Table 1 summarizes the number of each type of
relation and inter-annotator agreement.7 For com-
parison, we also mention the annotation results
of Persuasive Essays (Stab and Gurevych, 2017).
Unlike the essay dataset, our datasets contain
badly-structured writings, resulting in low agree-
ment. However, classification tasks can be applied
as (Landis and Koch, 1977) refers to the κ value
from 0.41 to 0.61 as "moderate agreement". More-
over, the agreement of IPR is improved by provid-
ing the process A0.

4 Discriminating ACC Type, Inner-Post
Relation and Inter-Post Interaction

This section describes the study on our end-to-end
discrimination model, which identifies ACC type,
IPR and IPI for our annotated dataset.

4.1 Thread Representation as a Sequence

If the thread itself contains flow of its argument,
only the thread itself is considered as the desirable
input for a discrimination model. Thus, we de-
scribe a way of representing a thread with an input
sequence.

In this work, we extend the sequence represen-
tation of (Eger et al., 2017; Potash et al., 2017).

well-structured. Thus, we don’t see the point in provid-
ing a more complex scheme (i.e., allowing (premise ←
premise) relations).

6For example, two IPRs {(claim1 ←
premise1), (premise1 ← premise2)} are transformed to
{(claim1← premise1), (claim1← premise2)}.

7Outgoing IPI links are composed of 574 claims, 109
premises, and 62 NonArgs. Considering that a callout should
be a claim, the (claim ← claim) interaction accounts for
77% of the total. The results indicate that IPIs are pretty ar-
gumentative. In addition, we annotated support/attack rela-
tions (Cocarascu and Toni, 2017). The results show support
accounts for 86% and attacks for 7% of the total IPIs.

The creation of thread representation as an in-
put sequence consists of the following two steps.
First, we assume each element of the input se-
quence for recurrent neural network is a sentence
representation, rather than a word representation.
Second, we sort the sentence representations by
the thread depth order. In addition, for each
thread depth, we in turn order them according
to the timestamp of their post, and insert separa-
tor representations. The first one makes it pos-
sible to input a short sequence to LSTM units
(Hochreiter and Schmidhuber, 1997). The second
makes a classifier easy to discriminate considering
the hierarchy of a thread and reply relations. Fig-
ure 2 shows an example of a thread representation
as sequence.

4.2 Parallel Constrained Pointer
Architecture

One of the main technical contributions of our ap-
proach is to provide a discrimination model that
classifies ACC type, IPR and IPI simultaneously
via end-to-end learning. A Pointer Network (PN)
for end-to-end AM achieves state-of-the-art re-
sults (Potash et al., 2017), which leads to apply-
ing a PN based technique to our scheme. Unfortu-
nately, the naive PN did not achieve the result ex-
pected (the quantitative results are shown in Sec-
tion 5), because the simple PN is unable to con-
strain its search space for thread structures. For
instance, an inner-post relation classifier could dis-
criminate with no need to search out of its post,
or an inter-post interaction classifier could clas-
sify with no need to search out of the parent post
and child post. Therefore, we propose a novel
neural model named parallel constrained pointer
architecture (PCPA). PCPA provides two parallel
pointer architectures: IPR and IPI discrimination
architectures that adopt the apparent constrains of
threads.

Sentence Representation as Input
First, we introduce the input representation. Given
N threads (T1, . . . , TN ), we denote Ti’s posts
which are sorted in thread depth order, and then
timestamp order as described in Section 4.1 as
(P

(i)
1 , . . . , P

(i)
Ni

), where Ni represents the number
of posts in Ti. In addition to the thread and post
representations, write (S

(i,j)
1 , . . . , S

(i,j)
Ni,j

) for sen-

tences in post P (i)
j , where Ni,j represents the num-

ber of sentences in P
(i)
j . Note that separator rep-
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Figure 2: Sequence representation from Figure 1. ⊥ and |/ denotes a separator representation of thread
depth and posts.

Figure 3: Example of the constrained pointer architecture of inner-post relation (IPR) identification, dis-
criminating the IPR target from the ACC "7".

resentations are not considered in the notation.
Then, wn is given initially, an embedding vec-

tor of nth word in a sentence S
(i,j)
k , a sen-

tence representation for an input of LSTM is
represented as: Ak =

∑
n wn, where wn is

gained from bag-of-words (BoW) or word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014; Stab and Gurevych, 2017). In our study, we
employed BoW and a fully connected layer with
a trainable parameter to learn word embeddings.
Subsequently, we provide Bidirectional LSTM
(BiLSTM) (Graves and Schmidhuber, 2005) be-
cause PN requires encoding steps. At each time
step of the encoder BiLSTM, PCPA considers a
representation of an ACC. Thus, the hidden rep-
resentation ei of BiLSTM becomes the concate-
nation of forward and backward hidden represen-
tations. To simplify the explanation, we denote
the hidden representations of (S

(i,j)
1 , . . . , S

(i,j)
Ni,j

) as

(e
(i,j)
1 , . . . , e

(i,j)
Ni,j

). For better understanding, we
show notations in Figure 3.

Discriminating Inner-Post Relation

The general PN of (Potash et al., 2017) uses all
hidden states ei. Alternately, PCPA can limit

the states to improve the accuracies, since each
premise has a single outgoing link to another sen-
tence in its post. Hence, we provide an approach
to discriminate IPR using only inner-post hidden
states of the BiLSTM.

Figure 3 shows the example IPR discrimina-
tion in thread Ti; for example, we assume that
the inner-post relation of the sentence written as
"7" in the 3rd ACC of post P

(i)
2 is classified. The

general PN needs to consider all ei, therefore, the
search space is large. On the other hands, our
proposed PCPA can consider (e

(i,2)
1 , e

(i,2)
2 , e

(i,2)
3 ),

which needs to use the hidden states of its post
only. Therefore, our constrained architecture can
reduce the search space significantly.

In general, given W1, W2, and v1, parameters
of attention model (Luong et al., 2015) for PN,

u
(i,j,k)
l = v⊤

1 tanh
(
W1e

(i,j)
l + W2e

(i,j)
k

)
(1)

represents a degree that kth ACC in post P
(i)
j has

an outgoing link to lth ACC. Moreover, we can as-
sume e

(i,j)
k as a query vector. Supposing the ACC

has no outgoing link, we can consider the ACC
learned to point to itself. Although equation (1)
is real-value, a distribution over the IPR input is
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Figure 4: Example of the constrained pointer architecture of inter-post interaction (IPI) identification,
discriminating the IPI target that is called out from the ACC "5".

considered by taking softmax function, i.e.,
p(yipr

k | P (i)
j ) = softmax(u(i,j,k)) (2)

representing the probability that kth ACC in post
P

(i)
j has an outgoing link to lth ACC in P

(i)
j .

Therefore, the objective for IPR in thread Ti is cal-
culated by taking the sum of log-likelihoods for all
posts:

Lipr
i =

Ni∑

j=1

Ni,j∑

k=1

log p(yipr
k | P (i)

j ) (3)

Discriminating Inter-Post Interaction
As the definition of target and callout in our
scheme, IPI exists between a parent post and child
post that replies to the parent. Thus, PCPA can
discriminate IPI with no need to use all of the hid-
den representations of the LSTM. In other words,
it can discriminate IPI without searching outside
of the two posts.

Hence, we design an output layer that requires
only a set of reply pairs in thread Ti. Specifically,
we assume that R(i) = {(j1, j2), · · · } where j1 ̸=
j2∧j1 < j2 for a set of parent-child pairs in thread
Ti. Supposing j1 is the index of a parent post and
j2 represents the index of the child post that replies
to the j1. Note that when thread Ti does not have
any reply pairs, R(i) = ∅. Considering the above,
a technique that is similar to the IPR’s technique
is introduced.

Figure 4 shows the example IPI discrimination
in thread Ti; supposing that we are going to dis-
criminate a target that is called out from ACC "5"
in the figure. In this case, the search space is lim-
ited by the parent post (e

(i,1)
1 , . . . , e

(i,1)
4 ). More-

over, we add an element e
(i,2)
1 so that a callout can

point itself if there’s no target in its parent post.
The left four outputs in the "Interaction Pointer
Distribution" indicate a discrete probabilistic dis-

tribution that the callout ACC "5" links to target
sentences in its parent post, and an output on the
far right represents a probability that the callout
links to itself.

The equation (1) uses a query in the PN, so we
in turn concentrate on using a query vector for the
callout in IPI. Herein, we introduce an additional
PN for IPI using new attention parameters, W3,W4

and v2, as:

q
(i,j,k)
l = v⊤

2 tanh
(
W3e

(i,j)
l + W4e

(i,j)
k

)
(4)

where e
(i,j)
k is the query from the callout. Sup-

posing that the reply pair is (j1, j2), a target of
kth ACC of the child post P

(i)
j2

is searched. The

expanded vector
[
q(i,j1,k); q

(i,j2,k)
k

]
is obtained by

concatenating the attention vectors q(i,j1,k) from
the parent post and a vector q

(i,j2,k)
k from the call-

out. This expansion process is the same as the pro-
cess of (Merity et al., 2016). Finally, given all re-
ply pairs of thread Ti, the log-likelihood is calcu-
lated as follows:

p(yipi
k | P

(i)
j1

, P
(i)
j2

) = softmax([q(i,j1,k); q
(i,j2,k)
k ])

Lipi
i =

∑

(j1,j2)∈R(i)

Ni,j2∑

k=1

log p(yipi
k | P

(i)
j1

, P
(i)
j2

)

(5)

Discriminating ACC Type

At each time step of the BiLSTM, the type classi-
fication task predicts whether it is claim, premise,
or NonArg. The ACC type of sentence S

(i,j)
k

can be classified by taking softmax of z
(i,j)
k =

Wtypee
(i,j)
k + btype, where Wtype and btype are

parameters. An objective for the type classifier
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can also be described by taking the sum of log-
likelihoods for all posts as:

p(ytype
k | P (i)

j ) = softmax(z
(i,j)
k )

Ltype
i =

Ni∑

j=1

Ni,j∑

k=1

log p(ytype
k | P (i)

j ) (6)

Joint Learning

Combining objectives of IPR (equation (3)), IPI
(equation (5)) and the ACC type (equation (6)), the
training objective of PCPA is shown as follows:

Loss =
1

N

∑

i

(−αLipr
i − βLipi

i

− (1− α− β)Ltype
i ) (7)

where α and β are hyperparameters which adjust
the weight of tasks in our cost function. Note that
α, β ∈ [0, 1] ∧ α + β < 1.

5 Experiments

5.1 Experimental Settings

Evaluation Metric

For the evaluation of ACC types, IPR and IPI
discrimination, we adopt precision, recall and F1
scores. To obtain the precision and recall, we in-
troduce a way to compute positive and negative
cases by creating relations (Stab and Gurevych,
2017), excluding self-pointers. 8 9

Baselines

First, we employ state-of-the-art PN techniques
from (Potash et al., 2017) as baselines. The use
of these baselines was decided because our model
PCPA (Our Model) employs pointer architec-
tures. As the authors proposed two techniques,
sequence-to-sequence model (PN with Seq2Seq)

8For example, supposing there is a post which contains
three sentences, (S1, S2, S3), and two gold standard IPRs,
(S1 ← S2) and (S1 ← S3). This is exactly the case that
positive cases of IPR are {(S1 ← S2), (S1 ← S3)}, and
negative cases are all sentence pairs excluding self-pointers.
That is, negatives are {(S2 ← S1), (S2 ← S3), (S3 ←
S1), (S3 ← S2)}. In this case, self-pointer cases are {(S1 ←
S1), (S2 ← S2), (S3 ← S3)}.

9For IPI, we are also able to create sentence pairs. For
instance, suppose there is a parent post which contains three
sentences (S1, S2, S3), a child post that contains two sen-
tences (S4, S5), and a gold standard IPI, (S2 ← S5). The
positive case of IPI is exactly {(S2 ← S5)}, and negative
cases are all sentence pairs excluding self-pointers, that is,
{(S1 ← S4), (S1 ← S5), (S2 ← S4), (S3 ← S4), (S3 ←
S5)}.

and w/o sequence-to-sequence model (PN with-
out Seq2Seq), we have the two models for com-
parison.

To analyze how a non PN model works,
multi-task learning is employed to the baseline
(Søgaard and Goldberg, 2016) (STagBLSTM) by
(Eger et al., 2017). STagBLSTM is composed of
shared BiLSTM layers for subtasks, and output
layers for each subtask. In (Eger et al., 2017), the
authors provided a BIO tagging task, however, the
task is not required in our work because BiLSTM
handles an input as sentence representation rather
than as word representation. In this paper, we use
one BiLSTM.10

To show end-to-end learning models are ef-
fective for AM on thread structures, we provide
the following three task specific baselines. First,
feature-based SVM (Stab and Gurevych, 2017)
(SVM - T) is introduced. T indicates each subtask
of the claim classifier, premise classifier, IPR clas-
sifier, and IPI classifier. In addition, random for-
est (RF - T) and the logistic regression technique
(Peldszus and Stede, 2015) (Simple - T) are also
introduced. For each task specific model, BoW
features the top 500 most frequent words 11.

We assume that each output of PN with
Seq2Seq, PN without Seq2Seq or STagBLSTM
does not satisfy the constraints as a self-pointer.
This is because inappropriate outputs with con-
straint violations of IPR and IPI by these ap-
proaches will happen, i.e., they can predict IPI out
of parent and child posts. The assumption main-
tains the false positive (FP) of baselines, since a
self-pointer which results from a chance is not
counted as FP. This condition gives the base-
lines the advantage of precision over our models.
Therefore, this assumption is convincing.

The following describes our implementation de-
tails. The implementation of neural models are by
Chainer (Tokui et al., 2015). The hyperparameters
are the same as (Potash et al., 2017) for the PN
baselines and our models12. In the interest of time,

10Though there are some variation models other than the
single BiLSTM model, our preliminary experiments show a
non-significant improvement.

11In fact (Stab and Gurevych, 2017) and employs rich fea-
tures such as structural features. We only use BoW for com-
parison because the properties of COLLAGREE corpus sub-
stantially differ from their corpus.

12Hidden input dimension size 512, hidden layer size 256
for the BiLSTMs, hidden layer size 512 for the LSTM de-
coder of PN without Seq2Seq, and high dropout rate of 0.9
(Srivastava et al., 2014; Zarrella and Marsh, 2016). All mod-
els are trained with the Adam optimizer (Kingma and Ba,
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Model
type Model name

Type classification Link extraction
Claim

F1
Premise

F1
NonArg

F1
IPR

Precision
IPR
F1

IPI
Precision

IPI
F1

Joint
learning

Our Model 58.5 68.7 36.0 33.8 *40.8 19.6 *24.8
Our Model - Hyp 58.1 71.5 58.8 *45.8 *44.3 *30.4 *26.9
STagBLSTM 54.2 65.6 56.9 14.3 14.9 21.0 12.6
PN with Seq2Seq 58.3 70.8 48.6 35.7 27.2 13.0 19.4
PN without Seq2Seq 60.1 71.3 53.1 36.6 35.0 26.5 20.8

Task
specific

SVM - T 53.3 64.4 52.3 13.8 22.4 6.4 11.5
RF - T 41.0 66.8 38.3 0 0 100 1.4
Simple - T 41.1 66.1 38.3 0 0 0 0

Joint
learning
w/o
separator

Our Model w/o separator 43.1 66.3 29.6 30.0 36.1 9.9 13.7
STagBLSTM w/o separator 51.8 66.1 55.2 13.9 14.5 16.1 10.8
PN with Seq2Seq w/o separator 40.7 67.8 52.7 30.4 23.2 10.8 14.6
PN without Seq2Seq w/o separator 43.4 67.6 53.7 29.5 21.1 19.0 6.0

Table 2: Top: Our models vs. joint baselines (%). * indicates significant. at p < 0.01, two-sided
Wilcoxon signed rank test (Derryberry et al., 2010), compared with each baseline. Middle: Perfor-
mances of task specific baselines. Bottom: Performances of joint models w/o separator representations.

we ran 50 epochs, and used the trained model for
testing. The COLLAGREE dataset is divided into
training threads and testing threads at 8 : 2. In
addition, we use the following hyperparameters in
equation (7): α = β = 1/3. However, total loss
of Lipr and Lipi tends to enlarge since they have
to calculate a sum of the sentence pairs. Hence,
we provide a model with tuned hyperparameters
α = β = 0.15 (Our Model - Hyp) for compari-
son.

5.2 Experimental Results

Table 2 summarizes the results of our models and
baselines. For each model, we showed the best F1
score in the table. Due to limitations of space, we
omitted recalls and some precisions. Surprisingly,
all models performed as well as we expected in our
dataset, in spite of low agreements (see Table 1).
Although the basis of the ACC type classifier of
PCPA is the same as the PN model, our model with
tuned hyperparameters is better at NonArg identi-
fication than the baseline PN models.

Both of our models significantly outperform all
baselines for the IPR and IPI discrimination tasks.
"Our Model - Hyp" achieves F1 +9.3% in IPR
identification in comparison with the best baseline
PN without Seq2Seq. This is the most important
result because it indicates that incorporating con-
strains of thread structures with the PNs makes re-
lation classifiers easy to learn and discriminate.

STagBLSTM shows lower scores in terms of
both IPR and IPI identification, implying the diffi-
culty of the use of the multi-task learning of BiL-

2014) with a mini batch size of 16.

Model IPR - F1 IPI - F1
Our Model ±0.7 ±1.8
PN with Seq2Seq ±2.3 ±1.2
PN without Seq2Seq ±2.7 ±3.9

Table 3: Standard deviations of F1 scores (%)

STM. In addition, Table 2 (Middle) also illustrates
that most neural models yield better F1 scores in
comparison with the task specific models. In addi-
tion, the logistic regression and RF are overfitted,
despite that cross validations are employed. Thus,
end-to-end learning assumes an important role for
AM, even in thread structures.

Effectiveness of Separator Representation

To demonstrate the effectiveness of the separator
representations, we conducted an experiment. In
Table 2 (Bottom), the models without the sepa-
rator input representations are indicated as "w/o
separator". It shows that separator representations
dramatically improve scores of PN based models.
This remarkable result is from the ability to learn
the structural information of a thread by encoding
separators in the BiLSTM.

Stability

To analyze the stability of our models, we compare
standard deviations among three selected models.
Table 3 shows standard deviations for the three
models. These results indicate that our model has
lower standard deviations for IPR than baseline
PN models. The reason for this is the size of
search space: our models can effectively limit the
search space based on thread structures.
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Model IPR - F1 IPI - F1
Our Model *39.6 *22.6
Our Model with Param Share 36.7 11.9

Table 4: The effect of parameter sharing of the two
pointer architectures.

(a) IPR (b) IPI

Figure 5: Performances on different thread depths.

Analysis for Parallel Design
Next, we show how our models improve their per-
formance by employing our parallel pointer ar-
chitecture. Herein, we provide a new model of
PCPA with a single PN (Our Model with Param
Share), which shares v1, W1 and W2 in equa-
tion (1) and v2, W3 and W4 in equation (4), re-
spectively. Table 4 demonstrates the mean of F1
scores for our model and Our Model with Param
Share. Note that the average performances are
lower than the best performances in Table 2. The
scores indicate that sharing the two pointer ar-
chitecture parameters is not effective in our pro-
posed model. We estimate this is because poor
association (Caruana, 1997) between the IPR and
IPI identification tasks exists. Therefore, our ap-
proach of using two parallel pointer architectures
is effective.

Performance Specialized in Threads
We examine how our models are specialized in
thread structures. Specifically, we limit the threads
in test datasets by specific thresholds, and then an-
alyze performance transitions. We conduct two
experiments as the thread depth is limited (Fig-
ure 5a and 5b). While the baselines performances
decrease as the thread depth increases, our model
keeps its F1 score because of the separators and
the search space. The separator representations for
an input increase according to the thread depth,
and the baseline PN models need to use wider
range of hidden states in comparison with the
PCPA model. In other words, our models are ex-
tremely effective, even for deeper threads.

We also limit the threads that we can use in
test data by the number of posts (Figure 6a, and

(a) IPR (b) IPI

Figure 6: Performances on different number of
posts. When the horizontal value is 1, we test us-
ing threads which contains [1-5] posts.

6b). For discriminating IPR, our model increas-
ingly outperforms others in accordance with the
number of posts. Figure 6b indicates that the dif-
ference between our model and baselines is mini-
mal. This is because the number of posts does not
affect the thread depth, necessarily. Most of COL-
LAGREE’s threads have a depth of at most 2. In
other words, Figure 6b also implies the depth of
threads affects the improvement of IPI identifica-
tions.

6 Conclusion

This paper presented an end-to-end study on dis-
cussion threads for argument mining (AM). We
proposed an AM scheme that is composed of
micro-level inner- and inter- post scheme for a dis-
cussion thread. The annotation result shows we
acquire the valid and pretty argumentative corpus.
To structuralize the discourses of threads automat-
ically, we propose a neural end-to-end AM tech-
nique. Specifically, we presented a novel tech-
nique to utilize constraints of the thread struc-
ture for pointer networks. The experimental re-
sults demonstrated that our proposed model out-
performed state-of-the-art baselines in terms of re-
lation identifications.

Possible future work includes enhancing our
scheme for less restricted conditions, i.e., multiple
targets from one callout.
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1Data and Web Science Research Group
University of Mannheim, Germany

2Web-based Information Systems and Services
Stuttgart Media University, Germany

{anne, goran, simone}@informatik.uni-mannheim.de
{lauscher, eckert}@hdm-stuttgart.de

Abstract

Argumentation is arguably one of the central
features of scientific language. We present
ArguminSci, an easy-to-use tool that analyzes
argumentation and other rhetorical aspects of
scientific writing, which we collectively dub
scitorics. The main aspect we focus on is
the fine-grained argumentative analysis of sci-
entific text through identification of argument
components. The functionality of ArguminSci
is accessible via three interfaces: as a com-
mand line tool, via a RESTful application pro-
gramming interface, and as a web application.

1 Introduction

Scientific publications are primary means for con-
vincing scientific communities of the merit of
one’s scientific work and importance of research
findings (Gilbert, 1976). To this end, authors typ-
ically present their work by embracing and ex-
ploiting established practices and specific tools re-
lated to the scientific discourse, such as citations
(Gilbert, 1977), that facilitate building persuading
argumentation lines. Consequently, scientific texts
are abundant with different interrelated rhetorical
and argumentative layers. In this work, we refer
to this set of mutually-related rhetorical aspects of
scientific writing as scitorics.

Numerous research groups have already pro-
posed computational models for analyzing scien-
tific language with respect to one or multiple of
these aspects. For example, Teufel and Moens
(1999) presented experiments on the automatic as-
signment of argumentative zones, i.e., sentential
discourse roles, to sentences in scientific articles.
Similarly, there has been work on automatic clas-
sification of citations with respect to their polar-
ity and purpose (Jha et al., 2017; Lauscher et al.,
2017b). It has also been shown that through anal-
yses of scitorics higher-level computational tasks

can be supported, such as the attribution of sci-
entific statements to authors (Teufel and Moens,
2000), identification of research trends (McKe-
own et al., 2016), or automatic summarization
of scientific articles (Abu-Jbara and Radev, 2011;
Lauscher et al., 2017a).

In this work, we present ArguminSci1 a tool
that aims to support the holistic analyses of sci-
entific publications in terms of scitorics, including
the identification of argumentative components.
We make ArguminSci publicly available for down-
load.2 In its core, it relies on separate neural mod-
els based on recurrent neural networks with the
long short-term memory cells (LSTM) (Hochre-
iter and Schmidhuber, 1997) pre-trained for each
of the five tasks in the area of scientific publication
mining that ArguminSci adresses, namely (1) argu-
mentative component identification, (2) discourse
role classification, (3) subjective aspect classifi-
cation, (4) summary relevance classification, and
(5) citation context identification. ArguminSci is
available as a command line tool, through a REST-
ful HTTP-based application programming inter-
face, and as a web-based graphical user interface
(i.e., as a web application).

2 Related Work

We divide the overview of related tools and sys-
tems into two categories: (1) systems targeting
the analysis of scitorics and (2) tools for argument
mining (in other domains).

Tools for the Analysis of Scitorics. Ronzano
and Saggion (2015) presented the Dr. Inventor
Framework, which provides end-to-end analysis
of scientific text starting with the extraction of text

1Pronounced like a Polish name and dedicated to Mar-
vin Minsky (https://de.wikipedia.org/wiki/
Marvin_Minsky): [Aôgjum"Inski].

2https://github.com/anlausch/
ArguminSci
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from PDF documents. The system embeds sev-
eral modules for mining scientific text, e.g., for the
discourse role characterization of sentences. Sag-
gion et al. (2017) presented MultiScien, a tool that
analyzes scientific text collections in English and
Spanish and offers a visualization of discourse cat-
egories and summaries. Also, several systems an-
alyzing argumentative zones (Teufel et al., 1999)
have been made publicly available (e.g., Guo et al.,
2012; Simsek et al., 2013). However, to the best
of our knowledge, ArguminSci is the first publicly
available system that provides fine-grained argu-
mentative analysis of scientific publications, and
allows for a joint analysis of scitorics – argumen-
tation and several other rhetorical aspects of scien-
tific language.

Argument Mining Tools. Apart from new re-
search models and approaches, several sys-
tems and software tools have been proposed
for argument mining in other domains, mainly
using machine-learning models at their core.
Wachsmuth et al. (2017) developed args.me, an ar-
gument search engine that aims to support users in
finding arguments and forming opinions on con-
troversial topics.3 Another similar system is Argu-
menText (Stab et al., 2018). In contrast to args.me,
the search engine of ArgumenText provides ac-
cess to sentential arguments extracted from large
amounts of arbitrary text. The system most simi-
lar to ArguminSci is MARGOT (Lippi and Torroni,
2016),4 which extracts argumentative components
from arbitrary text provided by the user. However,
MARGOT is not tuned for a particular domain and
does not perform well on scientific text (i.e., it
cannot account for peculiarities of argumentative
and rhetorical structures of scientific text). While
MARGOT focuses only on argumentative compo-
nents, ArguminSci allows for parallel analysis of
four other rhetorical aspects of scientific writing.

3 System Overview

We first describe the five annotation tasks that Ar-
guminSci covers and the models we train for ad-
dressing these tasks. Next, we provide a technical
overview of the system capabilities and interfaces
through which it is possible to access ArguminSci.

3http://www.argumentsearch.com/
4http://margot.disi.unibo.it

3.1 Annotation Tasks and Dataset
Annotation Tasks. Our system supports the fol-
lowing aspects of rhetorical analysis (i.e., auto-
matic annotation) of scientific writing: (1) argu-
ment component identification, (2) discourse role
classification, (3) subjective aspect classification,
(4) citation context identification, and (5) sum-
mary relevance classification. Out of these tasks
– in accordance with the structure of the annota-
tions in our training corpus – argument component
identification and citation context identification
are token-level sequence labeling tasks, whereas
the remaining three tasks are cast as sentence-level
classification tasks.

• Argument Component Identification (ACI): The
task is to identify argumentative components
in a sentence. That is, given a sentence x =
(x1, . . . , xn) with individual words xi assign a
sequence of labels yaci = (y1, . . . ,yn) out of
the set of token tags Yaci. The label set is a com-
bination of the standard B-I-O tagging scheme
and three types of argumentative components,
namely background claim, own claim, and data.

• Discourse Role Classification (DRC): Given a
sentence x the task is to classify the role of the
sentence in terms of the discourse structure of
the publication. The classes are given by the set
Ydrc = {Background,Unspecified,Challenge,
FutureWork,Approach,Outcome}.

• Subjective Aspect Classification (SAC):
Given a sentence x the task is to as-
sign a single class out of eight possible
categories in Ysac = {None,Limitation,
Advantage,Disadvantage-Advantage,
Disadvantage,Common Practice,Novelty,
Advantage-Disadvantage}.

• Summary Relevance Classification (SRC): Out
of the set of possible relevance classes
Ysrc, choose one given a sentence x, with
Ysrc = {Very relevant,Relevant,May appear,
Should not appear,Totally irrelevant}.

• Citation Context Identification (CCI): The task
is to identify textual spans corresponding to
citation contexts. More specifically, given a
sentence x = (x1, . . . , xn) the task is to de-
cide on a label for each of the tokens xi. The
possible labels are Begin Citation Context, In-
side Citation Context, and Outside.
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Annotation Layer Labels

Argument
Component

Background claim, Own claim,
Data (coupled with B-I-O
scheme)

Discourse Role Background, Challenge, Ap-
proach, Outcome, Future work

Citation Context Begin citation context, Inside
citation context, Outside

Subjective Aspect Advantage, Disadvantage,
Adv.-disadv., Disadv.-adv.,
Novelty, Common practice,
Limitation

Summarization
Relevance

Totally irrelevant, Should not
appear, May appear, Relevant,
Very relevant

Table 1: Labels of ArguminSci’s annotation layers.

Dataset. For training our models, we used an
extension of the Dr. Inventor Corpus (Fisas
et al., 2015, 2016), which we annotated with fine-
grained argumentation structures (Lauscher et al.,
2018). The corpus consists of 40 scientific pub-
lications in the field of computer graphics and,
besides our annotations of argumentative com-
ponents, offers four layers of annotation, three
of which are on the sentence level (DRC, SAC,
SRC). Our argument annotation scheme includes
three types of argumentative components:

• Background claim: A statement of argumenta-
tive nature, which is about or closely related to
the work of others or common practices in a re-
search field or about background facts related to
the topic of the publication.

• Own claim: A statement of argumentative na-
ture, which related to the authors own work and
contribution.

• Data: A fact that serves as evidence pro or
against a claim.

More details on the argument-extended corpus we
use to train our models can be found in the accom-
panying resource paper (Lauscher et al., 2018).
For more details on the original annotation layers
of the Dr. Inventor Corpus, we refer the reader to
(Fisas et al., 2015, 2016). In Table 1, we provide
the overview of all labels for all five scitorics tasks
that ArguminSci is capable of recognizing.

3.2 Annotation Models.
At the core of ArguminSci is a collection of bi-
directional recurrent networks with long short-

term memory cells (Bi-LSTMs) (Hochreiter and
Schmidhuber, 1997), one pre-trained for each of
the five annotation tasks on our argumentatively
extended Dr. Inventor corpus (Fisas et al., 2015,
2016; Lauscher et al., 2018).

Model Descriptions. As ArguminSci addresses
(1) two token-level sequence tagging tasks and (2)
three sentence-level classification tasks, the sys-
tem implements two types of models:

• Token-level Sequence Labeling: Given a sen-
tence x = (x1, . . . , xn) with words xi, we
first lookup the vector representations ei (i.e.,
pre-trained word embeddings) of the words
xi. Next, we run a Bi-LSTM and obtain the
sentence-contextualized representation hi for
each token:

hi = [
−−−−→
LSTM (e1, . . . , ei);

←−−−−
LSTM (en, . . . , ei)] .

Finally, we feed the vector hi into a single-
layer feed-forward network and apply a softmax
function on its output to predict the label prob-
ability distribution for each token:

yi = softmax(Whi + b) ,

with W ∈ R2K×|Y | being the weight matrix,
b ∈ R|Y | the bias vector, and K being the state
size of the LSTMs.

• Sentence-level Classification: The sentence-
level classification builds upon the output of
the Bi-LSTM described above: Following Yang
et al. (2016), we first obtain a sentence repre-
sentation by aggregating the individual hidden
representations of the words hi using an intra-
sentence attention mechanism defined as

si =
∑

j

αihi .

The individual weights αi are computed as fol-
lows:

αi = softmax(U uatt) ,

with uatt as the trainable attention head vec-
tor and the matrix U containing the Bi-LSTM-
contextualized token representations, trans-
formed through a single-layer feed-forward net-
work with non-linear activation (i.e., we first
non-linearly transform vectors hi and stack the
transformations to form the matrix U ):
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Figure 1: Help text of ArguminSci’s command line
interface.

Figure 2: The ArguminSci web application offers a
simple interfaces for easy analysis of scitorics.

Ui = tanh(Watthi + batt) .

Analogous to the above-mentioned token-level
sequence tagging model, in the last step we
apply a feed-forward net with a softmax layer
to get the class predictions from the obtained
attention-based sentence representation si.

We implemented all models in Python, using the
Tensorflow framework.5

Model Performance. We evaluated the perfor-
mance of our models on a held-out test set, which
comprises 12 randomly selected publications in
our corpus (roughly 30% of the corpus, totaling in
2874 sentences). In Table 2 we report the results
in terms of F1 score, macro-averaged over the task
labels.

3.3 Interfaces

We offer three different modes of access to Argu-
minSci: (1) using a command line tool, (2) via an
RESTful application programming interface, and
(3) using a web application.

5https://www.tensorflow.org/

Task F1 (%)

Token-level
Argument Component Identification 43.8
Citation Context Identification 47.0

Sentence-level
Discourse Role Classification 42.7
Subjective Aspect Classification 18.8
Summary Relevance Classification 33.5

Table 2: Tagging and classification performances.

Command Line Tool. The first interface Ar-
guminSci offers is a command line tool, invok-
able with Python. The script should be provided
with two mandatory arguments defining the path
to the input file containing the text to be an-
notated and the path to the output folder where
the processing results (i.e., annotated text) will
be stored. Furthermore, there are five optional
flags which define the type of analysis to per-
form, each corresponding to one of the scitorics
tasks. For example, if the user wants to run ACI
and DRC on the input text, she should set the
flags --argumentation and --discourse,
respectively. Figure 1 shows the help content for
the command line tool.

RESTful Application Programming Interface.
The application programming interface (API) pro-
vides one main HTTP POST end point, which ex-
pects a string parameter text to be submitted.
A second parameter api mode acts as a flag for
setting the output format of the predictions (i.e.,
annotated text) to JSON. A cURL request to our
RESTful interface has the following format:

curl --request POST
--url http://<host>/predict
--data ’text=<text>&api_mode=True’

For example, given the text ”Our model per-
forms best.”, the API will return a JSON object
with the following nested structure:

{
"argumentation":
[
[

[
"our",
"BEGIN_OWN_CLAIM"

],
[

"model",
"INSIDE_OWN_CLAIM"
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(a) Result of the argument component identification. (b) Result of the discourse role classification.

Figure 3: The ArguminSci web application visualizes the result of the analysis by highlighting the text in
different colors. The user can navigate among the different scitorics by using the tab control.

],
[

"performs",
"BEGIN_OWN_CLAIM"

],
[

"best",
"INSIDE_OWN_CLAIM"

],
[

".",
"OUTSIDE"

]
], ...

],
"citation": [...],
"discourse": [...],
"aspect": [...],
"summary": [...]

}

In order to enable developers and researchers to
use ArguminSci as an HTTP service, we make the
RESTful API publicly accessible6. For the imple-
mentation of the API we used the Flask framework
in Python.7

Web application. Finally, the third option for
accessing ArguminSci is the web application,
based on the template rendering engine Jinja28

and the front-end library Bootstrap.9 We adopt a
lean and simple design with a a single interaction
screen. Here, the user can enter the text she desires
to annotate with ArguminSci’s scitorics annotation
models (see Figure 2). Figures 3a and 3b depict
the results of the processing. The result is dis-
played in a tab control in the middle of the screen
– different annotation layers can be accessed via

6We keep the service endpoint address updated at
https://github.com/anlausch/ArguminSci

7http://flask.pocoo.org/
8http://jinja.pocoo.org/docs/2.10/
9https://getbootstrap.com/

the tab navigation. The spans of the input text are
highlighted with colors indicating different labels,
as predicted by the ArguminSci’s neural models.

4 Conclusion

Scientific publications, as tools of persuation
(Gilbert, 1977), are highly argumentative and
carefully composed texts in which explicit argu-
ments are intertwined with other rhetorical aspects
of scientific writing. In this paper, we presented
ArguminSci, a tool that offers a holistic analysis
of scientific publications through a set of rhetor-
ical and argumentative aspects of scientific writ-
ing we collectively dub scitorics. The Argumin-
Sci tool encompasses pre-trained recurrent neural
models for two different token-level sequence tag-
ging (identification of argumentative components
and citation contexts) and three sentence classi-
fication tasks (discourse roles, subjective aspect,
and summary relevance).

ArguminSci’s functionality can be accessed in
three different ways: as a command line tool, via a
RESTful application programming interface, and
as a web application. In future work, we intend
to expose the training phase for the models as
well. We also plan to allow for different annota-
tion schemes and to extend the tool with models
for other scitorics tasks, such as citation purpose
and citation polarity classification.
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Abstract
Randomized Controlled Trials (RCT) are a
common type of experimental studies in the
medical domain for evidence-based decision
making. The ability to automatically extract
the arguments proposed therein can be of valu-
able support for clinicians and practitioners in
their daily evidence-based decision making ac-
tivities. Given the peculiarity of the medical
domain and the required level of detail, stan-
dard approaches to argument component de-
tection in argument(ation) mining are not fine-
grained enough to support such activities. In
this paper, we introduce a new sub-task of the
argument component identification task: evi-
dence type classification. To address it, we
propose a supervised approach and we test it
on a set of RCT abstracts on different medical
topics.

1 Introduction

Evidence-based decision making in medicine has
the aim to support clinicians and practitioners to
reason upon the arguments in support or against a
certain treatment, its effects, and the comparison
with other related treatments for the same disease.
These approaches (e.g., (Hunter and Williams,
2012; Craven et al., 2012; Longo and Hederman,
2013; Qassas et al., 2015)) consider different kinds
of data, e.g., Randomized Controlled Trials or
other observational studies, and they usually re-
quire transforming the unstructured textual infor-
mation into structured information as input of the
reasoning framework. This paper proposes a pre-
liminary step towards the issue of providing this
transformation, starting from RCT, i.e., documents
reporting experimental studies in the medical do-
main. More precisely, the research question we
answer in this paper is: how to distinguish differ-
ent kinds of evidence in RCT, so that fine-grained
evidence-based decision making activities are sup-
ported?

To answer this question, we propose to resort
on Argument Mining (AM) (Peldszus and Stede,
2013; Lippi and Torroni, 2016a), defined as “the
general task of analyzing discourse on the prag-
matics level and applying a certain argumentation
theory to model and automatically analyze the data
at hand” (Habernal and Gurevych, 2017). Two
stages are crucial: (1) the detection of argument
components (e.g., claim, premises) and the iden-
tification of their textual boundaries, and (2) the
prediction of the relations holding between the ar-
guments. In the AM framework, we propose a
new task called evidence type classification, as a
sub-task of the argument component identification
task. The distinction among different kinds of ev-
idence is crucial in evidence-based decision mak-
ing as different kinds of evidence are associated to
different weights in the reasoning process. Such
information need to be extracted from raw text.

To the best of our knowledge, this is the first
approach in AM targeting evidence type classifi-
cation in the medical domain. The main contribu-
tions of this paper are: (i) we propose four classes
of evidence for RCT (i.e., comparative, signifi-
cance, side-effect, and other), and we annotate a
new dataset of 169 RCT abstracts with such labels,
and (ii) we experiment with supervised classifiers
over such dataset obtaining satisfactory results.

2 Evidence type classification

In (Mayer et al., 2018), as a first step towards the
extraction of argumentative information from clin-
ical data, we extended an existing corpus (Trenta
et al., 2015) on RCT abstracts, with the annota-
tions of the different argument components (evi-
dence, claim, major claim). The structure of RCTs
should follow the CONSORT policies to ensure
a minimum consensus, which makes the studies

29



comparable and ideal for building a corpus1. RCT
abstracts were retrieved directly from PubMed2 by
searching for the disease name and specifying that
it has to be a RCT. This version of the corpus with
coarse labels contains 927 argument components
(679 evidence and 248 claims) from 159 abstracts
comprising 4 different diseases (glaucoma, hyper-
tension, hepatitis b, diabetes).

In particular, an evidence in a RCT is an obser-
vation or measurement in the study (ground truth),
which supports or attacks another argument com-
ponent, usually a claim. Those observations com-
prise side effects and the measured outcome of the
intervention and control arm. They are observed
facts, and therefore credible without further justi-
fications, since this is the ground truth the argu-
mentation is based on. In Example 1, evidence
are in italic, underlined and surrounded by square
brackets with subscripts, while claims are in bold.

Example 1: To compare the intraocular pressure-
lowering effect of latanoprost with that
of dorzolamide when added to timolol.
[. . . ] [The diurnal intraocular pressure
reduction was significant in both groups
(P < 0.001)]1. [The mean intraocular pres-
sure reduction from baseline was 32% for the
latanoprost plus timolol group and 20% for
the dorzolamide plus timolol group]2. [The
least square estimate of the mean diurnal in-
traocular pressure reduction after 3 months
was -7.06 mm Hg in the latanoprost plus
timolol group and -4.44 mm Hg in the dor-
zolamide plus timolol group (P < 0.001)]3.
Drugs administered in both treatment groups
were well tolerated. This study clearly
showed that [the additive diurnal intraocu-
lar pressure-lowering effect of latanoprost
is superior to that of dorzolamide in pa-
tients treated with timolol]1.

Example 1 shows different reports of the experi-
mental outcomes as evidence. Those can be re-
sults without concrete measurement values (see
evidence 1), or exact measured values (see evi-
dence 2 and 3). Different measures are annotated
as multiple evidence. The reporting of side effects
and negative observations are also considered as
evidence. Traditionally evidence-based medicine
(EBM) focuses mainly on the study design and

1http://www.consort-statement.org/
2https://www.ncbi.nlm.nih.gov/pubmed/

risk of bias, when it comes to determining the
quality of the evidence. As stated by (Bellomo
and Bagshaw, 2006) there are also other aspects
of the trial quality, which impinge upon the truth-
fulness of the findings. As a step forward, in this
work we extend the corpus annotation, specifying
four classes of evidence, which are most promi-
nent in our data and assist in assessing these com-
plex quality dimensions, like reproducibility, gen-
eralizability or the estimate of effect:

comparative: when there is some kind of com-
parison between the control and intervention arms
(Table 1, example 2). Supporting the search for
similarities in outcomes of different studies, which
is an important measure for the reproducibility.

significance: for any sentence stating that the re-
sults are statistically significant (Table 1, example
3). Many comparative sentences also contain sta-
tistical information. However, this class can be
seen more as a measure for the strength of ben-
eficial or potentially harmful outcomes.

side-effect: captures all evidence reporting any
side-effect or adverse drug effect to see if poten-
tial harms outweigh the benefits of an intervention
(Table 1, example 4).

other: all the evidence that do not fall under the
other categories, like non-comparative observa-
tions, risk factors or limitations of the study (too
rare occurrences to form new classes). Especially
the latter can be relevant for the generalizabil-
ity of the outcome of a study (Table 1, example 5).

Table 2 shows the statistics of the obtained dataset.
Three annotators have annotated the data after a
training phase. Inter Annotator Agreement has
been calculated on 10 abstracts comprising 47 ev-
idence, resulting in a Fleiss’ kappa of 0.88.

3 Proposed methods

In (Mayer et al., 2018), we addressed the argument
component detection as a supervised text classifi-
cation problem: given a collection of sentences,
each labeled with the presence/absence of an argu-
ment component, the goal is to train a classifier to
detect the argumentative sentences. We retrainedT
an existing system, i.e. MARGOT (Lippi and Tor-
roni, 2016b), to detect evidence and claims from
clinical data. The methods we used are SubSet
Tree Kernels (SSTK) (Collins and Duffy, 2002),
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1. Brimonidine provides a sustained long-term ocular
hypotensive effect, is well tolerated, and has a low rate
of allergic response.

2. The overall success rates were 87% for the 350-mm2
group and 70% for the 500-mm2 group (P = 0.05).

3. All regimens produced clinically relevant and
statistically significant (P < .05) intraocular pressure
reductions from baseline.

4. Allergy was seen in 9 % of subjects treated with
brimonidine.

5. Risk of all three outcomes was higher for participants
with chronic kidney disease or frailty.

Table 1: Sample of each class represented in the corpus
(claim, comparative, significance, side-effect, other).

Figure 1: Normalized confusion matrix of the com-
bined test set.

which offer a reasonable compromise between ex-
pressiveness and efficiency (Lippi and Torroni,
2016b). In SSTK, a fragment can be any sub-
tree of the original tree, which terminates either at
the level of pre-terminal symbols or at the leaves.
Data was pre-processed (tokenisation and stem-
ming), and the constituency parse tree for each
sentence was computed. Furthermore, the Bag-
of-Words (BoW) features with Term Frequency
and Inverse Document Frequency (TF-IDF) values
were also computed. All the pre-processing steps
were performed with Stanford CoreNLP (version
3.5.0). We conducted experiments with different
classifiers and feature combinations. Two datasets
were prepared to train two binary classifiers for
each approach: one for claim detection, and one
for evidence detection. Both training sets only dif-
fer in the labels, which were assigned to each sen-
tence. 5-fold cross validation was performed opti-
mizing for the F1-score. The model was evaluated
on the test set in Table 2 obtaining 0.80 and 0.65
F1-score for evidence and claim detection respec-
tively.

As a step forward - after the distinction be-
tween argumentative (claims and evidence) and
non-argumentative sentences - we address the task
of distinguishing the different types of evidence
(see Section 2). We cast it as a multi-class classi-
fication problem. For that we use Support Vector
Machines (SVMs)3 with a linear kernel and dif-
ferent strategies to transform the multi-class into
a binary classification problem: (i) ONEVSREST,
and (ii) ONEVSONE. The first strategy trains one
classifier for each class, where the negative exam-
ples are all the other classes combined, outputting
a confidence score later used for the final deci-
sion. The second one trains a classifier for each
class pair and only uses the correspondent subset
of the data for that. As features, we selected lex-
ical ones, like TF-IDF values for BoW, n-grams
and the MedDRA4 dictionary for adverse drug ef-
fects. As for the argument component classifi-
cation, the model was evaluated on different test
sets with respect to the weighted average F1-score
for multi-class classification. The models were
compared against a random baseline, based on the
class distribution in the training set and a majority
vote classifier, which always assigns the label of
the class with the highest contingent in the training
set. The first dataset consisting only of the glau-
coma data, and the second one comprising all the
other maladies as well (see Table 2).

4 Results and Discussion

We run two sets of experiments. In the first one,
we test the evidence type classifier on the gold
standard annotations of the evidence. In the sec-
ond one, we test the whole pipeline: the evidence
type classifier is run on the output of the argument
component classifier described in the previous sec-
tion. In both cases, the best feature combination
was a mix of BoW and bi-grams. The dictionary
of adverse drug effects did not increase the perfor-
mance. Together with the fact that the data con-
tains just a small group of reoccurring side-effects,
this suggests that the expected discriminative in-
formation from the dictionary is captured within
the uni- and bi-gram features. This might change
for bigger datasets with a broader range of ad-
verse effects. Results of the best feature combina-
tions and the random baseline are reported in Ta-
ble 3. For the evidence type classifier on gold stan-

3scikit-learn, version 0.19.1
4https://www.meddra.org/
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Dataset Topic #abstract #comp. #sign. #side-eff. #other
Training set glaucoma 79 151 83 65 10

Test set glaucoma, diabetes, 90 160 98 79 33
hepatitis, hypertension (resp. 30, 20, 20, 20)

Table 2: Statistics on the dataset showing the class distributions.

Dataset Method glaucoma combined.
Gold standard RANDOM 0.33 0.32

MAJORITY 0.27 0.26
N-GRAMS 0.80 0.74

whole pipeline RANDOM 0.38 0.38
MAJORITY 0.38 0.39
N-GRAMS 0.71 0.66

Table 3: Results (weighted average F1-score).

dard annotations, the observed results regarding
the different multi-class strategies did not differ
significantly. A F1-score of 0.80 and 0.74 respec-
tively for the glaucoma and combined test set was
achieved. Reviewing the best n-grams, they con-
tain very specific medical terminology, explaining
the performance difference between the two test
sets. For the future, another pre-processing step
with better abstraction capability, e.g., substituting
concrete medical related terms with more general
tags, could provide benefits for the trained model
on the out-of-domain task. The F1-score of the
whole pipeline is 0.71 for the glaucoma and 0.66
for the combined test set. As expected, the errors
of the argument component classifier have an im-
pact on the performances of the second step, but
that corresponds to a more realistic scenario.
Error analysis. As shown in Figure 1, side-effect
were often misclassified as comparative. Certain
types of side-effect comprise comparisons of side-
effects between the two groups including state-
ments of their non-existence. The structure and
wording of those sentences are very similar to cor-
rect comparative examples and only differ in the
comparison criteria (side-effect vs. other measure-
ment), see Examples 2 and 3. Furthermore, com-
parative and significance labels were often con-
fused. As explained above, comparisons can also
state information about the statistical significance
and could therefore belong to both classes, see
Example 4. For future work, we plan to adopt a
multi-label approach to overcome this problem.

Example 2: Headache, fatigue, and drowsiness
were similar in the 2 groups.

Example 3: The number of adverse events did
not differ between treatment groups, with a

mean (SD) of 0.21 (0.65) for the standard
group and 0.32 (0.75) for the intensive group
(P=0.44).

Example 4: The clinical success rate was 86.2%
in the brimonidine group and 81.8% in the
timolol group, making no statistically signif-
icant difference between them (p=0.817).

5 Concluding remarks

We have presented a first step towards mining fine-
grained evidence from RCTs, contributing in i) the
definition of the AM sub-task of evidence type
classification for medical data, ii) a new dataset
of RCT annotated with claims and four kinds of
evidence, and iii) a supervised classifier to address
this task.

A similar task is comparative structure identifi-
cation in clinical trials. It relies on under-specified
syntactic analysis and domain knowledge (Fisz-
man et al., 2007). (Gupta et al., 2017) applied
syntactic structure and dependency parsers to ex-
tract comparison structures from biomedical texts.
(Trenta et al., 2015) built an information extrac-
tion system based on a maximum entropy clas-
sifier with basic linguistic features for the tasks
of extracting the patient group, the intervention
and control arm, and the outcome measure de-
scription. Differently from us, they extract in-
formation to fill in evidence tables, ignoring the
linguistic phrases to reconstruct the whole argu-
mentation. (Dernoncourt et al., 2017) developed a
neural network with word embeddings to assign
PubMed RCT abstract labels to sentences showing
that considering sequential information to jointly
predict sentence labels improves the results. How-
ever, their task differs from ours as they predict
the abstracts structure, which depends on contex-
tual information. Concerning the evidence classi-
fication, (Rinott et al., 2015) tackled this problem
on Wikipedia based data, dividing the evidence
into study, anecdotal and expert evidence. This
taxonomy is not applicable for the here presented
type of data. Beside the extraction of evidence,
another relevant task is their qualitative evalua-
tion. The traditional quality-based hierarchy for
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medical evidence grades them based on the em-
ployed research method, e.g., the applied statis-
tical principles (Schünemann et al., 2008). Top
ranked methods comprise systematic reviews and
meta-analyses of RCTs (Manchikanti et al., 2009).
While they focus on collecting and using meta-
data from the studies to draw general conclusions
to define, e.g., recommendation guidelines, they
do not consider ’why’ an author came to certain
conclusion. This issue is tackled in our paper.

For future work, we plan to weight the argument
strength based on the different evidence types
(similar to the categories proposed in (Wachsmuth
et al., 2017) and (Gurevych and Stab, 2017)). A
scale for side-effects could be based on a weighted
taxonomy of adverse drug effects. Furthermore,
we plan to mine the full RCT reports, to get rel-
evant information on the limitations of the study
and risk factors, currently annotated with the other
label since they rarely appear in the abstracts.
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Abstract

Internet users generate content at unprece-
dented rates. Building intelligent systems ca-
pable of discriminating useful content within
this ocean of information is thus becoming a
urgent need. In this paper, we aim to predict
the usefulness of Amazon reviews, and to do
this we exploit features coming from an off-
the-shelf argumentation mining system. We
argue that the usefulness of a review, in fact,
is strictly related to its argumentative content,
whereas the use of an already trained system
avoids the costly need of relabeling a novel
dataset. Results obtained on a large publicly
available corpus support this hypothesis.

1 Introduction

In our digital era, reviews affect our everyday de-
cisions. More and more people resort to digital re-
views before buying a good or deciding where to
eat or stay. In fact, helpful reviews allow users to
grasp more clearly the features of a product they
are about to buy, and thus to understand whether
it fits their needs. The same can be said for users
who want to book hotels or restaurants.

Companies have started to exploit the impor-
tance of reviews. For example, when browsing
for a specific product, we are usually presented re-
views that have been judged helpful by other users.
Moreover, we are often given the possibility to sort
reviews according to the number of people who
judged them as helpful. That said, a review can
also be helpful for companies who want to mon-
itor what people think about their brand. Being
able to identify helpful reviews has thus many im-
portant applications, both for users and for com-
panies, and in multiple domains.

The automatic identification of helpful reviews
is not as easy as it may seem, because the review
content has to be semantically analyzed. There-

fore, this process is traditionally done by asking
users for a judgment.

To overcome this issue, some approaches have
been proposed. One of the earliest studies (Kim
et al., 2006) aims to rank Amazon reviews by their
usefulness by training a regressor with a combina-
tion of different features extracted from text and
metadata of the reviews, as well as features of the
product. Similar approaches employ different sets
of features (Ngo-Ye and Sinha, 2012), for exam-
ple including the reputation of reviewers too (Baek
et al., 2012). Another significant work (Mudambi
and Schuff, 2010) builds a customer model that de-
scribes which features of an Amazon review affect
its perceived usefulness, and then it uses such fea-
tures to build a regression model to predict the use-
fulness, expressed as the percentage of the number
of people who judged a review to be useful. A hy-
brid regression model (Ngo-Ye and Sinha, 2014)
combines text and additional features describing
users (recency, frequency, monetary value) to pre-
dict the number of people who judged as useful
reviews taken from Amazon and Yelp. A more
complete work considers both regression and clas-
sification (Ghose and Ipeirotis, 2011). It proves
different hypotheses, starting with expressing the
usefulness of an Amazon review as a function of
readability and subjectivity cues, and then convert-
ing the usefulness, expressed with a continuous
value, into a binary usefulness, that is predicting
if a review is useful or not useful.

Another recent work (Liu et al., 2017) presents
an approach that explores an similar assumption
to ours: helpful reviews are typically argumen-
tative. In fact, what we hope to read in a re-
view is something that goes beyond plain opin-
ions or sentiment, being rather a collection of rea-
sons and evidence that motivate and support the
overall judgment of the product or service that is
reviewed. These characteristics are usually cap-
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tured by an argumentation analysis, and could be
automatically detected by an argumentation min-
ing system (Lippi and Torroni, 2016a). The work
in (Liu et al., 2017) considers a set of 110 hotel re-
views, it presents a complete and manual labeling
of the arguments in such reviews, and it exploits
such information as additional features for a ma-
chine learning classifier that predicts usefulness.
In this paper, instead, we investigate the possibil-
ity to predict the usefulness of Amazon reviews
by using features coming from an automatic ar-
gumentation mining system, thus not directly us-
ing human-annotated arguments. A preliminary
experimental study conducted on a large publicly
dataset (117,000 Amazon reviews) confirms that
this could be really doable and a very fruitful re-
search direction.

2 Background

Argumentation is the discipline that studies the
way in which humans debate and articulate their
opinions and beliefs (Walton, 2009). Argumenta-
tion mining (Lippi and Torroni, 2016a) is a rapidly
expanding area, at the cross-road of many research
fields, such as computational linguistics, machine
learning, artificial intelligence. The main goal of
argumentation mining is to automatically extract
arguments and their relations from plain textual
documents.

Among the many approaches developed in re-
cent years for argumentation mining, based on
advanced machine learning and natural language
processing techniques, the vast majority is in fact
genre-dependent, or domain-dependent, as they
exploit information that is highly specific of the
application scenario. Due to the complexity of
these tasks, building general systems capable of
processing unstructured documents of any genre,
and of automatically reconstructing the relations
between the arguments contained in them, still re-
mains an open challenge.

In this work, we consider a simple definition
of argument, inspired by the work by Douglas
Walton (2009), that is the so-called claim/premise
model. A claim can be defined as an assertion re-
garding a certain topic, and it is typically consid-
ered as the conclusion of an argument. A premise
is a piece of evidence that supports the claim, by
bringing a contribution in favor of the thesis that is
contained within the claim itself.

3 Methodology

Our goal is to develop a machine learning sys-
tem capable of predicting the usefulness of a re-
view, by exploiting information related to its ar-
gumentative content. In particular, we consider
to enrich the features of a standard text classifi-
cation algorithm with features coming from an ar-
gumentation mining system. To this aim, we use
MARGOT (Lippi and Torroni, 2016b), a publicly
available argumentation mining system1 that em-
ploys the claim/premise model (to our knowledge,
there are no other off-the-shelf systems that per-
form argumentation mining). Two distinct classi-
fiers, based on Tree Kernels (Moschitti, 2006) are
trained to detect claims and premises (also called
evidence), respectively. When processing a docu-
ment, MARGOT returns two scores for each sen-
tence, one computed by each kernel machine, that
are used to predict the presence of a claim or a
premise within that sentence (by default, MAR-
GOT uses a decision threshold equal to zero).

Consider for example the following excerpt of
a review, where the proposition in italics is identi-
fied by MARGOT as a claim:

The only jam band I ever listen to now
is Cream, simply because they were ge-
niuses. They were geniuses because the
spontaneity, melodicism, and fearless-
ness in their improvisation has never
been equaled in rock, and rarely so in
jazz.

Clearly, such a review is very informative, since it
comments on very specific aspects of the product,
bringing motivations that can greatly help users in
taking their decisions. Similarly, the following ex-
cerpt of another review brings very convincing ar-
guments in favor of an overall positive judgment
of the product. In this case, both sentences are
classified by MARGOT as argumentative.

The music indeed seems to transcend
so many moods that most pianists have
a very hard time balancing this act
and there is an immense discography of
these concertos of disjoint and loosely-
knit performances. Pletnev pushes a
straightforward bravura approach with
lyrical interludes – and his performance
pays off brilliantly.

1http://margot.disi.unibo.it
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Figure 1: Relation between usefulness and number of
sentences whose claim or evidence score is above zero
for category “CDs and Vinyl”.

Within this work, we compute simple statis-
tics from the output of MARGOT: the aver-
age claim/evidence/argument score, the maxi-
mum claim/evidence/argument score, the num-
ber and the percentage of sentences whose
claim/evidence/argument score is above 0 (that is,
the number and the percentage of sentences that
contain a claim, an evidence or simply one of
those). From a preliminary analysis, in fact, we
observed how the presence of arguments within
a review is highly informative of its usefulness.
Figure 1, for example, shows the correlation of
the number of sentences whose claim or evidence
score, according to MARGOT, is above 0, with
the usefulness for a subset of 200 reviews in the
Amazon category “CDs and Vinyl”. While it is
true that a low number of sentences that contain
a claim or an evidence does not necessarily mean
that the review is useless, yet the figure shows that
a review with a high number of sentences contain-
ing a claim or an evidence is most likely a use-
ful review, which confirms our intuition that use-
ful reviews are in fact argumentative. We use these
simple statistics as an additional set of features to
be used within a standard text classification algo-
rithm, in order to assess whether the presence of
argumentative content can help in predicting how
useful is a review.

We hereby remark that using MARGOT within
this framework is not optimal, because MARGOT
was trained on a completely different genre of doc-
uments, that is Wikipedia articles. Therefore, we
are dealing with a transfer learning task, where the
argumentation mining system is tested on a differ-

ent domain with respect to the one it was original-
ity trained on. Using such a classifier adds a chal-
lenge to our approach, but it has the advantage of
not needing a labeled corpus of argumentative re-
views to train a new argumentation mining system
from scratch. Indeed, more sophisticated systems
that take into account argumentation could be de-
veloped: here, we just want to exploit a straight-
forward combination of features in order to test
our hypothesis.

4 Experimental Results

To evaluate the proposed approach we use the
public Amazon Reviews dataset (McAuley and
Leskovec, 2013), in particular, we worked with the
so called “5-core” subset, that is, a subset of the
data in which all users and items have at least five
reviews. Each element of this dataset contains a
product review and metadata related to it.

Since we aim to predict usefulness, for each re-
view we compute the ratio between the number of
people who voted and judged that review as use-
ful, and the total number of people who expressed
a judgment about that review. Then, we define
useful reviews as the ones whose percentage of
usefulness is equal or above 0.7 (that means that
at least 70% of the people who judged a review,
judged it as useful), while the remaining are con-
sidered not to be useful, and thus they represent
our negative class.

The Amazon Review dataset is split into prod-
uct categories. For our experiments we picked
three of them, chosen among those with the high-
est number of reviews. Our choice has fallen upon
the “CDs and Vinyl” “Electronics” and “Movies
and TV” categories. We further selected only the
reviews having at least 75 rates, in order to assess
usefulness on a reasonably large set of samples.
Finally, we randomly selected 39,000 reviews for
each category, ending up with an almost balanced
number of helpful and unhelpful reviews.

Our goal in executing the experiments is to pre-
dict whether a review is considered useful, by tak-
ing into account either its textual content only, or,
additionally, also the argumentation mining data
coming from MARGOT. In other words, we are
working in a binary classification scenario.

In these experiments we use a stochastic gradi-
ent descent classifier2 with a hinge loss, which is a
classic solution in binary classification tasks. We

2We used SGDClassifier in scikit-learn.
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Table 1: Performance on three Amazon categories us-
ing different sets of features: Margot features (M),
Bag-of-Words (BoW), Bag-of-Words weighted by TF-
IDF (TF-IDF), and combinations thereof.
Category Data A P R F1

CDs and Vinyl M .600 .544 .772 .638
BoW .756 .716 .769 .742
BoW + M .784 .744 .799 .771
TF-IDF .769 .736 .767 .752
TF-IDF + M .787 .751 .797 .773

Electronics M .583 .529 .744 .618
BoW .676 .639 .656 .648
BoW + M .689 .640 .714 .675
TF-IDF .672 .651 .612 .631
TF-IDF + M .689 .649 .684 .666

Movies and TV M .564 .517 .792 .625
BoW .745 .705 .748 .726
BoW + M .773 .741 .767 .754
TF-IDF .757 .719 .761 .740
TF-IDF + M .777 .739 .784 .761

performed the tuning of the α and ε parameters
with a 5-fold cross validation over the training set,
and we then used the best model to predict over
the test set. From the original set of 39,000 re-
views, 50% of them is used as training set, and the
other half as the test set. Each category is treated
singularly.

We run experiments both employing a plain
Bag-of-Words model, and with TF-IDF features.
Both preprocessing variants perform tokenization
and stemming3 and exclude stopwords and words
that do not appear more than five times in the
whole training set. To regularize the different
magnitude of the features, both textual features
and argumentation mining features are normal-
ized using the L2 normalization in all our exper-
iments. Textual and argumentative features are
simply concatenated into a single vector. The per-
formance is measured in terms of accuracy (A),
precision (P), recall (R), and F1, as in standard text
classification applications.

Table 1 shows that, even using only the features
obtained from MARGOT, thus completely ignor-
ing the textual content of the review, the accuracy
of the classifier is far above a random baseline.
Moreover, results clearly highlights how the im-
provement obtained by using argumentative fea-
tures is consistent across all product categories,
both using plain BoW and TF-IDF weighting. For
the “CDs and Vinyl”and “Electronics”categories

3We used Snowball from python nltk library.

the difference between the classifier exploiting
TF-IDF with MARGOT and the one using TF-
IDF only is statistically significant according to a
McNemar’s test, with p-value < 0.01. The same
holds for the BOW classifier, for the “Electron-
ics”and “Movies and TV”categories.

It is interesting to notice that, while the “CDs
and Vinyl” and the “Movies and TV” categories
have similar performance, even when using tex-
tual data only, the category “Electronics” results to
be the most difficult to predict. One plausible ex-
planation for this is the heterogeneity of such cat-
egory, that includes many different types of elec-
tronic devices. The other two categories, instead,
include more homogeneous products. It would be
very interesting to further investigate whether cer-
tain product categories result to be more suitable
for argumentation studies.

5 Conclusions

When reading online reviews of products, restau-
rants, and hotels, we typically appreciate those
that bring motivations and reasons rather than
plain opinions. In other words, we often look for
argumentative reviews. In this paper, we proposed
a first experimental study that aims to show how
features coming from an off-the-shelf argumenta-
tion mining system can help in predicting whether
a given review is useful.

We remark that this is just a preliminary study,
which yet opens the doors to several research di-
rections that we aim to investigate in future works.
First, we certainly plan to use more advanced ma-
chine learning systems, such as deep learning ar-
chitectures, that have achieved significant results
in many applications related to natural language
processing. In addition, we aim to address dif-
ferent learning problems, for example moving to
multi-class classification, or directly to regression.

The combination of textual and argumentative
features exploited in this work was effective in
confirming our intuition, but it can certainly be im-
proved. While building a dedicated argumentation
mining system for product reviews could require
an effort in terms of corpus annotation, we believe
that transfer learning here could play a crucial role.
Beyond using statistics obtained from the output
of an argumentation mining system as an addi-
tional input for a second-stage classifier, a unified
model combining the two steps could result to be
a smart compromise for this kind of application.
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Abstract

Argumentation is an essential feature of scien-
tific language. We present an annotation study
resulting in a corpus of scientific publications
annotated with argumentative components and
relations. The argumentative annotations have
been added to the existing Dr. Inventor Cor-
pus, already annotated for four other rhetorical
aspects. We analyze the annotated argumenta-
tive structures and investigate the relations be-
tween argumentation and other rhetorical as-
pects of scientific writing, such as discourse
roles and citation contexts.

1 Introduction

With the rapidly growing amount of scientific liter-
ature (Bornmann and Mutz, 2015), computational
methods for analyzing scientific writing are becom-
ing paramount. To support learning-based mod-
els for automated analysis of scientific publica-
tions, potentially leading to better understanding
of the different rhetorical aspects of scientific lan-
guage (which we dub scitorics), researchers pub-
lish manually-annotated corpora. To date, existing
manually-annotated scientific corpora already re-
flect several of these aspects, such as sentential
discourse roles (Fisas et al., 2015), argumenta-
tive zones (Teufel et al., 1999, 2009; Liakata et al.,
2010), subjective aspects (Fisas et al., 2016), and
citation polarity and purpose (Jochim and Schütze,
2012; Jha et al., 2017; Fisas et al., 2016).

As tools of persuasion (Gilbert, 1976, 1977),
scientific publications are abundant with argumen-
tation. Yet, somewhat surprisingly, there is no pub-
licly available corpus of scientific publications (in
English), annotated with fine-grained argumenta-
tive structures. In order to support comprehen-
sive analyses of rhetorics in scientific text (i.e., sci-
torics), argumentative structure of scientific publi-
cations should not be studied in isolation, but rather

in relation to other rhetorical aspects, such as the
discourse structure. This is why in this work we
contribute a new argumentation annotation layer to
an existing Dr. Inventor Corpus (Fisas et al., 2016),
already annotated for several rhetorical aspects.

Contributions. We propose a general argument
annotation scheme for scientific text that can cover
various research domains. We next extend the
Dr. Inventor corpus (Fisas et al., 2015, 2016)
with an annotation layer containing fine-grained
argumentative components and relations. Our ef-
forts result in the first argument-annotated corpus
of scientific publications (in English), which al-
lows for joint analyses of argumentation and other
rhetorical dimensions of scientific writing. We
make the argument-annotated corpus publicly avail-
able.1 Finally, we offer an extensive statistical and
information-theoretic analysis of the corpus.

2 Related Work

Researchers have offered a plethora of argument
annotation schemes and corpora for various do-
mains, including Wikipedia discussions (Biran and
Rambow, 2011), on-line debates (e.g., Abbott et al.,
2016; Habernal and Gurevych, 2016), e-markets
(e.g., Islam, 2007), persuasive essays (Stab and
Gurevych, 2017), news editorials (Al Khatib et al.,
2016), and law (Wyner et al., 2010). The corpus of
Reed et al. (2008) covers multiple domains, includ-
ing news and political debates.

The work on argumentative annotations in scien-
tific writing is, however, much scarcer. Pioneering
annotation efforts of Teufel and Moens (1999a,b);
Teufel et al. (1999) focused on discourse-level ar-
gumentation (dubbed argumentative zones), denot-
ing more the rhetorical structure of the publica-

1http://data.dws.informatik.
uni-mannheim.de/sci-arg/compiled_corpus.
zip
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tions than fine-grained argumentation, i.e., there
are no (1) fine-grained argumentative components
(at sub-sentence level) and no (2) relations between
components, giving rise to an argumentation graph.
Blake (2010) distinguishes between explicit and
implicit claims, correlations, comparisons, and ob-
servations in biomedical publications. In contrast,
we are not interested in how the claim is made,
but rather on what are the claims (and what is
not a claim) and how they are mutually connected.
Green et al. (2014); Green (2014, 2015, 2016) pro-
posed methods for identifying and annotating ar-
gumentative structures in scientific publications,
but released no publicly available annotated corpus.
In the effort most similar to ours, Kirschner et al.
(2015) annotated arguments in a corpus of educa-
tional research publications. Besides being quite
small, this corpus is also written in German.

3 Annotation Scheme

A number of theoretical frameworks of argumen-
tation have been proposed (Walton et al., 2008;
Anscombre and Ducrot, 1983, inter alia).2 Among
the most widely used is the model of Toulmin
(2003), from which we start in this work as well,
because of its relative simplicity and adoption in
artificial intelligence and argument mining (Bench-
Capon, 1998; Verheij, 2005; Kirschner et al., 2015).
The Toulmin model, originally developed for the
legal domain, recognizes six types of argumenta-
tive components: claim, data, warrant, backing,
qualifier, and rebuttal.

We conducted a preliminary annotation study us-
ing the Toulmin model with two expert annotators
on a small corpus subset. Annotators did not iden-
tify any warrant, backing, qualifier, nor rebuttal
components. The annotators also pointed to the
interlinked argumentative structure of publications
in which claim were often used as ground for (sup-
porting or conflicting) another claim. Not foreseen
by the Toulmin model, we realized that the rela-
tions between argumentative components can be of
different nature. Finally, the annotators recognized
two distinct claim types: those presented as com-
mon knowledge (or state of the art) in the research
area and those relating to authors’ own research.

Following the above observations from the pre-
liminary annotation, we simplify the annotation
scheme by removing the non-observed component

2For an extensive overview, we refer the reader to (Benta-
har et al., 2010)

types. Our final annotation scheme has the follow-
ing types of argumentative component:

(1) Own Claim is an argumentative statement that
closely relates to the authors’ own work, e.g.:

”Furthermore, we show that by simply
changing the initialization and target velocity,
the same optimization procedure leads to
running controllers.”

(2) Background Claim is an argumentative state-
ment relating to the background of authors’ work,
e.g., about related work or common practices in the
respective research field, e.g.:

”Despite the efforts, accurate modeling of
human motion remains a challenging tasks.”

(3) Data component represents a fact that serves
as evidence for or against a claim. Note that refer-
ences or (factual) examples can also serve as data,
e.g.:

”[...], due to
:::::::
memory

::::
and

::::::::
graphics

:::::::::
hardware

::::::::::
constraints nearly all video game character
animation is still done using traditional SSD.”

We follow Bench-Capon (1998) and allow for
links between the arguments. We introduce three
different relations types, similar to Dung (1995).

(1) A Supports relation holds between components
a and b if the assumed veracity of b increases with
the veracity of a;
(2) A Contradicts relation holds between compo-
nents a and b if the assumed veracity of b decreases
with the veracity of a;
(3) The Semantically Same relation is annotated
between two mentions of effectively the same claim
or data component. This relation can be seen as
argument coreference, analogous to entity (Lee
et al., 2011, 2017) and event coreference (Glavaš
and Šnajder, 2013; Lu and Ng, 2018).

It is important to emphasize that we do not bind
the spans of our argumentative components to sen-
tence boundaries, but rather allow for argumenta-
tive components of arbitrary span lengths, ranging
from a single token to multiple sentences.

4 Annotation study

Dataset. Believing that argumentation needs to
be studied in combination with other rhetorical as-
pects of scientific writing, we enriched the existing
Dr. Inventor corpus (Fisas et al., 2015, 2016), con-
sisting of 40 publications from computer graphics,
with argumentative information. The Dr. Inventor
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Annotation Layer Labels %

Discourse Role

Background 20
Challenge 5
Approach 57
Outcome 16
Future Work 2

Citation Purpose

Criticism 23
Comparison 9
Use 11
Substantiation 1
Basis 5
Neutral 53

Subjective Aspect

Advantage 33
Disadvantage 16
Adv.-Disadv. 3
Disadv.-Adv. 1
Novelty 13
Common Practice 32
Limitation 2

Summarization Relevance

Totally irrelevant 66
Should not appear 6
May appear 14
Relevant 6
Very relevant 8

Table 1: Annotation layers of the Dr. Inventor Cor-
pus with label distributions.

corpus has four layers of rhetorical annotations: (1)
discourse roles, (2) citation purposes with associ-
ated citation contexts, (3) judgments of subjective
aspects, and (4) annotations of sentence relevance
for a summary. Table 1 summarizes the different
annotation layers and their label distributions.

Annotation Process. We hired one expert3 and
three non-expert annotators4 for our annotation
study. We trained the annotators in a calibration
phase, consisting of five iterations, in each of which
all annotators annotated one publication. After
each iteration we computed the inter-annotator
agreement (IAA), discussed the disagreements,
and, if needed, adjourned the annotation guide-
lines.5 We measured the IAA in terms of the F1-
measure because (1) it is easily interpretable and
straight-forward to compute and (2) it can account
for spans of varying length, allowing for computing
relaxed agreements in terms of partial overlaps.6

The evolution of IAA over the five calibration it-
3A researcher in computational linguistics, not in computer

graphics.
4Humanities and social sciences scholars.
5http://data.dws.informatik.

uni-mannheim.de/sci-arg/annotation_
guidelines.pdf

6Note that the chance-corrected measures, e.g., Cohen’s
Kappa, approach F1-measure when the number of negative
instances grows (Hripcsak and Rothschild, 2005).
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Figure 1: IAA evolution over the five calibration
phases (purple for argumentative components; blue
for relations; dark for the strict agreements; light
for the relaxed agreements).

erations is depicted in Figure 1, in two variants:
(1) A strict version in which components have to
match exactly in span and type and relations have
to match exactly in both components, direction and
type of the link and (2) a relaxed version in which
components only have to match in type and overlap
in span (by at least half of the length of the shorter
of them). Expectedly, we observe higher agree-
ments with more calibration. The agreement on
argumentative relations is 23% lower than on the
components, which we think is due to the high am-
biguity of argumentation structures, as previously
noted by Stab et al. (2014). That is, given an ar-
gumentative text with pre-identified argumentative
components, there are often multiple valid interpre-
tations of an argumentative relation between them,
i.e., it is “[...] hard or even impossible to iden-
tify one correct interpretation” (Stab et al., 2014).
Additionally, disagreements in component identifi-
cation are propagated to relations as well, since the
agreement on a relation implies the agreement on
annotated components at both ends of the relation.

5 Corpus Analysis

We first study the argumentation layer we annotated
in isolation. Afterwards, we focus on the interrela-
tions with other rhetorical annotation layers.

Analysis of Argumentation Annotations. Ta-
ble 2 lists the number of components and rela-
tions in total and on average per publication. The
number of own claims roughly doubles the amount
of background claims, as the corpus consists only
of original research papers, in which the authors
mainly emphasize their own contributions. Interest-
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Category Label Total Per Publication

Component
Background claim 2,751 68.8 ± 25.2
Own claim 5,445 136.1 ± 46.0
Data 4,093 102.3 ± 32.1

Relation
Supports 5,790 144.8 ± 43.1
Contradicts 696 17.4 ± 9.1
Semantically same 44 1.1 ± 1.81

Table 2: Total and per-publication distributions of
labels of argumentative components and relations
in the extended Dr. Inventor Corpus.

Label Min Max Avg (µ) Std (σ)

Background claim 5 340 87.46 43.74
Own claim 3 500 85.70 44.03
Data 1 244 25.80 27.59

Table 3: Statistics on length of argumentative com-
ponents (in number of characters) in the extended
Dr. Inventor Corpus.

ingly, there are only half as many data components
as claims. We can see two reasons for this – first,
not all claims are supported and secondly, claims
can be supported by other claims. There are many
more supports than contradicts relations. This is
intuitive, as authors mainly argue by providing sup-
porting evidence for their own claims.

Table 3 shows the statistics on length of argu-
mentative components. While the background
claims and own claims are on average of similar
length (85 and 87 characters, respectively), they
are much longer than data components (average of
25 characters). This is intuitive given the domain
of the corpus, as facts in computer science often
require less explanation than claims. For example,
we noticed that authors often refer to tables and fig-
ures as evidence for their claims. Similarly, when
claiming weaknesses or strengths of related work,
authors commonly provide references as evidence.

The argumentative structure of an individual pub-
lication corresponds to a forest of directed acyclic
graphs (DAG) with annotated argumentative com-
ponents as nodes and argumentative relations as
edges. Thus, to obtain further insight into struc-
tural properties of argumentation in scientific pub-
lications, in Table 4 we provide graph-based mea-
sures like the number of connected components
(i.e., subgraphs), the diameter, and the number of
standalone claims (i.e., nodes without incoming
or outgoing edges) and unsupported claims (i.e.,
nodes with no incoming supports edges). Our

Criterion Min Max Avg (µ) Std (σ)

Diameter 2 5 3.05 0.71
Max In-Degree 3 11 6.33 1.97
# standalone claims 27 127 63.00 21.40
# unsupp. claims 39 180 94.38 29.14
# unconn. subgraphs 78 231 147.23 35.78
# comp. per subgraph 1 17 2.09 1.5

Table 4: Graph-based analysis of the argumentative
structures identified in the extended Dr. Inventor
Corpus (per publication).

annotators identified an average of 141 connected
component per publication, with an average diame-
ter of 3. This indicates that either authors write very
short argumentative chains or that our annotators
had difficulties noticing long-range argumentative
dependencies.

On the one hand, there are at least 27 standalone
claims in each publication, that is claims, that are
not connected with any other components. On the
other hand, the maximum in-degree of a claim in a
publication, on average, is 6, indicating that there
are claims for which a lot of evidence is given. Intu-
itively, the claims for which more evidence is given
should be more prominent. We next run PageRank
(Page et al., 1999) on argumentation graphs of in-
dividual publications to identify most prominent
claims. We list a couple of examples of claims with
highest PageRank scores in Table 5. Somewhat
unexpectedly, in 30 out of 40 publications in the
dataset the highest ranked claim was a background
claim. This suggests that in computer graphics
authors emphasize more research gaps and motiva-
tion for their work than they justify its impact (for
which empirical results often suffice).

Links to Other Rhetorical Aspects. We next in-
vestigate the interdependencies between the newly
added argumentative annotations and the existing
rhetorical annotations of the Dr. Inventor Corpus.
An inspection of dependencies between different
annotation layers in the corpus may indicate the
usefulness of computational approaches that aim
to exploit such interrelations. E.g., Bjerva (2017)
recently showed that the measure of mutual infor-
mation strongly correlates with performance gains
obtained by multi-task learning models.

In this work, we employ the measure of normal-
ized mutual information (NMI) (Strehl and Ghosh,
2003) to assess the amount of information shared
between the five annotation layers. NMI is a variant
of mutual information scaled to the interval [0, 1]
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Type Pub. Claim with maximal PageRank score

background claim A13 ’physical validity is often sacrificed for performance’
A21 ’a tremendous variety of materials exhibit this type of behavior’

own claim A39
’the solution to the problem of asymmetry is to modify the CG method so that
it can operate on equation (15), while procedurally applying the constraints
inherent in the matrix W at each iteration’

Table 5: Claims with maximum PageRank score in a publication.

AC DR SA SR

AC – – – –
DR 0.22 – – –
SA 0.08 0.11 – –
SR 0.04 0.10 0.13 –
CC 0.18 0.10 0.04 0.01

Table 6: Normalized mutual information between
different annotation layers.

through normalization with the entropy of each of
the two label sets. In Table 6 we show the NMI
scores for all pairs of annotations layers: argument
components (AC), discourse roles (DR), citation
contexts (CC), subjective aspects (SA), and sum-
mary relevances (SR). The strongest association
is found between argumentative components (AC)
and discourse roles (DR). Looking at the labels of
these two annotation layers, this seems plausible –
background claim (AC) is likely to appear in a sen-
tence of discourse role background (DR). Similarly,
own claims more frequently appear in sections de-
scribing the outcomes of the work. To confirm
this intuition, we computed co-occurrence matri-
ces for pairs of label sets – indeed, the AC label
own claim most frequently appears together with
the discourse role approach and outcome, and the
background claim with discourse roles background
and challenge. Consider the following sentence:

”With the help of modeling tools or capture
devices, complicated 3D character models
are widely used in the fields of entertainment,
virtual reality, medicine, etc.”

It contains a general claim about the research area
(i.e., it is a background claim) and it also offers
background information in terms of the discourse
role. A similar set of intuitive label alignments
justifies the higher NMI score between argumenta-
tive components (AC) and citation contexts (CC):
citation contexts often appear in sentences with a
background claim. Again, this is not surprising, as
authors typically reference other publications and

in order to motivate their work:

”An improvement based on addition of
auxiliary joints has been also proposed in
[
:::::
Weber

::::::
2000]. Although this reduces the

artifacts, the skin to joints relationship must
be re-designed after joint addition.”

In the above example, the wave-underlined text,
i.e. the citation, serves as the data for the under-
lined text which is the background claim stating a
research gap in the referenced work. At the same
time, the underlined text can be seen as the citation
context with the reference as target.

6 Conclusion

We presented an annotation scheme for argumen-
tation analysis in scientific publications. We anno-
tated the Dr. Inventor Corpus (Fisas et al., 2015,
2016) with an argumentation layer. The resulting
corpus, which is, to the best of our knowledge, the
first argument-annotated corpus of scientific publi-
cations in English, enables (1) computational analy-
sis of argumentation in scientific writing and (2) in-
tegrated analysis of argumentation and other rhetor-
ical aspects of scientific text. We further provided
corpus statistics and graph-based analysis of the ar-
gumentative structure of the annotated publications.
Finally, we analyzed the dependencies between dif-
ferent rhetorical aspects, which can inform compu-
tational models aiming to jointly address multiple
aspects of scientific discourse. In the future, we
plan to extend the corpus with publications from
other domains and develop computational models
for the integrated analysis of scientific writing.
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Abstract

In this paper we present annotation experi-
ments with three different annotation schemes
for the identification of argument components
in texts related to the vaccination debate. Iden-
tifying claims about vaccinations made by par-
ticipants in the debate is of great societal inter-
est, as the decision to vaccinate or not has im-
pact in public health and safety. Since most
corpora that have been annotated with argu-
mentation information contain texts that be-
long to a specific genre and have a well defined
argumentation structure, we needed to adjust
the annotation schemes to our corpus, which
contains heterogeneous texts from the Web.
We started with a complex annotation scheme
that had to be simplified due to low IAA. In our
final experiment, which focused on annotating
claims, annotators reached 57.3% IAA.

1 Introduction

Argumentation is an important aspect of human
communication. The study of argumentation is an
interdisciplinary research field that has been gain-
ing momentum because of its relevance in cogni-
tive sciences and its application in artificial intel-
ligence. Because of the richness of information
that it offers, data from the Web such as social
media, on-line newspapers, forums, or blogs is of-
ten the subject of exploration (Lippi and Torroni,
2016). The availability of such data and the ad-
vancements in computational linguistics fostered
the rise of a new research field called argumen-
tation mining (AM) (Peldszus and Stede, 2013a),
whose goal is to automatically extract argument
components from text, generating structured data
for computational models of argument.

Thus far, most corpora annotated with argumen-
tation information are composed by a certain type
of texts, such as argumentative essays (Stab and
Gurevych, 2017) and news editorials (Al Khatib

et al., 2016), which usually have a specific struc-
ture. However, in order to understand public opin-
ions, it is necessary to process textual data from
the Web, which is generated by a diversity of users
who do not follow a predefined template, resulting
in texts of miscellaneous genres and registers.

Our research focuses on annotating argumenta-
tion components in a corpus of texts crawled from
the Web. We chose this type of texts because they
contain precious information about people’s opin-
ions and because existing argumentation schemes1

are not directly applicable to Web data. Thus, one
of our aims was to evaluate whether existing argu-
mentation schemes can be applied to this data. Ad-
ditionally, we focused on texts about the vaccina-
tion debate because of the importance of the topic
from a societal and health perspective. A longer
term goal of our work is to find out and analyze the
claims that people make when they engage in the
debate. Potential applications of both the analysis
and the annotated data would be, for example, de-
tecting misinformation about vaccinations to pop-
ulate ontologies (Amith and Tao, 2018) or training
agents (Rosenfeld and Kraus, 2016) to persuade
hesitant users to vaccinate.

The vaccination debate is an exemplary case for
the study of on-line debates and opinion form-
ing processes. In 1998, a scientific paper was
published by Andrew Wakefield, who argued that
there was a link between the Measles Mumps and
Rubella (MMR) vaccine and autism in children.
The paper incited skepticism in the public about
the safety and the effectiveness of vaccines, to
such extent that more an more parents are decid-
ing not to vaccinate their children, causing ill-
nesses such as measles to spread and leading to
a measles outbreak in the EU in 2017. Nowadays,

1By “argumentation schemes” we mean annotation
schemes that have been used to annotate argumentation com-
ponents.
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with collaborative media, anyone can join in a dis-
cussion and share information and opinions. This
makes it difficult to attest the reliability of on-line
content (Zummo, 2017). Reports show that sta-
tistically significant positive correlations exist be-
tween monthly Measles cases and Google queries
in most EU28 countries from January 2011 to Au-
gust 2017 (Mavragani and Ochoa, 2018). Since
the debate on immunization directly affects pub-
lic health and safety, analyzing the way people en-
gage in this discussion is of particular interest.

In this paper we present three annotation exper-
iments with different annotation schemes. Our an-
notation studies were all performed on a corpus of
texts related to the vaccination debate (Vax Cor-
pus), which is composed of 294 documents auto-
matically downloaded from the Internet adding up
to 445,574 words. The documents that compose
the corpus are heterogeneous in length, genre, and
style: blog posts, editorials, news articles, and sci-
ence articles. Below are some examples of state-
ments found in the corpus:

1. These are child who can’t be vaccinated.
Children who have cancer. Children who
are immunocompromised. Children who are
truly allergic to a vaccine orpart of a vaccine
(i.e anaphylaxis to egg). These children re-
main at risk. They cannot be protected . . .
except by vaccinating people around them.

2. Better believe if I ever have kids I won’t be
vaccinating.

3. Of course we were already blaming anti-
vaxxers for bringing back measles and
spreading them around Disneyland, but a
fresh new study confirms that yup, is it defi-
nitely scientifically their fault, so let’s blame
them even harder now.

4. As we have already yelled, in all caps and
with many exclamation points, JUST VAC-
CINATE YOUR KIDS, DAMNIT!!!

After experimenting with several annotation
schemes, we concluded that in order to model
arguments in Web data, a simplified scheme is
needed. We cannot rely on fine-grained models
based on argumentation theory, as they are not
directly applicable to heterogeneous texts. The
simplified scheme was adopted for the annotation
of our corpus, resulting in the annotated resource
VaxClaim Corpus, which will be made publicly
available. Since the simplified scheme does not

contain domain-specific features, it should be ap-
plicable to other on-line debates. We will test this
hypothesis in future work.

Section 2 presents related work. In Section 3 we
introduce the pilot annotation studies and we dis-
cuss the results and main sources of disagreement.
In Section 4 we describe the final annotation ex-
periment, which focused on claims, and we also
analyze the results and disagreements. Finally, in
Section 5 we provide some conclusions.

2 Related Work

Numerous models have been developed to ad-
dress and understand the internal (micro) struc-
ture of arguments (Lippi and Torroni, 2016). Wal-
ton adopted the notion of argumentation scheme,
which allows to identify patterns in the arguments
present in everyday discourse (Bentahar et al.,
2010). Since then, several argumentation schemes
have been put forward. For a general overview of
argumentation schemes, refer to Lippi and Torroni
(2016). Here we focus on the schemes used to an-
notate data for argumentation mining purposes.

Saint-Dizier followed a knowledge driven ap-
proach to tackle the task of mining arguments in
Web data and concluded that it is possible to relate
independent statements by means of lexical data,
domain knowledge and reasoning schemes (Saint-
Dizier, 2016).

Stab and Gurevych created a corpus of 402 ar-
gumentative essays selected from essayforum.com
and annotated it with the following argument com-
ponents: major claims, claims, and premises (Stab
and Gurevych, 2017). They model the microstruc-
ture of arguments as a connected tree structure
where the major claim is the root node which rep-
resents the author’s standpoint. The major claim
is expected to be contained either in the introduc-
tion or the conclusion of the essay. The rest of the
essay contains claims (the cores of the arguments)
and premises, which support the claims.

Al-Khatib et al. (2016) consider that in the edi-
torial genre, the author generally does not only aim
at persuading the audience, but she also wants to
spread information about the topic. The author de-
fends a thesis that conveys a stance on a controver-
sial subject providing different kinds of evidence.
They constructed a corpus by extracting 100 ed-
itorials from each of the following websites: al-
jazeera.com, foxnews.com and theguardian.com.
They introduce an annotation task which consisted

48



of dividing the corpus into segments. Then, each
segment is assigned one of the following labels:

• Common ground: the segment contains a
self-evident fact, it states common knowl-
edge.

• Assumption: the segment contains a conclu-
sion, an opinion or a judgment of the author.

• Testimony: the segment contains a statement
made by some expert, witness or authority.

• Statistics: the segment contains the results of
a quantitative study or data analyses.

• Anecdote: the segment expresses a personal
experience, a specific instance, a concrete ex-
ample.

• Other: the segment is not classifiable with
any of the above classes.

These two argumentation schemes were
adopted in the first pilot study presented in
this work because the documents composing
the Vax Corpus present characteristics of both
argumentative essays and news editorials.

Habernal and Gurevych (2017) created a cor-
pus of user-generated Web content collecting doc-
uments of different registers, such as articles, com-
ments on articles, blog posts, forum posts, etc.
Their scheme is based on the Toulmin model
(Toulmin, 2003) and it is characterized by the fol-
lowing components argument components:

• Claim: the conclusion that the author is try-
ing to establish.

• Grounds: the evidence and reasoning that
constitute the foundation of the claim.

• Backing: the set of information that conveys
the trustworthiness of the warrant.

• Qualifiers: they express the degree of co-
gency attached to the claim.

• Rebuttal: a statement expressing an instance
in which the claim might be defeated.

• Refutation: a section of text that attacks the
Rebuttal.

Their scheme was adopted for the second pi-
lot study because it was designed to fit Web data.
The belief was that the resulting annotation task
would be feasible for the corpus at hand and that
the scheme would allow for the identification of
interesting argumentation patterns.

3 Annotating Argument Components:
Pilot Studies

One of our research goals is to automatically ex-
tract claims related to the vaccination debate. In
order to train a system, we first needed to an-
notate a corpus. We performed three annotation
studies to test the feasibility of different annota-
tion schemes. The first two studies served as pi-
lots to discover strengths and weaknesses of pre-
viously proposed annotation schemes. For the two
pilot studies, annotators were asked to annotate
texts for 3 and 10 hours respectively. For the final
annotation task, they were asked to annotate 100
randomly-selected documents from the Vax Cor-
pus.

The annotation tasks were carried out by two
annotators (A and B) with a background in Lin-
guistics. Annotator A was more experienced
with the topic of argumentation. Annotations
were performed with the open source annotation
tool eHOST, 2 which also provides options to
calculate inter annotator agreement (IAA). IAA
is calculated in eHOST by dividing the annota-
tion matches by all annotations (matches + non-
matches). IAA was calculated with lenient match-
ing in order not to penalize disagreements due to
details such as punctuation.

3.1 First Pilot Study

We observed that some documents in the Vax Cor-
pus present characteristics of argumentative es-
says. In particular, arguments are expressed in a
hierarchical structure where there is a main claim,
one or several sub-claims and premises providing
backing for the claims. This is why for the first
pilot study, we adopted the scheme put forward by
Stab and Gurevych who found that, in argumenta-
tive essays, arguments are often characterized by
a tree structure (Stab and Gurevych, 2017). Their
markables were deemed appropriate and they were
all adopted: major claim, claim, premise. Their
approach had to be modified, however, to fit the

2http://blulab.chpc.utah.edu/content/ehost-extensible-
human-oracle-suite-tools
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characteristics of the Vax Corpus: more than one
claim was allowed per paragraph. Furthermore,
we allowed the attack relationship between claim
and major claim. That means that the major claim
does not have to be supported by all the claims
present in the text and that some claims might
play the role of rebuttal. The rebuttal presents
opposing views to the author’s claim and it is of-
ten presented with the intent of criticizing it, thus
strengthening the claim (Habernal and Gurevych,
2017).

We also observed that the type of backing given
by the authors in the Vax Corpus often fits with the
descriptions of argument components proposed by
Al-Khatib et al. (2016). We adopted their scheme
with some modifications: (i) The definition of as-
sumption seemed similar to the one of claim: they
both constitute some sort of conclusion or judg-
ment of the author. We left out this component,
as it would overlap too much with the concept
of claim. (ii) The definition of common ground
seemed difficult to interpret and apply. It is unclear
what should be considered common knowledge
and what should not; consequently we left out this
unit. (iii) The remaining units, testimony, statis-
tics, anecdote and other correspond to the types
of premise that were observed in the Vax Corpus.
Furthermore, since according to the adopted defi-
nition of claim, the core statement of the argument
can be attributed exclusively to the author of the
text, the units testimony and statistics could only
coincide with the premise. The anecdote corre-
sponds to a recounting of a specific episode, thus
it is uncommon that it fits the definition of claim.
Considering all the factors mentioned above, we
selected the four components testimony, statistics,
anecdote and other as attributes for the component
premise.

3.1.1 Results
The annotators were able to tackle one file per
hour which resulted in 3 annotated documents.
Table 1 presents the IAA scores. Major claim
reached the highest agreement score (66.7%), but
the annotators did not agree on the annotation of
premise in any of the cases. Next we discuss cases
of disagreement.

Major claims. An analysis of the disagreements
revealed that it is difficult to establish which state-
ment best summarizes the stance of the author, as
exemplified by the example below, where each an-

Type IAA Matches Non-matches
All 15.8% 6 77
Claim 6.9% 2 27
Premise 0.0% 0 48
MC 66.7% 4 2

Table 1: Two-way IAA Results (Pilot study 1).
MC stands for “Major Claim”.

notator marks a different major claim for the same
text:

• Annotator A: If these diseases seem uncom-
mon - or even unheard of - it’s usually be-
cause these vaccines are doing their job.

• Annotator B: Childhood vaccines protect
children from a variety of serious or po-
tentially fatal diseases, including diphtheria,
measles, polio and whooping cough (pertus-
sis).

From Annotator A’s perspective, the text con-
veys the effectiveness of vaccines in general.
However, for Annotator B there is an emphasis
on the importance of vaccinating children against
the listed fatal diseases. Both interpretations are
acceptable. The schema proposed is based on a
hierarchy of claims, so when the ranking is not
straightforward the annotation becomes prone to
disagreement.

Claims. During a preliminary analysis of the
corpus, it was noted that it is difficult to differenti-
ate between claims and premises. Claims are con-
troversial statements that express a certain stance
or intention. Identifying controversy and inten-
tion in a statement is a process that can gener-
ate discrepancies in the annotations. Adopting the
more restrictive definition of claim by Stab and
Gurevych (2017), the goal was to limit the room
for interpretation. The definition contains the re-
quirements that the source of the claim should al-
ways be the author of the text and that claims
should only be accepted if some backing is found
in the text. Despite the restrictions and the exam-
ple provided in the guidelines, the agreement was
very low.

While the restriction about the source of the
claim helped identifying the claim, there were no
restrictions for the source of the premise: it could
be attributable to the author or to another explicit
source. Also, the granularity of annotation was ap-
proached differently in a few instances. Example 5
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was marked as claim by Annotator A, while Anno-
tator B marked it as premise considering that the
source of “worry” is different from the author.

5. Some worry too about a preservative called
thimerosal, which contained a very low con-
centration of a mercury compound.

Premise. The premise component achieved
no matches. One reason is the difficulty of differ-
entiating between claims and premises. Another
plausible explanation is the fact that the merging
of the two annotation guidelines concentrates in
the premise component; the definition was drawn
from Stab and Gurevych’s work (2017) and the at-
tributes where taken from Al-Khatib et al. (2016).

The high level of disagreement indicated that
the guidelines did not describe and define prop-
erly the argument components. The definitions for
claim and premise left too much room for interpre-
tation.

3.2 Second Pilot Study

Habernal and Gurevych (2017)’s scheme was used
in the second annotation study. The guidelines3

had to be adapted because they require that anno-
tators first conduct a round of annotations to iden-
tify all texts that are persuasive regarding the dis-
cussed topic. This step is not necessary because all
texts in the Vax Corpus are about vaccinations and
are considered on-topic. Furthermore, although
the documents are not traditionally argumentative,
it is possible to identify the intent to persuade in
most of them. The second step required annotators
to identify the following argument components:
claim, grounds, backing, rebuttal, refutation.

This experiment was conducted to observe
whether an argumentation scheme based on the
Toulmin model and conceived as being applicable
to Web data could indeed be applied to the Vax
Corpus.

3.2.1 Results
The annotators were able to go through 37 doc-
uments in 10 hours. Table 2 presents the scores
for IAA. The score for refutation was the low-
est (10.0%), whereas the agreement for backing
was the highest (25.8%). Considering the fact that
the scheme was put forward to annotate Web data,
the agreement reached is not satisfactory for any

3https://www.ukp.tu-darmstadt.de/data/argumentation-
mining /argument-annotated-user-generated-web-discourse/

of the classes. Furthermore, the task was time-
consuming.

Type IAA Matches Non-matches
All classes 19.9% 210 843
Claim 19.7% 46 187
Backing 25.8% 92 264
Grounds 15.6% 56 303
Rebuttal 18.5% 12 53
Refutation 10.0% 4 36

Table 2: Two-way IAA Results (Pilot study 2).

Claims. Annotators were asked to annotate
claims at sentence level, and only if there were
other argument components in the sentence they
should switch to the token level (Habernal and
Gurevych, 2017). This indication caused several
disagreements, as shown in the next example:

• Annotator A: [Some people have had con-
cerns that ASD might be linked to the vac-
cines children receive but studies have shown
that there is no link between receiving vac-
cines and developing ASD.]Claim

• Annotator B: [Some people have had con-
cerns that ASD might be linked to the
vaccines children receive]Rebuttal [but stud-
ies have shown that there is no link be-
tween receiving vaccines and developing
ASD.]Refutation

Annotator A followed the suggestion to anno-
tate at the sentence level and considered the whole
section as a claim because she interpreted the first
clause as a fact that the author needs to present in
order to provide the context for his or her opinion
on the matter. Annotator B followed the sugges-
tion to switch to the token level in the presence of
multiple components and identified two argument
components within the sentence, rebuttal and refu-
tation, which she related to the claim “There is no
causal link between vaccination and autism.” Both
interpretations are acceptable, since it is difficult
to determine which one is more appropriate on the
basis of granularity criteria.

Claim and Grounds. The vagueness of the
definitions and the nature of the texts caused an-
notators to assign different labels to the same frag-
ments of text, suggesting that the task to differen-
tiate between argument components in Web data is
not an easy one. In particular, the distinction that
annotators A and B struggled the most with is the
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one between claim and grounds. Even in the defi-
nition provided by Habernal and Gurevych (2017)
the closeness of the two components is expressed:
“Grounds, can in fact, also be claims: subsidiary
or secondary claims that are used to build up a
larger argument. Grounds have to match your
claims.”

Claim and Refutation The differentiation
between claim and refutation caused disagreement
as well. The guidelines define refutation as fol-
lows (Habernal and Gurevych, 2017): “Rebuttal
attacks the Claim by presenting opposing view (or
contra-argument). Refutation attacks Rebuttal.”
Consequently, the refutation and the claim con-
vey similar ideas. The condition that allows for
the identification of the refutation is the presence
of the rebuttal. This means that if the annotators
identify different argumentation structures in the
text, one including a rebuttal and another exclud-
ing it, the first will very likely be annotated as refu-
tation and the second will as claim.

Grounds and Backing The component back-
ing reached the highest rate of agreement. This
could be due to the fact that a large part of text
could be identified as such. In fact, the guide-
lines simply state that “Backing is additional ev-
idence to support the argument.” (Habernal and
Gurevych, 2017). Still, the differentiation between
backing and grounds generated a lot of disagree-
ment. Considering that they play a similar role
in an argument, which is to support the claim,
this was expectable. Reading the guidelines, one
can understand that grounds is necessary evidence
presented to provide good reasons for the claim,
whereas backing is “additional”, it does not seem
to be necessary. In practice, this difference did not
help the annotators, since it is difficult to deter-
mine what is necessary as support for an argument
and what is futile.

From this second pilot study we learned that
annotation schemes containing numerous compo-
nents and guidelines that offer vague directives are
not easily applicable to annotating argument com-
ponents in heterogeneous texts where no clear pat-
terns of argumentation structure are followed. The
guidelines should contain precise directions, pro-
viding restrictions that can be used as reference
in difficult cases like the ones presented above.
As a result, we decided to simplify the annotation
scheme in order to make the task feasible, given

the type of texts that the Vax Corpus contains. The
task would also become less time-consuming.

4 Annotating Claims

The third annotation task was simplified as much
as possible. Since our final goal is to understand
people’s attitudes and gain insight in the process
of opinion formation, we decided to focus on the
core of the argument: the claim. This choice im-
plicated that it was not possible to adhere to the
traditional definition of argument. Conventionally,
an argument is composed at least of two compo-
nents: a claim and a premise (Palau and Moens,
2009; Peldszus and Stede, 2013b). Since premises
are frequently claim-like statements and express
the attitude of the source, they were not excluded
from the annotation task and they were subsumed
in the claim component. Therefore, the focus of
this task was to identify all claim-like statements.

The definition of claim chosen was the follow-
ing:

The claim is the central component of an
argument. Claims are sections of text that
express the stance of the author. Some-
times, claims are introduced by an explicit
source in the text (different from the au-
thor). Since they are opinionated state-
ments with respect to the topic, claims
are often introduced by stance expressions,
such as “In my opinion”, “I think that”.

An important requirement is that the claim has
to be a refutable statement. It follows that the fol-
lowing do not qualify as claims:

• Rhetorical question: “Wouldn’t it be better
to develop immunity naturally?”

• Backing: “I am a nurse.”

• Common ground: “Measles can spread
through airborne transmission.”

• Statistics: “80% of vaccinated children ex-
perience serious side effects.”

• Anecdotes: “I experienced hearing loss after
being given the MMR vaccine.”

• Opinions: “I am against vaccinations.”

Additionally, when the person or entity to
whom the claim could be attributed was an explicit
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source different from the author of the text, then
annotators should also mark the source and the re-
lation Has source between claim and source.

The guidelines for the annotation task are pro-
vided as supplementary material.

4.1 Results

The annotators were able to annotate 100 files in
33.5 hours. Table 3 shows the IAA scores. Making
a quantitative comparison with the IAA achieved
by other related studies is not possible because
they all use different evaluation measures. It is
possible to compare the results of the main annota-
tion study with the previous two that were carried
out as part of this exploration.

Type IAA Matches Non-matches
All 54.4% 2542 2130
Claim 57.3% 2224 1658
Source of Claim 40.3% 318 472

Table 3: Two-way IAA Results for the annotation
of claims.

The claim component achieved 57.3% IAA,
which is satisfactory as compared to the first
(6.9%) and second experiments (19.7%). The
higher IAA rate achieved in this experiment was
predictable considering the fact that the annota-
tion task was less restrictive. While in the second
experiment major claim should be assigned to sec-
tions of text that fulfilled strict requirements, in the
third experiment, the annotation of claim was not
subject to such restrictions.

4.2 Error Analysis

Even if the IAA is acceptable for the task, the task
remains difficult. In order to understand where its
difficulty lies, we performed an error analysis fo-
cusing on the component claim. The main points
of controversy noticed in the results are the fol-
lowing:

• Debatability, which refers to the degree of
debatability that the claim needs to express
in order to be considered as such.

• Attributability and commitment, which refer
to the context the claim needs to be presented
in, specifically looking at whether it can be
attributed to a source and how strongly the
source needs to commit to it.

• Relatedness to topic, which refers to deciding
whether to annotate or not statements that fit
the description of claim, but that do not have
a direct relation to the topic of vaccination.

• Granularity and sources, which refer to dif-
ferent interpretations of the task of assigning
sources to the claim, resulting in annotations
with different degrees of granularity.

4.3 Debatability
The two annotators followed a different approach
when annotating claim-like statements that could
be accepted by both the anti-vaccination and the
pro-vaccination audiences. These instances raised
some questions about how open to discussion a
statement should be in order to deserve the claim
label. These sentences often contain modal verbs
such as “may”, “might” and “could”. An example
of this phenomenon can be observed in the follow-
ing statements:

6. Vaccines, like any medicine, can have side
effects.

7. The increased use of veterinary vaccines may
be accompanied by an increase in human ex-
posure to the vaccine strain, new methods of
vaccine administration may result in an in-
creased likelihood of inadvertent exposure,
increased use of aerosol administration may
result in greater human exposure to animal
vaccines.

These examples deal with potentially negative
situations that could take place as result of vaccine
inoculation. At first glance, one might think that
they reveal an anti-vaccination stance. However,
they simply express the possibility that vaccines
might have negative side effects, which is an idea
that is welcomed by the pro-vaccination commu-
nity as well. The statements express the capabil-
ity of a certain occurrence to take place. This is
difficult to debate, especially in the case of vac-
cinations. These examples are characterized by a
high degree of acceptability and a low degree of
debatability.

Annotator A had the tendency not to anno-
tate such statements, while annotator B annotated
them as claims. The approach of annotator A
seemed to deem the debatability of claim very im-
portant because it directly results in the stance-
expressiveness of the claim; if a statement could
be accepted by both parties of the debate, it does
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not reveal the stance of the author. The proposed
guidelines do not give information on how to ap-
proach these cases. Considering the fact that one
of the goals of analyzing the vaccination debate is
to identify the stance of the participating authors,
future versions of the guidelines should suggest
the identification of claims that are polarizing.

4.4 Attributability and Commitment
Annotators exhibited different behaviors in ap-
proaching instances where it was unclear to whom
the claim-like statement could be attributed. Here
are some examples:

8. If you run across someone claiming that their
religion is against vaccinations, you can
check here, although, admittedly, the article
only covers mainstream religions

9. What if a parent makes a claim that they are
Jewish, and one rabbi says that vaccines are
bad?

Annotator B marked the tokens in bold as
claims, whereas annotator A did not. The clauses
in bold could, indeed, fit the definition of claims.
Taking into consideration the context in which
they are presented, it is difficult to attribute them
to an explicit source or the author of the text. Their
context expresses hypothetical situations where it
could happen that someone makes those claims.

Other instances that raise similar questions are
the following:

10. Some parents might worry that the vaccine
causes autism.

11. Some people have had concerns that ASD
might be linked to the vaccines children re-
ceive.

Annotator B marked the text in bold as claim,
while annotator A did not. The statements also
express hypothetical situations. Furthermore, they
both deal with worries and concerns, which re-
veal a lower level of commitment to the claims
in bold. The guidelines do not give directives on
how to tackle the two groups of interesting cases.
Although the examples contain clauses that fit the
requirements of the class claim, it is not possible
to attribute them to an author who is committed
to them. One way to solve this issue would be to
think about the end-goal of the project. If the goal
is to capture the stances of the users who are par-
ticipating in the vaccination debate by writing blog

posts and comments, then the above-reported ex-
amples should be left unannotated. If the aim is to
identify all the possible attitudes that people have
regarding the debate, then it would make sense to
mark those claims. Nonetheless, the examples ex-
press speculative claims. One could assume that
those are real arguments that people brandish. Fu-
ture versions of the guidelines will require anno-
tators to mark as claim those statements that are
attributable to a source and that reveal a high level
of commitment.

4.5 Relatedness to the Topic
Annotators were asked to approach the texts fo-
cusing on finding all the statements that fit the de-
scription of claim without worrying about how re-
lated they were to the topic of vaccination. The
choice was made because all documents in the
Vax Corpus are considered on-topic. This direc-
tive was not always respected by both annotators
leading to disagreement. Some examples are the
following:

12. The gene is ’silent’.
13. God is going to save you.

These instances raised a critical objection. If
one takes into account only the goal to capture the
stance of the author, how useful is it to mark state-
ments that are indirectly related to the topic of vac-
cination and that do not reveal information about
the attitude of the source? The examples above do
fit the description of claim. Since one of our goals
is to gain insight in the process of opinion forma-
tion, these statements are helpful in forming a pro-
file for the users, uncovering part of their back-
ground and some of their beliefs. Future versions
of the guidelines will highlight more strongly the
importance of such statements in order to avoid
disagreement.

4.6 Granularity and Sources
The annotation of sources caused some disagree-
ment, affecting the granularity of the claim anno-
tations. Some examples exhibiting this kind of dis-
agreement are the following:

14. Annotator A: [95% of Americans are brain-
washed to believe they are doing this for
us.]claim
Annotator B: [95% of Americans]source are
brainwashed to believe [they are doing this
for us.]claim
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15. Annotator A: [Government authorities also
claim the sterilization chemical was an ”acci-
dental” contamination.]claim
Annotator B: [Government authorities]source

also claim [the sterilization chemical was an
”accidental” contamination.]claim

Because explicit sources are mentioned, one
annotator decided to annotate source and claim
whereas the other one annotated everything as
claim. However, marking the explicit sources sep-
arately might exclude some information from the
claim. In the case of Example 14, the author wants
the audience to know that most Americans are
brainwashed; identifying as the claim just the frag-
ment “they are doing this for us” detracts details
from the message that is being conveyed. In Ex-
ample 15 Annotator B followed the same approach
and annotated “Government authorities” as source
and “the sterilization chemical was an ”acciden-
tal” contamination” as claim. As a consequence
the full claim made by the author of the text, which
Annotator A annotated, is ignored. The reason
why Annotator B exhibits this behavior is that she
had been previously been trained to annotate attri-
butions (Pareti, 2015) and sometimes she had the
tendency to annotate attributions, which indicates
that the guidelines should have been more explicit
about how to deal with cases in which attributions
are embedded in claims.

5 Conclusion

Our research goal was to test whether existing ar-
gumentation annotation schemes are applicable to
heterogeneous texts from the Web in order to de-
tect statements that are meaningful for the study
of beliefs that motivate different stances towards a
topic, in this case vaccinations.

Two pilot annotation studies were conducted
with argumentation schemes used in previous an-
notation tasks (Stab and Gurevych, 2017; Haber-
nal and Gurevych, 2017; Al Khatib et al., 2016).
A quantitative and qualitative analysis of the re-
sults revealed that it was necessary to simplify the
task because the annotation categories were not
well defined and, consequently, the IAA was too
low. This is why we decided to focus on anno-
tating only claims. The new task was then tested
by conducting a third annotation study, which re-
sulted in 57.3% IAA.

The simplification of the annotation scheme
made the annotation task more feasible and

less time-consuming. Following the simplified
scheme, annotators were better able to agree on
fragments of text that are representative of the be-
liefs that people express when talking about vac-
cinations. Based on a qualitative error analysis we
defined four sources of disagreement: debatability,
attributability, relatedness to the topic and granu-
larity of sources. Further research will evaluate
how informative the fragments are for the analysis
of the vaccination debate.

The simplified scheme had several weaknesses.
The patterns of disagreement observed reveal the
necessity to modify the guidelines for future ex-
periments: (i) more annotated examples of dif-
ficult cases should be included; (ii) instructions
should be provided on how to tackle instances
where the granularity can be interpreted in dif-
ferent ways; (iii) it should also be stressed that
claim-like statements that are not directly related
to the topic need to be marked, as they are rele-
vant; and (iv) the guidelines should be more re-
strictive. For example, the analysis of the errors
related to attributability lead to the conclusion that
claims should be attributable to a source and that
the source should express a high level of commit-
ment to the claim.

A general conclusion based on the quantitative
results and the qualitative error analysis is that,
even though the simplification of the scheme re-
lieved some of the complexity of the task, agreeing
on what a claim is still remains a difficult endeavor
for human annotators. As future work we intend
to propose a better definition of claim. Addition-
ally, since the simplified scheme does not depend
on domain dependent features, it should be appli-
cable to any on-line debate. We plan to annotate
similar corpora of other domains in order to test
whether the same results can be obtained. Finally,
we are currently developing a claim detection sys-
tem as a means to measuring also the difficulty of
performing this task automatically.
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Abstract

This paper focuses on argument component
classification for transcribed spoken classroom
discussions, with the goal of automatically
classifying student utterances into claims, evi-
dence, and warrants. We show that an existing
method for argument component classification
developed for another educationally-oriented
domain performs poorly on our dataset. We
then show that feature sets from prior work on
argument mining for student essays and online
dialogues can be used to improve performance
considerably. We also provide a comparison
between convolutional neural networks and re-
current neural networks when trained under
different conditions to classify argument com-
ponents in classroom discussions. While neu-
ral network models are not always able to out-
perform a logistic regression model, we were
able to gain some useful insights: convolu-
tional networks are more robust than recur-
rent networks both at the character and at the
word level, and specificity information can
help boost performance in multi-task training.

1 Introduction

Although there is no universally agreed upon def-
inition, argument mining is an area of natural lan-
guage processing which aims to extract structured
knowledge from free-form unstructured language.
In particular, argument mining systems are built
with goals such as: detecting what parts of a text
express an argument component, known as argu-
ment component identification; categorizing argu-
ments into different component types (e.g. claim,
evidence), known as argument component classifi-
cation; understanding if/how different components
are connected to form an argumentative structure
(e.g. using evidence to support/attack a claim),
known as argument relation identification. The de-
velopment and release to the public of corpora and
annotations in recent years have contributed to the

increasing interest in the area.
One domain in which argument mining is rarely

found in the literature is educational discussions.
Classroom discussions are a part of students’ daily
life, and they are a common pedagogical approach
for enhancing student skills. For example, student-
centered classroom discussions are an important
contributor to the development of students’ read-
ing, writing, and reasoning skills in the context
of English Language Arts (ELA) classes (Apple-
bee et al., 2003; Reznitskaya and Gregory, 2013).
This impact is reflected in students’ problem solv-
ing and disciplinary skills (Engle and Conant,
2002; Murphy et al., 2009; Elizabeth et al., 2012).
With the increasing importance of argumentation
in classrooms, especially in the context of student-
centered discussions, automatically performing ar-
gument component classification is a first step for
building tools aimed at helping teachers analyze
and better understand student arguments, with the
goal of improving students’ learning outcomes.

Many current argument mining systems fo-
cus on analyzing argumentation in student essays
(Stab and Gurevych, 2014, 2017; Nguyen and
Litman, 2015, 2018), online dialogues (Swanson
et al., 2015; McLaren et al., 2010; Ghosh et al.,
2014; Lawrence and Reed, 2017), or in the le-
gal domain (Ashley and Walker, 2013; Palau and
Moens, 2009). A key difference between these
studies and our work consists in the source of lin-
guistic content: although we analyze written tran-
scriptions of discussions, the original source for
our corpora consists of spoken, multi-party, edu-
cational discussions, and the difference in cogni-
tive skills and grammatical structure between writ-
ten and spoken language (Biber, 1988; Chafe and
Tannen, 1987) introduces additional complexity.

Our work and previous research studies on stu-
dent essays share the trait of analyzing argumen-
tation in an educational context. However, while
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student essays are typically written by an individ-
ual student, in classroom discussions arguments
are formed collaboratively between multiple par-
ties (i.e. multiple students and possibly teachers).
While our work shares the multi-party context in
which arguments are made with research aimed at
argument mining in online dialogues, prior online
dialogue studies have not been contextualized in
the educational domain.

Given these differences, we believe that argu-
ment mining models for student essays and online
dialogues will perform poorly when directly ap-
plied to educational discussions. However, since
similarities between the domains do exist, we ex-
pect that features exploited by such argument min-
ing models can help us in classifying argument
components in classroom discussions. Moreover,
unlike the other two domains, we have access to
labels belonging to a different (but related) class,
specificity, which we can try to incorporate in ar-
gumentation models to boost performance.

Our contributions are as follows. We first exper-
imentally evaluate the performance of an existing
argument mining system developed for essay scor-
ing (named wLDA) when applied off-the-shelf to
predict argument component labels for transcribed
classroom discussions. We then analyze the per-
formance obtained when using the same features
as wLDA to train a classifier specifically on our
dataset. We combine the wLDA feature set with
features used in argument mining in the context
of online dialogues and show that they are able
to capture some of the similarities between on-
line dialogues and our domain, and considerably
improve the model. We then evaluate two neu-
ral network models in several different scenarios
pertaining to their input modality, the inclusion of
handcrafted features, and the effect of multi-task
learning when including specificity information.

2 Related Work
With respect to the educational domain, previous
studies in argument mining were largely aimed at
student essays. Persing and Ng (2015) studied ar-
gument strength with the ultimate goal of auto-
mated essay scoring. Stab and Gurevych (2014)
performed argument mining on student essays by
first jointly performing argument component iden-
tification and classification, then predicting argu-
ment component relations. Nguyen and Litman
(2015) developed an argument mining system for
analyzing student persuasive essays based on ar-

gument words and domain words. While domain
words are used only in a specific topic, argument
words are used across multiple topics and repre-
sent indicators of argumentative content. They
later proposed an improved version of the system
(2016), which we will refer to as wLDA, by ex-
ploiting features able to abstract over specific es-
say topics and improve cross-topic performance.
While our current work is also aimed at develop-
ing argument mining systems in the educational
context, we focus on educational discussion in-
stead of student essays. Our work also differs in
the argument component types used: we analyze
claims, evidence, and warrants, while prior stud-
ies mostly focused on claims and premises. The
inclusion of warrants is particularly important to
explicitly understand how students use them to
connect evidence to claims. As such, we do not
expect prior models to work well on our corpus,
although some of the features might still be use-
ful. Also, while some of the previously proposed
systems address multiple subproblems simultane-
ously, e.g. argument component identification and
argument component classification, we only focus
on argument component classification.

Swanson et al. (2015) developed a model for
extracting argumentative portions of text from on-
line dialogues, which were later used for sum-
marizing the multiple argument facets. Misra et
al. (2015) analyzed dyadic online forum discus-
sions to detect central propositions and argument
facets. Habernal and Gurevych (2017) analyzed
user-generated web discourse data from several
sources by performing micro-level argumentation
mining. While these prior works analyze multi-
party discussions, the discussions are neither orig-
inally spoken nor in an educational context.

Like other areas of natural language processing,
argument mining is experiencing an increase in the
development of neural network models. Niculae
et al. (2017) used a factor graph model which was
parametrized by a recurrent neural network. Dax-
enberger et al. (Daxenberger et al., 2017) inves-
tigated the different conceptualizations of claims
in several domains by analyzing in-domain and
cross-domain performance of recurrent neural net-
works and convolutional neural networks, in ad-
dition to other models. Schulz et al. (Schulz
et al., 2018) analyzed the impact of using multi-
task learning when training on a limited amount of
labeled data. In a similar way, we develop several
convolutional neural network and recurrent neural
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network models, and also experiment with multi-
task learning. More detailed comparisons will be
given in Section 4.

3 Dataset

We collected 73 transcripts of text-based class-
room discussions, i.e. discussions centered on a
text or literature piece (e.g. play, speech, book),
for ELA high school level classes. Some of the
transcripts were gathered from published articles
and dissertations, while the rest originated from
videos which were transcribed by one of our an-
notators (see below). While detailed demographic
information for students participating in each dis-
cussion was not available, our dataset consists of a
mix of small group (16 out of 73) versus whole
class (57/73) discussions, both teacher-mediated
(64/73) versus student only (9/73). Addition-
ally, the discussions originated in urban schools
(28/73), suburban schools (42/73), and schools lo-
cated in small towns (3/73).

The unit of analysis for our work is argument
move, which consists of a segment of text contain-
ing an argumentative discourse unit (ADU) (Peld-
szus and Stede, 2013). Starting with transcripts
broken down into turns at talk, an expert annota-
tor segmented turns at talk into multiple argument
moves when necessary: turns at talk containing
multiple ADUs have been segmented into several
argument moves, each consisting of a single ADU.
Turn segmentation effectively corresponds to ar-
gument component identification, and it is carried
out manually. We conducted a reliability study
on turn segmentation with two annotators on a
subset of the dataset consisting of 53 transcripts.
The reliability analysis resulted in Krippendorff
αU = 0.952 (Krippendorff, 2004), which shows
that turns at talk can be reliably segmented.

After segmentation, the data was manually an-
notated to capture two aspects of classroom talk,
argument component and specificity, using the
ELA classroom-oriented annotation scheme de-
veloped by Lugini et al. (2018). The argument
component types in this scheme, which is based
on the Toulmin model (1958), are: (i) Claim: an
arguable statement that presents a particular inter-
pretation of a text or topic. (ii) Evidence1: facts,
documentation, text reference, or testimony used
to support or justify a claim. (iii) Warrant: rea-

1The “evidence” label is equivalent to “data” or “grounds”
used in the original Toulmin model, though we use the label
“evidence” to remain consistent with the annotation scheme.

sons explaining how a specific evidence instance
supports a specific claim.

Chisholm and Godley (2011) observed how
specificity has an impact on the quality of the dis-
cussion, while Swanson et al. (2015) noted that
a relationship exists between specificity and the
quality of arguments in online forum dialogues.
For the purpose of investigating whether there ex-
ists a relationship between specificity and argu-
ment components, we additionally annotated data
for specificity following the same coding scheme
(Lugini et al., 2018). Specificity labels are directly
related to four elements for an argument move: (1)
it is specific to one (or a few) character or scene;
(2) it makes significant qualifications or elabora-
tions; (3) it uses content-specific vocabulary (e.g.
quotes from the text); (4) it provides a chain of rea-
sons. The specificity annotation scheme by Lugini
et al. includes three labels along a linear scale: (i)
Low: statement that does not contain any of these
elements. (ii) Medium: statement that accom-
plishes one of these elements. (iii) High: state-
ment that clearly accomplishes at least two speci-
ficity elements. Only student turns were consid-
ered for annotations; teacher turns at talk were fil-
tered out and do not appear in the final dataset.
Table 1 shows a coded excerpt of a transcript from
a discussion about the movie Princess Bride.

The resulting dataset consists of 2047 argument
moves from 73 discussions. As we can see from
the label distribution shown in Table 2, students
produced a high number of claims, while warrant
is the minority class. We can also observe a class
imbalance for specificity labels, though the ratio
between majority and minority classes is lower
than that for argument component labels.

We evaluated inter-rater reliability on a subset
of our dataset composed of 1049 argument moves
from 50 discussions double-coded by two anno-
tators. Cohen’s unweighted kappa for argument
component labels was 0.629, while quadratic-
weighted kappa for specificity labels (since they
are ordered) was 0.641, which shows substantial
agreement.

The average number of argument moves among
the discussions is 27.3 while the standard devia-
tion is 25.6, which shows a high variability in dis-
cussion length. The average number of words per
argument move and standard deviation are 22.6
and 22.1, respectively, which also shows large
variability in how much students speak.
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Stu Argument Move Arg Comp Spec
S1 Well Fezzik went back to how he was, Claim Low
S1 like how he gets lost. Then he goes like he needs to be around other

people. And then finally when he does, he gets himself like relying on
himself. But then right at the end, he doesnt know where hes at; he
makes a wrong turn.

Evidence Med

S1 cause he tried doing it by himself and he cant. So I think Fezzik went
back to his normal ways, like after he changed.

Warrant High

Table 1: Coded excerpt of a discussion of the movie Princess Bride. Student S1 first makes a claim about
Fezzik’s behavior, then provides evidence by listing a series of events, then connects such events to his
claim using a warrant. As the argument progresses, the specificity level increases.

Argument Component
Claim Warrant Evidence
1034 358 655

Specificity
Low Med High
710 996 341

Table 2: Distribution of class labels for argument
component type and specificity in our dataset.

4 Argument Component Classification
In this section we outline an existing argument
component classification system that will serve as
a baseline for our experiments, then propose sev-
eral new models that use features extracted from
neural networks and hand-crafted features, as well
as models that use multi-task learning.

4.1 Existing Argument Mining System
The wLDA2 system was developed for performing
argument component identification, classification,
and relation extraction from student essays. For
the purpose of this study, we only consider the ar-
gument component classification subsystem. The
model is based on a support vector machine classi-
fier which exploits features able to improve cross-
topic performance. The feature set consists of four
main subsets: lexical features (argument words,
verbs, adverbs, presence of modal verbs, discourse
connectives, singular first person pronoun); parse
features (argumentative subject-verb pairs, tense
of the main verb, number of sub-clauses, depth of
parse tree); structural features (number of tokens,
token ratio, number of punctuation signs, sen-
tence position, first/last paragraph, first/last sen-
tence of paragraph); context features (number of
tokens, number of punctuation signs, number of

2The original name of wLDA+4 stands for “with LDA
supported features and expanded with 4 features sets” com-
pared to their previous system. We use wLDA for brevity.

sub-clauses, modal verb in preceding/following
sentences) extracted from the sentences before and
after the one considered; four additional features
for abstracting over essay topics.

Since the model was trained on essays anno-
tated for major claim, claim, and premise, but not
on warrants, in our evaluation we did not take
into account misclassification errors for argument
moves in our dataset labeled as warrants. The
pre-trained system performs argument component
identification using a multiclass classification ap-
proach, such that each input will be classified as
non argumentative, major claim, claim or premise.
Since our goal is to evaluate performance related
to the component classification problem, we ig-
nored all the argument moves classified as non
argumentative by wLDA. Considering the defi-
nitions of premise and evidence in the Toulmin
model (1958), we made the assumption of the two
labels being equivalent for this study, i.e. if the
predicted class for an argument move is premise
and its gold standard label in our dataset is evi-
dence, we consider the prediction correct. In the
same way we consider both claim and major claim
labels as equivalent to claims in our dataset.

4.2 Neural Network Models

Since the pre-trained model did not work well on
our dataset, and the features it is based on show
a large gap in performance compared to the origi-
nal work (see Section 5), we decided to use neural
networks, and evaluate their ability to automati-
cally extract meaningful features. The proposed
models consist of variations of two basic neu-
ral network models, namely Convolutional Neural
Network (CNN) and Recurrent Neural Network
(RNN) models. All the choices regarding the mod-
els were made in order to keep complexity and the
number of weights at a minimum, since neural net-
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work models require in general a large amount of
training data, while we have a limited size dataset.
The CNN model is based on a model proposed by
Kim (2014) and already used for argument min-
ing in the past (Daxenberger et al., 2017), with a
difference in the number of convolutional/pooling
layers. In particular, our model uses 3 convolu-
tional/max pooling layers instead of 6, and only
one fully connected layer after the convolutional
ones, followed by a softmax layer used for clas-
sification. This choice resulted from observing
significant overfitting when increasing the number
of convolutional layers due to the increase in the
number of model weights and the limited dataset
size. Figure 1 shows diagrams for the different
neural network setups used in our experiments.

The RNN model consists of a single Long-Short
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997). After propagating a com-
plete argument move through the LSTM network,
the resulting hidden state is the feature vector used
as input to a softmax layer which outputs the pre-
dicted label. Recurrent neural networks have also
been used in the context of argument mining (Dax-
enberger et al., 2017; Niculae et al., 2017). We set
the size of the hidden state to 75 based on several
factors. Following Bengio (Bengio, 2012), we de-
cided to have an overcomplete network, i.e. one in
which the size of the hidden state is bigger than the
size of the input. Since the dimensionality of our
character-based encoding is 37 and that for word-
based embeddings is 50, we chose a hidden state
with size greater than 50 (we use the same hid-
den state size for both models). Increasing the size
introduced overfitting even quicker than the CNN
model, given that the number of weights increases
more quickly for our LSTM model.

When using text as input to a neural network,
we can generally view an argument move as ei-
ther a sequence of characters, or as a sequence of
words. Unlike previous neural network-based ar-
gument mining models, each of our models was
evaluated under both conditions: for character-
based models we used a one-hot encoding (one-
out of n) for each letter and number - special char-
acters were filtered since they don’t hold particular
meaning in speech, and we cannot be sure of tran-
scription conventions; for word-based models we
used Global Vectors (GloVe) (Pennington et al.,
2014) with dimensionality of 50. An important as-
pect to consider is that, while word-based models
have some prior knowledge encoded in the word

embeddings, character-based models do not.
Since neural network models usually require

a large amount of training data to be effective,
and we have relatively fewer number of argument
moves compared to number of model weights, we
also tested hybrid models in which a neural net-
work output is combined with handcrafted fea-
tures before the final softmax classification layer,
as shown in Figure 1 (b) and Figure 1 (d). Both
CNN and LSTM models used categorical cross-
entropy as loss function, and the number of epochs
was automatically selected at training time by
monitoring performance on a validation set con-
sisting of 10% of the training set for each fold.

4.3 Multi-task Learning
As we can see from Figure 2, the argument la-
bel distributions are different for the three speci-
ficity levels. This leads us to believe a relationship
exists between the specificity and argumentation
annotations, therefore we decided to see whether
specificity labels can be used to improve the per-
formance of our argument mining models.

Multi-task learning for neural network models
has shown promising results in the machine learn-
ing field (Weston et al., 2012; Andrychowicz et al.,
2016). It has recently been used in argument min-
ing: Schulz et al. (2018) proposed a multi-task
learning setup in which the primary task consists
of jointly performing argument component iden-
tification and classification (framed as a sequence
tagging problem), while the additional tasks con-
sist of the same task applied to different datasets.
They showed that the multi-task models achieved
better performance than single-task learning es-
pecially when limited in-domain training data is
available for the primary task.

Unlike (Schulz et al., 2018), we decided to im-
plement as secondary task specificity prediction
on the same data as the primary task. The un-
derlying neural network setup was also different:
while Schulz et al. used a bidirectional LSTM
followed by a Conditional Random Field (CRF)
classifier (Reimers and Gurevych, 2017), we were
restricted to non-sequence classifiers. We imple-
mented multi-task learning in one of the standard
ways: the embeddings generated by the networks
are completely shared for both tasks of predict-
ing argumentation and specificity. For the CNN
model, we added a second softmax layer for pre-
dicting specificity after the convolutional/pooling
layers. Similarly, for the LSTM model we added
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Figure 1: Neural network models used in this study: neural network only setup (a); model incorporating
neural network and handcrafted features (wLDA and online dialogue sets) (b); multi-task setup for neural
network only model (c); multi-task setup for model using neural network and handcrafted features (d).

Figure 2: Argument labels by specificity levels.

a second softmax layer that operates on the fi-
nal hidden state of the network to predict speci-
ficity. In both multi-task models specificity and
argumentation are predicted at the same time, the
loss function is computed as the sum of the indi-
vidual loss functions for both tasks (the loss func-
tion for the specificity softmax layer is categorical
cross-entropy as well), and gradient updates are
backpropagated through the network. This pro-
cess results in embeddings trained jointly for the
two tasks, which can effectively capture informa-
tion relevant to both specificity and argumentation.

4.4 Online Dialogue Features
Since our dataset is based on multi-party discus-
sion, it shares similarities with prior argumenta-
tion work in multi-party online dialogues. There-
fore we experiment with features from (Swan-
son et al., 2015), organized into three main sub-
sets: semantic-density features (number of pro-
nouns, descriptive word-level statistics, number of
occurrences of words of different lengths), lexical
features (tf-idf feature for each unigram and bi-
gram, descriptive argument move-level statistics),
and syntactic features (unigrams, bigrams and tri-
grams of part of speech tags). The only differ-
ence between the original features and the ones

we implemented consists in the use of Speciteller
(Li and Nenkova, 2015). As observed by Lug-
ini and Litman (Lugini and Litman, 2017), apply-
ing Speciteller as-is to domains other than news
articles results in a considerable drop in perfor-
mance. Therefore, instead of including the speci-
ficity score obtained by directly applying Speci-
ficity to an argument move, we decided to use Spe-
citeller’s features.

5 Experiments and Results

This section provides our experimental results. In
Section 5.1 we will test our first hypothesis: us-
ing an argument mining system trained in a differ-
ent domain will result in low performance, which
can be improved by re-training on classroom dis-
cussions and by adding new features. Section 5.2
will be used to test our second hypothesis: neural
network models can automatically extract impor-
tant features for argument component classifica-
tion. Our third hypothesis will be tested in Sec-
tion 5.3: adding handcrafted features (i.e. online
dialogue features, wLDA features) to the ones au-
tomatically extracted by neural networks will re-
sult in an increase of performance. Lastly, we will
test our fourth hypothesis in Section 5.4: jointly
learning to predict argument component type and
specificity will result in more robust models and
achieve a further performance improvement.

Our experiments evaluate every model using
a leave-one-transcript-out cross validation: each
fold contains one transcript as test set and the re-
maining 72 as training set. Cohen kappa, and un-
weighted precision, recall, and f-score were used
as evaluation metrics.

The following python libraries were used for
implementing and testing the different models:
Scikit-learn (Pedregosa et al., 2011), Tensorflow
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(Abadi et al., 2015), Keras (Chollet et al., 2015),
NLTK (Bird et al., 2009).

Given that in our dataset warrants appear much
less frequently than claims and evidence, data im-
balance is a problem we need to address. If trained
naively, the limited amount of training data and
the unbalanced class distribution lead the neural
network models to specialize towards claims and
evidence, with much weaker performance on war-
rants. This is also the case for non neural net-
work models, although the impact on performance
is lower. To combat this phenomenon we decided
to use oversampling (Buda et al., 2017) in order
to create a balanced dataset, hoping to further re-
duce the performance gap between the different
classes 3. After computing the class frequency dis-
tribution on the training set, we randomly sampled
moves from the two minority classes and added
them to the current training set, repeating the pro-
cess until the class distribution was completely
balanced (i.e. until the number of argument moves
for each class equals the number of moves in the
majority class) 4, while the test set was unchanged.

Table 3 shows the results for all experiments.
The statistical significance results in the table use
the system in row 3 as the comparison base-
line, as wLDA represents a system specifically
designed for argument component classification
(among other tasks). Additional statistical com-
parisons are provided in the text as well.

5.1 Using wLDA Off the Shelf
Since not all the argument moves were considered
when computing results for the pre-trained out of
the box wLDA model (see Section 4.1), the re-
sults in row 2 are not directly comparable to oth-
ers. Nonetheless they show the upper bound in
performance of the pre-trained model, and we can
see that it is comparable to a majority baseline
which always predicts the majority class in each
fold. This result shows that claims and evidence
expressed in written essays and classroom discus-
sions have very little in common. This is clearer
when we look at improvement obtained training a
logistic regression model5 using the same wLDA

3We also tried setting class weights at training to influence
the loss function, though it only improved results marginally.

4In the multi-task models oversampling was carried out
only with respect to argument component labels since that is
the primary task.

5We also experimented with random forest, naive Bayes
and support vector machines, but they provided inferior re-
sults compared to logistic regression.

features on our dataset (row 3), which outper-
forms the pre-trained wLDA in all metrics (row
2), and indicates that the wLDA features are still
able to somewhat distinguish between claims and
evidence while performing considerably worse on
warrants. Additionally, if we add to this model
the online dialogue feature set, the resulting model
improves all results and obtains the best kappa
overall (row 4). This confirms our hypothesis:
given the similarity that exists between our domain
and online dialogues, features developed for ana-
lyzing argumentation in online dialogues are also
useful in classroom discussions.

5.2 Neural Network Models Alone
Our second hypothesis is validated by the results
in Table 3 by comparing row 3 with rows 7, 11,
15, and 19, where we can see that the CNN mod-
els achieve performance comparable to a classifier
trained on features specifically developed for argu-
ment component classification. This indicates that
convolutional neural network models are able to
extract useful features. Additionally, when com-
paring the best of these models (row 19, with
respect to f-score) to the best performing model
based only on handcrafted features (row 4), the
difference in performance is not statistically sig-
nificant for any of the metrics in Table 3.

Looking more closely at the results obtained us-
ing neural network models alone we can see two
different trends. While LSTM models show per-
formance comparable to random chance (e.g. row
5, with kappa close to zero and lower than the
majority baseline), three of our four CNN mod-
els (rows 7, 15, 19) perform as well as or better
than the wLDA based model (row 3) (except for
precision in row 19 and Fe in row 7). Overall,
under the same conditions CNN models almost
always outperform LSTM models. One interest-
ing difference between the two models is that the
prior knowledge introduced by word embeddings
in word-based models is essential for improving
performance of LSTMs (e.g. row 5 vs row 9),
while this is not the case for CNN models (e.g.
row 7 vs row 11). The length of sequences (i.e. ar-
gument moves) for character-based models makes
it extremely hard for LSTMs to capture long-term
dependencies, especially with limited amount of
training data. Convolutional models, on the other
hand, learn kernels that effectively function as fea-
ture detectors and seem to be able to better distin-
guish important features, and do not always bene-
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Row Models / Features Kappa Precision Recall F-score Fe Fw Fc

1 Majority baseline 0.068 0.265 0.406 0.314 0.109 0.004 0.532
2 Pre-trained wLDA 0.077 0.289 0.350 0.269 0.351 N/A 0.456
3 Logistic Regression

(wLDA features)
0.142 0.412 0.394 0.379 0.390 0.211 0.540

4 Logistic Regression
(wLDA features +
online dialogue)

0.283 0.508 0.500 0.480 0.479 0.222 0.693

Character level NN models
5 LSTM -0.002 0.062 0.253 0.082 0.007 0.242 0.013
6 LSTM + wLDA + on-

line dialogue
0.034 0.217 0.304 0.150 0.080 0.272‡ 0.090

7 CNN 0.143 0.439 0.423 0.393 0.372 0.218 0.574
8 CNN + wLDA + on-

line dialogue
0.241? 0.482 0.475 0.450 0.449 0.236 0.637

Word level NN models
9 LSTM 0.069 0.408 0.399 0.218 0.161 0.198 0.295

10 LSTM + wLDA + on-
line dialogue

0.181 0.462 0.447 0.391 0.362 0.279‡ 0.522

11 CNN 0.125 0.410 0.404 0.378 0.370 0.231 0.526
12 CNN + wLDA + on-

line dialogue
0.241? 0.492? 0.488 0.455† 0.468 0.276‡ 0.622

Multi-task character level NN models
13 LSTM 0.060 0.408 0.399 0.208 0.134 0.203 0.287
14 LSTM + wLDA + on-

line dialogue
0.117 0.379 0.375 0.287 0.362 0.279‡ 0.522

15 CNN 0.166 0.444 0.437 0.407 0.399 0.220 0.586
16 CNN + wLDA + on-

line dialogue
0.259† 0.506† 0.488 0.468? 0.474 0.262† 0.640

Multi-task word level NN models
17 LSTM 0.093 0.379 0.364 0.276 0.298 0.252 0.378
18 LSTM + wLDA + on-

line dialogue
0.232 0.497† 0.482 0.440 0.419 0.299‡ 0.583

19 CNN 0.164 0.351 0.443 0.441 0.476 0.249 0.598
20 CNN + wLDA + on-

line dialogue
0.276‡ 0.521‡ 0.512† 0.485† 0.484 0.312‡ 0.638

Table 3: Results obtained with the baseline model/features and the proposed neural network models using
different feature sets. Each line represents the average of a transcript-wise cross validation. Best results
are in bold. ?, †, and ‡ indicate statistical significance at the 0.1, 0.05, and 0.01 levels respectively,
compared to the model in row 3. The three right-most columns represent per-class F-score for evidence,
warrants, and claims respectively.
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fit from word level inputs.

5.3 Adding wLDA Features and Online
Dialogue Features

It is clear from Table 3 that almost all neural net-
work models benefit from additional handcrafted
features (with the exception of precision and re-
call for rows 13 and 14). This is not surprising,
given that neural networks require a large amount
of data to be trained effectively, and although ran-
dom oversampling helped, we still have a lim-
ited amount of training data. Even when includ-
ing additional features the two architectures show
slightly different trends: CNN usually outperform
LSTM, however LSTM models benefit more from
the additional features. This is at least in part
due to LSTMs initially having lower performance
without handcrafted features. We analyzed the im-
portance of different subsets of the online dialogue
features through a feature ablation study. For CNN
models, removing any subset of features resulted
in a decrease in performance, except for the syntax
subset in the character level CNN + wLDA + on-
line dialogue model in both single task and multi-
task settings. For LSTM models, all feature sub-
sets contributed to increasing performance in the
multi-task settings, while that was not always true
for the single task models.

5.4 Multi-task Learning

Finally, we analyze the impact of multi-task learn-
ing in argument component classification. Our
findings are in line with the literature in other do-
mains, with results showing that models trained
on argumentation and specificity labels almost al-
ways outperform the ones trained only on argu-
mentation. LSTMs benefit from the multi-task
setup more than CNN models: among all com-
binations of LSTM models, the only one able to
achieve kappa greater than 0.2 and f-score greater
than 0.4 is a multi-task one. Additionally, the
word-level CNN model using wLDA and online
dialogue feature sets and trained using multi-task
learning is the only model able to achieve f-score
greater than 0.3 for warrants.

It should be noted that although the neural net-
work based model at row 20 outperforms the logis-
tic regression model at row 4 in terms of precision,
recall, and F-score, the difference in performance
is not statistically significant, and neither is the re-
duction in kappa and Fc.

6 Conclusions and Future Work

In this work we evaluated the performance of an
existing argument mining system developed for
a different educational application (i.e. student
essays) on a corpus composed of spoken class-
room discussions. Although the pre-trained sys-
tem showed poor performance on our dataset, its
features show promising results when used in a
model specifically trained on classroom discus-
sions. We extracted additional feature sets based
on related work in the online dialogue domain, and
showed that combining online dialogue and stu-
dent essay features achieves the highest kappa on
our dataset. We then developed additional mod-
els based on two types of neural networks, show-
ing that performance can be further improved. We
provided an experimental evaluation of the differ-
ences between convolutional networks and recur-
rent networks, and between character-based and
word-based models. Lastly, we showed that ar-
gument component classification models can ben-
efit from multi-task learning, when adding a sec-
ondary task consisting of predicting specificity.

Even though we were able to achieve better per-
formance compared to a pre-trained system and a
majority baseline, we are far from the performance
of argument mining systems in other domains such
as student essays or legal texts. Although the
wLDA features extract information from previous
argument moves, we plan to take advantage of the
collaborative nature of our corpus by extending the
feature sets in order to exploit contextual informa-
tion and develop models that can explicitly take
advantage of previous argument moves. Given the
performance improvements obtained with multi-
task models, we also plan to extend these models
and include additional tasks at training time with
the hope of further boosting performance. We also
plan to add other types of cross validation, since
leave-one-transcript-out introduces great variabil-
ity in the composition of test sets, possibly attenu-
ating the statistical significance for some results.
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Abstract 

This paper reports on the results of an 
empirical study of adjudicatory decisions 
about veterans’ claims for disability 
benefits in the United States. It develops a 
typology of kinds of relevant evidence 
(argument premises) employed in cases, 
and it identifies factors that the tribunal 
considers when assessing the credibility or 
trustworthiness of individual items of 
evidence. It also reports on patterns or “soft 
rules” that the tribunal uses to 
comparatively weigh the probative value of 
conflicting evidence. These evidence types, 
credibility factors, and comparison patterns 
are developed to be inter-operable with 
legal rules governing the evidence 
assessment process in the U.S. This 
approach should be transferable to other 
legal and non-legal domains. 

1 Introduction  

Argument mining from the fact-finding portions 
of adjudicatory decisions in law presents several 
advantages. One advantage is analyzing careful 
reasoning by professional authors of unstructured 
natural language documents, which contain 
explanations of the reasoning of the decision 
maker from the evidence in the case to the factual 
conclusions.  Another advantage is mining 
arguments and reasoning from documents that 
combine various types of evidence, such as lay 
testimony, expert opinions, medical records, and 
scientific publications. Yet another advantage is 
the societal importance of the subject matter, from 
disability claims to vaccine-injury compensation 
to medical malpractice. 

If we can mine a large number of fact-specific 
cases for the arguments of the parties and the 
reasoning of the decision makers, then we could 

identify frequencies, trends, and success rates for 
different types of argument. We could also 
determine whether decision making among 
factually similar cases has been consistent. Native 
or web applications could use the data to 
recommend evidence and arguments to parties in 
new cases, and they could provide historically 
based support for legal decision makers. 

But argument mining from adjudicatory 
decisions also faces significant challenges. 
Adjudicatory decisions occur within a complex 
legal process for resolving a dispute or deciding a 
case. In general, an adjudicatory process involves 
parties to the dispute, who raise issues to be 
decided, argue for or against specific outcomes on 
those issues, and often (especially in common law 
countries) produce the evidence on which the 
findings of fact are based. Another key participant 
in the adjudicatory process is the presiding official 
at the trial level (e.g., judge or administrative 
official), who presides over the creation of the 
official evidentiary record, decides which legal 
rules are applicable to the process, and decides how 
to enforce those legal rules. Another participant in 
the process is the fact-finder or trier of fact, who 
evaluates all the evidence produced, and officially 
declares the propositions that constitute the 
findings of fact for the proceeding. (Depending 
upon the tribunal and process, the same person 
may perform the roles of presiding official and of 
trier of fact.) In addition, there is almost always a 
reviewing authority (e.g., an appellate court), 
which oversees the decisions made at the trial 
level. 

Such complexity of the adjudicatory process 
results in complex legal rules designed to govern 
the procedures. Substantive rules establish the 
issues to be decided, while process rules govern the 
procedures for deciding those issues (Walker, 
2007). Some process rules govern various 
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participants and actions related to assessing the 
probative value of the evidence. For example, such 
rules may govern the admissibility of evidence into 
the evidentiary record, dictate the relevance or 
irrelevance of certain types of evidence for 
particular conclusions, establish what some 
evidence presumptively proves, or determine when 
a set of evidence is minimally sufficient to warrant 
a reasonable inference. If argument mining is 
performed for the purpose of recommending 
possible arguments in new legal cases, then we 
must ensure that those arguments are constructed 
within the constraints imposed by such legal rules. 

Such process complexity also results in decision 
documents from fact-finding tribunals in which 
sentences have a range of rhetorical roles (Walker 
et al., 2017a). Some sentences report the 
procedural history of the case, while others state 
the legal rules that are applicable to the case, or 
they provide citations to legal authorities. Other 
sentences may state the rulings of law on motions 
made by the parties, or they may explain the bases 
for those rulings. In mining the fact-finding 
reasoning from the decision, it is necessary to 
identify and exclude most of these types of 
sentences from those that contain the fact-finding 
reasoning. The tribunal’s assessment of the 
evidence is expressed in sentences that summarize 
the evidence presented, that state the arguments of 
the parties based on that evidence, that state the 
findings of fact, and that explain the tribunal’s 
inferences from that evidence to those findings. 

This paper reports on research to empirically 
derive a typology for arguments that is flexible 
enough to type most evidence assessment actually 
found in adjudicatory decisions, and transferable to 
many substantive areas of law. The typology 
should have a reasonable likelihood of automatic 
and accurate classification, so that software can 
identify trends and success rates with acceptably 
low error rates, and software can make 
recommendations about arguments in new cases. 
The argument types should also be inter-operable 
with the complex legal rules in the U.S. that 
constrain the evidence assessment process. 

This paper reports on a typology based on 
adjudicatory decisions about veterans’ claims for 
disability benefits in the United States. Section 2 
summarizes prior work relevant to our research. 
Section 3 describes the dataset and our 
methodology. Section 4 reports the types of 
evidence that the tribunal considers relevant to the 

major issues litigated in these cases. Section 5 
reports, for two primary types of evidence, the 
factors that triers of fact consider in assessing the 
credibility or trustworthiness of individual items of 
that type of evidence. Section 6 reports on patterns 
or “soft rules” that the tribunal uses to 
comparatively weigh the probative value of 
conflicting evidence. Section 7 discusses the 
usefulness of this approach and future work. 

2 Prior Work 

Prior work in argument mining directly related to 
our project is work aimed at classifying arguments 
into types, and especially by means of classifying 
the premises of the arguments into types. 
Researchers generally identify a unit of argument 
as containing a conclusion or claim, together with 
a set of one or more premises. (E.g., Palau and 
Moens, 2009; Walton, 2009; Stab and Gurevych, 
2014; Lawrence and Reed, 2017; Wachsmuth et 
al., 2017.) One approach to classifying arguments 
is using the argumentative relation between 
premises and conclusion (e.g., support, opposition; 
pro, con; stance) (e.g. Lawrence and Reed, 2017; 
Wachsmuth et al., 2017). Another approach is to 
classify arguments by types of premises. Our work 
uses both approaches, but this paper reports only 
on the latter approach.  

As we explain in Section 3, we distinguish two 
kinds of premise (or correspondingly, two types of 
sentence or clause): propositions stating the 
relevant evidence and propositions stating the 
reasoning from that evidence to the conclusion (the 
finding of fact). Stab and Gurevych (2014) 
classified clauses as major claim, claim, premise or 
non-argumentative, with directed argumentative 
relations possibly running from a premise to a 
major claim, a claim, or another premise. Liebeck 
et al. (2016) adapted this approach to mining 
suggestions or claims on options for actions or 
decisions. 

Boltužic and Šnajder (2016) developed a 
typology for premises organized along three 
dimensions: premise type (fact, value, or policy), 
complexity (atomic, implication, or complex), and 
acceptance (universal or claim-specific). Hidey et 
al. (2017) classified premises as logos, pathos, or 
ethos. They defined an “ethos” premise as one that 
“appeals to the credibility established by personal 
experience/expertise.” As we explain in Section 4, 
it is common in legal evidence assessment to 
evaluate the credibility or trustworthiness of 
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sources of evidence. The adjudications in our 
dataset use a broad concept of credibility and a 
structured approach to determining credibility. 

Some research directly related to our work is 
Rinott et al. (2015). They identified three different 
types of evidence: study results, expert testimony, 
and anecdotal descriptions. Also, Addawood and 
Bashir (2016) developed for Twitter data a 
typology of evidence having six types, including 
“expert opinion.” We use somewhat related types, 
but we emphasize that our types are ones on which 
appellate courts have often predicated rules of law. 

Finally, some research in argument mining has 
focused particularly on legal adjudicatory 
documents. Examples are U.S. court opinions 
(Jackson et al., 2003); judgments of the U.K. 
House of Lords (Hachey and Grover, 2006); U.S. 
trade secret cases (Ashley and Brüninghaus, 
2009); extracts from legal texts of the European 
Court of Human Rights (Palau and Moens, 2009; 
Mochales and Moens, 2011); Indian court 
decisions (Saravanan and Ravindran, 2010); the 
process of argumentation from evidence to verdict 
in U.S. civil cases based on common law (Al-
Abdulkarim et al., 2016); and judgment documents 
from Japanese civil trial courts (Yamada et al., 
2017). However, to our knowledge, no research 
has developed a premise typology that is intended 
to be inter-operable with legal rules about evidence 
admissibility, irrelevance, minimal sufficiency, 
etc., particularly with such legal rules in the United 
States.  

3 Dataset and Methodology 

This section describes the sample of adjudicatory 
decisions we used in our study, as well as the 
methodology behind our results. 

3.1 PTSD Dataset 

We analyzed 30 fact-finding decisions issued by 
the U.S. Board of Veterans’ Appeals (“BVA”) from 
2013 through 2016.1 We arbitrarily selected those 
decisions from adjudicated disability claims by 
veterans for service-related post-traumatic stress 
disorder (PTSD). Individual claims for 
compensation for a disability usually originate at a 
Regional Office (“RO”) of the U.S. Department of 

                                                           
1  We cite decisions by their BVA citation number, e.g., 
“BVA 1400029.” Decisions are available from the VA 
website: https://www.index.va.gov/search/va/bva.jsp. 
 

Veterans Affairs (“VA”), or at another local office 
across the country (Allen, 2007; Moshiashwili, 
2015). If the claimant is dissatisfied with the 
decision of the RO, she may file an appeal to the 
BVA. The BVA is an administrative appellate body 
that has the statutory authority to decide the facts 
of each case based on the evidence (Moshiashwili, 
2015). The BVA must provide a written statement 
of the reasons or bases for its findings and 
conclusions, and that statement “must account for 
the evidence which [the BVA] finds to be 
persuasive or unpersuasive, analyze the credibility 
and probative value of all material evidence 
submitted by and on behalf of a claimant, and 
provide the reasons for its rejection of any such 
evidence.” Caluza v. Brown, 7 Vet. App. 498, 506 
(1995), aff’d, 78 F.3d 604 (Fed. Cir. 1996).2 

3.2  Methodology 

For purposes of mining different types of fact-
finding arguments or reasoning from these 
decisions, we first developed annotation protocols 
for identifying those sentences that generally do 
not contribute critical information. Examples of 
such sentences are those that primarily state the 
procedural facts of the case, the applicable legal 
rules, any rulings as a matter of law, or rationales 
for such rulings. We focus primarily on sentences 
that play one of three reasoning roles in evidence 
assessment: the conclusion (a finding of fact), 
which states whether a propositional condition of a 
legal rule is determined to be true, false or 
undecided; the foundations for the reasoning (the 
evidence in the legal record, such as the testimony 
of a lay witness, the opinion of an expert witness, 
or exhibits such as a medical record, a photo, or a 
published scientific study); and the reasoning 
from the evidence to the findings of fact. We call 
these, respectively, “finding sentences”, 
“evidence sentences”, and “reasoning 
sentences.” We developed detailed annotation 
protocols for these three sentence types. 

Table 1 reports the frequencies of occurrence for 
these sentence types in the PTSD dataset. Many 
decisions involve claims for multiple disabilities, 
of which PTSD is one. Table 1 provides the total 
number of sentences for entire decisions in the 
dataset. For the PTSD portions of those decisions, 

2 We follow the U.S. legal convention of citing to statutes, 
regulations, decisions, or other legal documents within the 
text. 

70



4 
 

it reports the frequency of evidence sentences, 
reasoning sentences, and finding sentences. 

 
Semantic Type Frequency 

Sentence 8,149 
Evidence Sentence 1,412 
Reasoning Sentence 442 
Finding Sentence 310 

Next, we identified which PTSD-related finding 
sentences were relevant to determining the three 
major substantive issues of fact to be decided in 
these cases. To obtain compensation for a present 
disability, the veteran must prove that she has a 
disability that is “service-connected” (Walker et 
al., 2017b). This requires proving three major 
issues of fact: (1) the veteran has a present 
disability; (2) while in active service, the veteran 
incurred an injury or disease, or the veteran 
suffered an aggravation of a pre-existing injury or 
disease, or there occurred an “in-service stressor” 
that is capable of causing PTSD; and (3) there is a 
causal relationship (or “nexus”) between the 
present disability and the in-service incurrence, 
aggravation, or stressor. We then identified the 
evidence sentences relevant to each issue, and we 
catalogued the types of evidence the BVA 
considered relevant to each major issue. We report 
some of our results in Section 4, with examples. 

For each type of evidence that we found, we 
then searched our decisions for sentences that 
describe how the BVA evaluated the credibility or 
trustworthiness of a single item of such evidence. 
Such sentences are reasoning sentences. We found 
that normally these decisions refer to a number of 
factors that tend to increase or decrease the 
credibility or trustworthiness of the particular 
evidence. We report some of our results on these 
factors in Section 5, with examples. 

We then searched for reasoning sentences that 
weighed the comparative probative value of 
conflicting evidence relevant to the same issue of 
fact. In Section 6, we report a few of the patterns 
that we are finding, with examples. 

Throughout these searches (for evidence types, 
credibility factors, and patterns for comparing 
probative value), we noted legal rules on evidence 
assessment that govern the argumentation. Legal 
rules have the logical form of conditions – “if p, 

then q,” where p states the condition of the rule and 
q its conclusion. We give examples of such rules in 
Sections 4, 5 and 6. We indicate in Section 7 how 
semantic typing of arguments should be inter-
operable with governing legal rules. 

4 Types of Evidence 

We catalogued the types of evidence relied upon in 
the PTSD portions of the evidence assessment in 
the 30 BVA decisions. Table 2 lists the typology 
that we have developed. The Federal Rules of 
Evidence (“FRE”) are typical of sets of rules 
adopted in U.S. jurisdictions to govern the 
admissibility of evidence in court. Broadly, 
evidence is admissible into the evidentiary record 
of a case, for consideration by the trier of fact, if it 
is “relevant,” and not excluded by the U.S. 
Constitution, U.S. statutes, or rules of evidence. 
(Federal Rule of Evidence 402, 2017.) “Relevant 
evidence” is defined as evidence having “any 
tendency to make a fact [of consequence in 
determining the case] more or less probable than it 
would be without the evidence.” (Federal Rule of 
Evidence 401, 2017.) In general, major categories 
of evidence are testimonial evidence (the 
testimony of a person), documentary evidence 
(evidence supplied by a writing or other 
document), and real evidence (physical evidence, 
such as clothing) (Black’s Law Dictionary, 2014). 

 
Evidence Type Sub-Type 

Lay Testimony 
    

Veteran 
Veteran’s spouse or 
partner 
Other veteran 
Other non-veteran 

Medical Records Pre-service 
In-service 
Post-service within the 
Veterans Administration 
Post-service not within 
Veterans Administration 

Performance  
Evaluations 

In-service 
Post-service 

Other Service Records 
Other Expert Opinions 
Other Records 

Table 1: Frequency of Sentences in Dataset, and of 
Sentence Types in PTSD Portions of Decisions 

Table 2: Types and Sub-Types of Evidence in the 
Sample of 30 BVA Decisions 
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Testimonial evidence in BVA cases includes lay 
testimony by the veteran filing the claim, a 
veteran’s spouse or partner, another veteran, or 
other person. Such testimony often plays an 
important role in deciding the issues of fact. An 
example of an evidence sentence stating lay 
testimony is: 

However, in written documents and in his Board 
hearing testimony, the Veteran contends that his 
acquired psychiatric disorder is the result of 
witnessing a shipmate fall overboard while 
stationed on the USS Constellation CVA 64 in 
approximately March 1975. [BVA 1554166] 

Documentary evidence includes medical 
records, performance evaluations, and service or 
other records. Medical records, for example, can 
contain expert opinions, test results, or non-expert 
information. Examples of evidence sentences 
reporting the contents of medical records are: 

With regard to positive evidence, in 2010 and 2011, 
a private psychologist, Dr. A.G., PhD., diagnosed 
the Veteran with PTSD due to his Vietnam 
experiences. [BVA 1400029] 

The STRs [service treatment records] showed no 
complaints, treatment, abnormalities or diagnosis 
for any psychiatric problems in service. [BVA 
1445540] 

These examples of evidence sentences suggest 
the difficulty facing the BVA as trier of fact both in 
assessing the credibility of items of evidence taken 
individually (Section 5) and in resolving conflicts 
between items of evidence (Section 6).   

5 Factors Affecting Credibility or 
Trustworthiness of Individual Items of 
Evidence 

BVA decisions often take a factor-based approach 
to assessing the credibility of witness testimony or 
the trustworthiness of documentary evidence such 
as medical records. (For reasons we cannot discuss 
here, such factors are not identical to the issue-
related “factors” common in the literature on case-
based reasoning (e.g., Ashley and Brüninghaus, 
2009; Al-Abdulkarim et al., 2016).) “Credibility” 
or “trustworthiness” denotes the quality of 
inspiring trust or belief. See, e.g., Indiana Metal 
Products v. N.L.R.B., 442 F.2d 46, 51-52 (7th Cir. 
1971). Appellate decisions often refer to “factors” 
as the characteristics of a witness that tend to make 

her believable, or the characteristics of testimony 
or a document that tend to make it worthy of belief. 
See, e.g., Southall-Norman v. McDonald, 28 Vet. 
App. 346, 355 (Ct. App. Vet. Cl. 2016). 

5.1 Lay Testimony  

Table 3 lists some of the factors that can affect the 
credibility of lay testimony. There are legal rules 
governing the assessment of evidence using such 
factors. Some legal rules determine the relevance 
or irrelevance of such factors to proving particular 
issues of fact. For example, an appellate court has 
held that in assessing the credibility of oral 
testimony, a hearing officer may properly consider 
“the demeanor of the witness, the facial plausibility 
of the testimony, and the consistency of the 
witness’ testimony with other testimony and 
affidavits.” Caluza v. Brown, 7 Vet. App. 498 
(1995), aff’d, 78 F.3d 604 (Fed. Cir. 1996). Such 
rules, however, tend to identify some but not all 
relevant factors. 

 
Aspects of 

Lay Testimony 
Factors Affecting 

Credibility 
Source of Testimony 
(Witness) 

Demeanor of witness 
while testifying 

Character of witness 
Consistency of witness 
Bias, personal interest 

Basis of Testimony Degree of personal 
knowledge 

Awareness of other 
evidence 

Competence relative to 
content 

Content of Testimony Facial plausibility 
Consistency with other 

evidence 
Corroboration from 

other evidence 

The first set of factors that we found in our 
sample of BVA decisions includes characteristics 
related to the source of the testimony – the witness 
herself. Such characteristics include: the demeanor 
of the witness while testifying at a hearing; some 
aspect of the witness’s character (e.g., being 
considered a “malingerer” while on active duty); 
the consistency of the witness’s own statements 

Table 3: Factors Affecting Credibility of Lay 
Testimony 
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over time about the same events; or some bias of 
the witness, such as a personal interest in obtaining 
disability benefits at the time of the statement. 

An example of a reasoning sentence that shows 
taking such factors into account is the following: 

Additionally, the appellant has been extremely 
active in pursuing disability claims, including VA 
claims, EEOC claims, and workman's 
compensation claims.  In the process of these 
claims, the appellant has provided testimony that 
is internally inconsistent and appears to frequently 
be shaped by the type of claim he is pursuing. [BVA 
1413417] 

The second set of factors concerns the basis for 
the testimony. These factors include: the degree of 
personal knowledge of the witness as the basis for 
the content of the testimony; the awareness by the 
witness of other evidence bearing on the 
testimony; and the competence of the witness to 
testify about the content. This last factor arises 
frequently in veterans’ cases, as when the veteran 
seeks to testify about a psychological diagnosis but 
does not have the training to do so. An example is:  

As a lay person, the Veteran is competent to report 
what comes to him through his senses, but he lacks 
the medical training and expertise to provide a 
complex medical opinion as to the etiology of an 
anxiety disorder. [BVA 1608262] 

The third set of factors addresses the content 
of the testimony directly. Factors that affect 
credibility include: the plausibility (or 
implausibility) of the testimony on its face, such as 
internal inconsistencies; the extent of consistency 
or inconsistency with other evidence; and whether 
there is positive corroboration from other evidence. 
In addition to examples above, the following is an 
example of a reasoning sentence on corroboration: 

Additionally, there are no medical records, police 
records, or changes in behavior that corroborate 
the Veteran's assertions. [BVA 1613894] 

5.2 Medical Records 

Table 4 lists some of the factors that affect the 
trustworthiness of information and expert opinions 
contained in medical records. There are legal rules 
governing evidence assessment, when it relies on 
such factors. For example, an appellate court has 
held that when assessing the probative value of 
documents for certain purposes, the BVA “may 
properly consider internal consistency, facial 

plausibility, and consistency with other evidence.” 
Caluza v. Brown, 7 Vet. App. 498 (1995), aff’d, 78 
F.3d 604 (Fed. Cir. 1996). However, such legal 
rules tend to state only some but not all relevant 
factors. 

 
Aspects of Medical 

Records 
Factors Affecting 
Trustworthiness 

Source of Medical 
Record (author or 
source of content) 

Relevant qualifications, 
expertise, etc. 

Bias, personal interest 
Basis of Medical 
Record (e.g., physical 
examination, 
psychological 
evaluation) 

Personal observation of 
patient 

Credibility or accuracy 
of other information 
relied upon 

Extent of patient’s 
record taken into 
account 

Content of Medical 
Record 

Remarks that undermine 
conclusiveness 

Extent of detail 
Consistency with other 

evidence 
Corroboration from 

other evidence 

The first set of factors identified in our sample 
of BVA decisions includes characteristics related to 
the author of the medical record or the source of 
its content. Often, the author of the record is the 
same person who is asserting the proposition stated 
in the record. On occasion, however, the author 
states the assertion of some other person (e.g., of 
the veteran who recounts her medical history to a 
physician). Some factors are: the relevant 
qualifications, expertise, knowledge or skill of the 
medical or other expert to whom the content is 
attributed; or bias or personal interest of the expert. 
An example of a reasoning sentence is: 

The Board finds that the clinician's opinion is 
competent because she is qualified through 
education, training, or experience to offer medical 
diagnoses, statements, or opinions. [BVA 
1340434] 

The second set of factors concerns the basis for 
the content of the medical record. Relevant factors 
for trustworthiness include: whether the content of 

Table 4: Factors Affecting Trustworthiness of 
Information within Medical Records 
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the medical record is based on observations made 
personally by the source; the credibility or 
accuracy of other information that the expert relied 
upon (e.g., reports of personal history by the 
veteran); and the extent of the patient’s record that 
the expert took into account in creating the content 
of the medical record. Some example reasoning 
sentences are: 

This examiner's opinion was rendered following 
review of the claims file and interview of the 
Veteran.  No deficiency is found in either respect.  
The Board notes that the Veteran's interview took a 
"great deal of time."  That is shown by the 
examiner's use of that phrase and the fact that the 
summarization of the interview is around three 
pages in length.  There is no indication of reliance 
on an inaccurate factual premise in formulating 
the opinion.  A rationale for it was offered by the 
examiner.  It further is sufficiently thorough and 
detailed. [BVA 1303141] 

The above examples also illustrate some factors 
from the third set of factors, which address the 
content of the medical record. These factors 
include: remarks in the content that might serve to 
undermine the conclusiveness of the content (e.g., 
“possibly”); the extent of detail provided in the 
content; the degree of consistency or inconsistency 
with other evidence; and whether there is positive 
corroboration from other evidence, especially 
other medical evidence. Another example is: 

The relevant evidence on this question includes a 
February 2007 VA examination report where the 
examiner opined that it was at least as likely as not 
that the Veteran suffered PTSD in her youth and 
that this was "possibly aggravated" by service. 
[BVA 1343153] 

6 Patterns or Soft Rules for Comparing 
Conflicting Items of Evidence 

Our study disclosed that the BVA has also 
developed recurring patterns of reasoning when 
comparing the probative value of conflicting 
evidence on the same issue of fact. In this section 
we provide examples of such patterns. 

6.1 Comparing Evidence of Same Type 

The lists of factors presented in Section 5 also 
supply an analytic approach to comparing 
conflicting evidence of the same type (e.g., 
conflicting medical records). In BVA 1400029, for 

example, on the issue of diagnosis of present 
PTSD, there was a conflict between VA treatment 
records (declining to diagnose PTSD) and a 
medical record by a private psychologist 
(diagnosing PTSD). After evaluating each of the 
available medical records on relevant factors, the 
Board reasoned: 

Overall, the November 2010 and September 2011 
VA psychological examinations in particular were 
thorough, supported by an explanation, and 
considered the Veteran's history and relevant 
longitudinal complaints.  The VA opinions and 
treatment records outweigh the private treatment of 
record on the issue of whether the Veteran has a 
PTSD diagnosis in accordance with DSM-IV. 

Because the same factors apply to each item of the 
same type of evidence, those factors provide an 
analytic framework for comparing conflicting 
items. 

6.2 Comparing Evidence of Different Types 

Several patterns or soft rules have developed for 
comparing credible evidence of different types. An 
assessment pattern can function as a “soft rule” if a 
reviewing court has explicitly stated that it is 
reasonable for the BVA to follow such a pattern in 
its decisions. (See Walker, 2007.) A legal rule 
stating that a pattern of assessment is reasonable is 
a permissive rule, stating in effect that the BVA 
may follow such a pattern without great risk of 
reversal by a higher court. But such a rule does not 
mandate following that pattern – it merely 
officially recognizes the pattern. At some later 
time, an appellate court might make using such a 
pattern mandatory (a normal legal rule), especially 
after the pattern becomes generally used. We 
mention and illustrate several of those patterns or 
soft rules. 

Incompetent lay testimony vs. competent 
medical opinion. An important credibility factor 
for lay testimony is competence relative to the 
content. While a veteran is competent to testify 
concerning her own symptoms, the Board is 
skeptical concerning the veteran’s competence to 
testify concerning diagnosis or etiology. The 
appellate courts have held that lay persons (non-
experts) may be competent to testify about medical 
diagnoses under some conditions, e.g., Davidson v. 
Shinseki, 581 F.3d 1313, 1316 (Fed. Cir. 2009). 
However, the Board can consider a difference in 
competence between a lay witness and medical 
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experts on an issue of diagnosis. In addition, the 
regulations on PTSD specifically require “medical 
evidence diagnosing the condition.” Therefore, on 
the issue of diagnosis of present disability, we can 
find the Board deciding in accordance with the 
evidence in the medical records, despite testimony 
by the veteran to the contrary (e.g., BVA 1400029). 

Lay testimony vs. contemporaneous 
documentary evidence. Given the possibility of 
bias or personal interest, together with the innate 
unreliability of human memory, the Board often 
favors contemporaneous documentary evidence 
over conflicting lay testimony made much later. 
While the appellate courts have held that the Board 
cannot automatically determine that competent lay 
testimony lacks credibility simply because it is 
uncorroborated by contemporaneous medical 
records, Buchanan v. Nicholson, 451 F.3d 1331, 
1336 (Fed. Cir. 2006), the Board may weigh the 
absence of contemporaneous medical evidence 
against the lay testimony, id. at 1336-37. Thus, we 
find reasoning that states that contemporaneous 
documentary evidence outweighs later lay 
testimony, especially when the latter is discounted 
due to credibility factors. See, e.g., BVA 1340434. 

The Benefit-of-the-Doubt Rule. Normally, the 
burden of proving the facts of a claim is on the 
party making the claim. When the probative value 
of supporting and opposing evidence is equally 
balanced, the party with the burden of proof must 
lose, as a matter of law. With veterans’ claims, 
however, the statute places the burden of proof on 
the government, and it gives the benefit of the 
doubt to the veteran, 38 U.S.C.A. § 5107(b) 
(2018). Therefore, even when there is conflicting 
evidence of different types, if the Board considers 
the supporting and opposing evidence to be equally 
probative, then it must find the issue of fact for the 
veteran. E.g., BVA 1455333 (VA treatment records 
vs. VA examination record, on issue of present 
diagnosis of PTSD).  

7 Discussion and Future Work 

One important problem in argument mining is 
developing a useful typology for determining 
argument frequency, argument trends, or argument 
success rates. To predict argument outcomes in 
future cases, the argument typology should be 
based on the strength of the substantive evidence 
(the soundness of the argument), not merely on 
formal properties such as syllogistic form (the 
validity of the argument). In addition, a typology 

of arguments should be flexible enough to classify 
most evidence assessment actually found in 
adjudicatory decisions, and it should be 
transferable to many substantive areas of law. The 
typology should have a reasonable likelihood of 
automatic and accurate classification. Finally, for 
the use case of recommending arguments in actual 
cases, the arguments should comply with any 
applicable legal rules on evidence assessment. 

Our future work includes developing such a 
typology for entire arguments, building upon the 
evidence types, credibility factors, and comparison 
patterns discussed in this paper. Evidence types 
provide a method not only for further classifying 
evidence sentences, but also for classifying 
arguments that rely in part on such evidence. 
Factors relevant to an evidence type provide 
independent variables for algorithms that predict 
the credibility or trustworthiness of a particular 
item of evidence. Patterns or soft rules for 
comparing different types of evidence provide 
methods for predicting the net probative value of a 
set of evidence that supports and opposes a 
conclusion on a particular substantive issue. Taken 
together, these layers of semantic classification 
provide a typology for arguments that identifies 
argument types in terms familiar to judges and 
lawyers, a methodology for predicting the strength 
of an argument, and a means of evaluating the 
status of an argument relative to any governing 
legal rules. 

There are good reasons to think that our 
approach (evidence types, credibility factors, and 
comparison patterns) is sufficiently flexible, and 
transferable to areas of law outside veterans’ 
claims. First, sets of rules such as the Federal Rules 
of Evidence govern (with some exceptions) many 
types of judicial cases, both criminal and civil 
(Federal Rule of Evidence 1101, 2017). Even 
where such rules of evidence admissibility do not 
govern (e.g., in many types of administrative 
adjudications), the basic conceptual categories 
from such rules are still employed. For example, 
distinguishing evidence into testimonial, 
documentary and real evidence is probably 
universal in the U.S., as well as classifying 
testimonial evidence into lay and expert. 
Moreover, even when the Federal Rules of 
Evidence do not apply, courts often consult them 
on questions that arise, such as what factors to 
consider in assessing the probative value of expert 
opinions (e.g., Nieves-Rodriguez v. Peake, 22 Vet. 
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App. 295 (2008)). Thus, our approach to 
classifying arguments by types of evidence should 
have broad applicability, even if a particular area of 
law tends to rely on different sub-types of 
evidence. 

Second, appellate courts widely employ the 
concept of a “relevant factor” to establish rules 
governing the fact-finding process, in many 
different areas of law. (E.g., Daubert v. Merrell 
Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993).) 
Moreover, the factors relevant to evaluating the 
credibility of a witness’s testimony are general in 
nature (see the examples in Section 5), and we 
expect them to be applicable across most 
substantive areas within law. 

Finally, we have already found some patterns of 
comparing evidence types in areas of law outside 
veterans’ claims. For example, the pattern of 
favoring contemporaneous documentary evidence 
over conflicting, later lay testimony is a recognized 
pattern in decisions about compensation for 
injuries allegedly caused by vaccinations. (E.g., 
Walton v. Secretary of the Department of Health 
and Human Services, No. 04-503V, 2007 WL 
1467307 (2007).) In sum, there are good reasons to 
conclude that our approach will be widely useful 
across many areas of law. 

In order to generate a sufficient amount of valid 
semantic data using our typology, we also develop 
annotation protocols (classification criteria and 
methods) to give precise meaning to the semantic 
type, to train new annotators, and to review the 
accuracy of human annotations. In our protocols, 
attribution verbs are strong discourse indicators for 
evidence and finding sentences (see Stab and 
Gurevych, 2014), especially when combined with 
signature grammatical subjects, such as “the 
Veteran” or “the Board” (see Walker et al., 2015).  
We also use such protocols to guide the 
development of rule-based software and linguistic 
features for automatically classifying legal texts 
(e.g., Savelka et al., 2017). Stab and Gurevych 
(2014) have classified such features into 5 groups. 
For example, the main verb of a finding sentence 
tends to be in present tense, while the main verbs 
of evidence sentences tend to be in past tense. 
Features derived from the protocols can drive the 
application of high-precision / low-recall 
techniques of the kind used successfully by 
Lawrence and Reed (2017). The system 
architecture described by Rinott et al. (2015) for 
ranking candidates for context-dependent evidence 

might be promising in this regard. We will use the 
results of our present qualitative study as the 
framework for such future quantitative research. 

The development of factors that increase or 
decrease either credibility or trustworthiness 
(Section 5) invites research into probabilistic 
models. Perhaps sufficient data could be obtained 
to develop models for predicting credibility and 
trustworthiness of evidence in new cases. If so, this 
approach would have applications beyond the legal 
domain. 

Finally, we are developing techniques for 
achieving the inter-operability of the semantic 
types used for argument classification with the 
legal rules in the U.S. that constrain the evidence 
assessment process. We have provided examples of 
such legal rules throughout this paper, as well as 
elsewhere (Walker et al., 2017b). The semantic 
types used to classify arguments should include the 
concepts found in the conditions of such rules – 
e.g., rules governing “lay testimony,” “expert 
opinion,” or “medical record.” Any analytic 
service that monitors or recommends arguments in 
legal cases would need to access and apply such 
legal rules. 

The annotated dataset for this study will be 
publicly available on GitHub, at: 
https://github.com/LLTLab/VetClaims. 

8 Conclusion  

On the basis of an empirical study of veterans’ 
disability claims in the United States, we are 
developing a typology for arguments. We think that 
our approach to evidence types, credibility factors, 
and patterns for comparing probative value will 
provide a useful typology for fact-finding 
arguments that is transferable to domains of law 
other than veterans’ disability claims, and perhaps 
also to non-law domains. 
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Abstract

Most of the existing works on argument
mining cast the problem of argumentative
structure identification as classification tasks
(e.g. attack-support relations, stance, explicit
premise/claim). This paper goes a step further
by addressing the task of automatically iden-
tifying reasoning patterns of arguments using
predefined templates, which is called argu-
ment template (AT) instantiation. The contri-
butions of this work are three-fold. First, we
develop a simple, yet expressive set of easily
annotatable ATs that can represent a major-
ity of writer’s reasoning for texts with diverse
policy topics while maintaining the computa-
tional feasibility of the task. Second, we cre-
ate a small, but highly reliable annotated cor-
pus of instantiated ATs on top of reliably an-
notated support and attack relations and con-
duct an annotation study. Third, we formulate
the task of AT instantiation as structured pre-
diction constrained by a feasible set of tem-
plates. Our evaluation demonstrates that we
can annotate ATs with a reasonably high inter-
annotator agreement, and the use of template-
constrained inference is useful for instantiat-
ing ATs with only partial reasoning compre-
hension clues.

1 Introduction

Recognizing argumentative structures in unstruc-
tured texts is an important task for many natu-
ral language processing (NLP) applications. Ar-
gument mining is an emerging, leading field of
argumentative structure identification in the NLP
community. It involves a wide variety of sub-
tasks for argumentative structure identification
such as explicit premise and claim identifica-
tion/classification (Reed et al., 2008; Rinott et al.,
2015; Stab and Gurevych, 2014), stance classifica-
tion (Hasan and Ng, 2014; Persing and Ng, 2016),
and argumentative relation detection (Cocarascu

and Toni, 2017; Niculae et al., 2017; Peldszus and
Stede, 2015b; Stab and Gurevych, 2017). These
tasks have been useful for applications such as es-
say scoring, document summarization, etc. (Ghosh
et al., 2016; Stab and Gurevych, 2017).

This paper addresses a feasible annotation
scheme for the task of reasoning pattern identifica-
tion in argumentative texts. Consider the follow-
ing argument consisting of two argumentative seg-
ments S1 and S2 regarding the policy topic Should
Germany universities charge tuition fees?:

(1) S1: German universities should not charge
tuition fees.
S2: Every German citizen has a right to edu-
cation.

In this work, we adopt Walton et al. (2008)’s argu-
mentation schemes (ASs), one prominent theory
used for identifying reasoning patterns in every
day arguments. Using Walton et al. (2008)’s Ar-
gument from Negative Consequences scheme, the
reasoning of Example 1 can be explained as fol-
lows:

• Premise : If action x is brought about, bad
consequences y will occur.

• Conclusion: x should not be brought about.

where both x and y are slot-fillers and x=“charge
tuition fees” and y=“a right to education will be
violated”. Each AS identifies a scheme (from 65
total schemes) and appropriate slot-fillers. Instan-
tiations of such reasoning patterns for an argument
have several advantages.

First, identifying such reasoning will be useful
for a range of argumentation mining applications,
such as aggregating multiple arguments for pro-
ducing a logic-based abstractive summary. Sec-
ond, we believe that it will contribute towards
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automatically assessing the quality of the logi-
cal structure of a given argument, where identify-
ing specific arguments can signify higher quality,
especially for tasks such as essay scoring (Song
et al., 2014; Wachsmuth et al., 2016). Third, it
will be useful for generating support or attacks in
application contexts where a human and machine
are cooperatively engaged in a debate (for decision
support or education). Furthermore, understand-
ing the reasoning in an argumentative text can con-
tribute towards determining implicit ARs not indi-
cated with an explicit discourse marker.

Towards automatically identifying the underly-
ing reasoning of argumentative texts, Reed (2006)
created Araucaria, a corpus consisting of ar-
gumentative texts annotated with Walton et al.
(2008)’s ASs. Feng and Hirst (2011) used Arau-
caria for creating a computational model for iden-
tifying the type of argumentation scheme.

Although Araucaria is a well-known corpus
in the argumentation mining community, it suf-
fers from complex annotation guidelines which
makes the annotation task difficult.1 A follow up
study (Musi et al., 2016) reports that the inter-
annotator agreement of annotating a simplified
taxonomy of the Argumentum Model of Topics
argumentation schemes (Rigotti, 2006; Palmieri,
2014) results in Fleiss’ κ = 0.31 (“fair agreement”)
even if the annotators are trained and only a subset
(8 types) of schemes are annotated. In this work,
we assume the following: (i) annotating multiple
types of ASs is difficult, and (ii) the reliability of
annotating reasoning patterns for a single AS with
implicit slot-fillers is low because when slot-fillers
are not explicitly written in the original text, they
must manually be generated by annotators using
natural language sentences; this allows for a wide
variety of possible, arbitrary candidates for each
scheme (e.g. y=“a right to education is violated” in
Example 1), making the annotation costly and dif-
ficult. Towards constructing a highly-reliable cor-
pus for the task of automatic reasoning identifica-
tion in argumentative texts, an annotation scheme
that covers a wide-range of arguments as much as
possible and simultaneously offers a simple way
to specify implicit slot-fillers instead of manually
creating natural language sentences is crucial.

This paper makes three important contributions
towards automatically capturing a writer’s reason-

1An inter-annotator agreement was not reported in Reed
(2006).

ing in argumentative texts. First, we compose
a simple, yet expressive set of easily annotat-
able templates (argument templates or ATs) that
allow for writer’s reasoning to be representable
without the need for manual generation of nat-
ural language sentences when slot-fillers are im-
plicit. Specifically, we propose a template/slot-
filler based approach for instantiating reasoning
patterns that capture the underlying reasoning be-
tween two argumentative segments in an argumen-
tative relation (AR) using two types of causal la-
bels (e.g. PROMOTE and SUPPRESS). Our annota-
tion study demonstrates that we can annotate ATs
with a reasonably high inter-annotator agreement
(Cohen’s κ=0.80) and ATs can represent a major-
ity (74.6%) of writer’s reasoning in a small essay
corpus with multiple, diverse policy topics. Sec-
ond, using ATs, we augment an existing, reliable
corpus of argumentative texts (Peldszus and Stede,
2015a) with writer’s reasoning and create a small,
but useful corpus on top of pre-labeled argumen-
tative relations. Third, towards creating a fully-
automated argument template instantiation model,
we create a preliminary computational model for
instantiating ATs. We formulate the task of AT in-
stantiation as structured prediction constrained by
a feasible set of ATs. We hypothesize that the in-
troduction of such constraints enables us to instan-
tiate ATs with only partial reasoning comprehen-
sion clues. Our evaluation shows that template-
constrained inference is indeed useful for instanti-
ating ATs with only partial reasoning comprehen-
sion clues.

2 A Corpus of Instantiated Argument
Templates

The key requirements for automatically capturing
an argument’s reasoning are four-fold: (i) capture
a writer’s implicit reasoning as much as possible,
(ii) be machine-friendly, (iii) be useful for down-
stream applications, and (iv) keep human annota-
tion simple. Towards this goal, as mentioned in
Section 1, Reed (2006) created Araucaria, a cor-
pus consisting of argumentative texts annotated
with Walton et al. (2008)’s ASs. However, the an-
notation scheme requires annotators to manually
generate natural language sentences for implicit
slot-fillers (i.e. (ii) and (iv) are not considered).

To address this issue, we propose a method
that allows annotators to avoid manual genera-
tion of natural language sentences when a slot-
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German universities should not charge tuition 
fees.

Every German citizen has a right to education.
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Figure 1: Overview of our argument template instantiation approach for capturing underlying reasoning.

filler is implicit. Given two argumentative state-
ments with a known AR, our task is to identify
the reasoning between them by (i) selecting a tem-
plate from a predefined template set (argument
templates (ATs)), where each template encodes a
causal label, and (ii) instantiating the template via
slot-filling, where the slot is linked with a rele-
vant, arbitrary phrase in the input text. Figure 1
exemplifies our proposed approach, using the sup-
port relation from S2 to S1 in Example 1. The first
step is to identify an AT: “S1, the target segment
of the relation (i.e. St), states that x should not be
brought about (i.e. bad)2 , because S2, the source
segment of the relation (i.e. Ss), states that x is bad
because when x happens, y, a good entity/event,
will be suppressed.”. The second step is to instan-
tiate the template by filling in the slots x,y with a
phrase from the text: x =“charge tuition fees” and
y =“a right to education”. By encoding causal la-
bels, annotators are no longer required to manu-
ally construct implicit slot-fillers (e.g. y=“a right
to education will be violated” in Section 1).

The key insight about template design from
previous work (Musi et al., 2016) is that if we
annotate reasoning with coarse-grained reasoning
types, the annotation becomes more difficult. In
this work, we hypothesize that patterns for rep-
resenting argumentation are not uniformly dis-
tributed but highly skewed, and create an inven-
tory of major ATs, annotating only typical in-
stances of reasoning with them. We label in-
stances where a template cannot be instantiated as
“OTHER”. In fact, as we report in Section 2.3, the
variety of reasoning underlying ARs in the corpus
we use can be largely captured by only a small
number of predefined templates. Although the ex-

2A target segment may either be a premise or conclusion
in our dataset. Therefore, we consider the classification of x
equivalent to its consequence (i.e. x=bad is equivalent to “x
should not be brought about”).

pressibility of a slot-filler will be reduced by em-
bedding causal labels into our templates, the feasi-
bility of the computational task will be increased.
In the future, we plan to capture the causal in-
formation lost by annotating other factors of the
causality such as severity, truthfulness, likelihood,
etc.

2.1 Dataset

We create our set of ATs using the arg-microtexts
corpus3(Peldszus and Stede, 2015a), a corpus of
manually composed arguments, due to its high re-
liability of annotated relations amongst 3 annota-
tors (Fleiss κ = 0.83).4. The corpus contains 112
argumentative texts, each consisting of roughly
five segments composed of a policy topic ques-
tion, a main claim, and several premises. Each
argument in a text is comprised of a policy argu-
ment, where each topic supports that one should or
should not do something. Additionally, each argu-
mentative segment was annotated with its stance
(i.e. opponent or proponent) towards the topic
question. 357 ARs between segments have been
manually annotated as either SUPPORT (i.e. a seg-
ment supports the acceptability of another argu-
mentative segment), ATTACK (i.e. a segment at-
tacks the acceptability of another argumentative
segment), or UNDERCUT (i.e. a segment attacks
another AR) relations, where each relation makes
up 62.7% (224/357), 23.5% (84/357) and 13.8%
(49/357), respectively.

In total, we used 89 texts5, consisting of 23 di-
verse policy topics (e.g. fines for dog dirt, waste
separation, etc.). We divided the corpus into two

3https://github.com/peldszus/arg-microtexts
4Although the texts from the arg-microtexts corpus are

controlled in a sense that they are not from “real” argumenta-
tive texts, we believe annotation on top of it is a good starting
point due to its high reliability.

5The corpus has 112 texts, but we ignored 23 of the texts
which did not include a topic question.
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Figure 2: Some argument templates created and used in our corpus creation for SUPPORT and ATTACK

relations, inspired by Walton et al. (2008)’s Argument from Consequences scheme.

disjoint sets: (i) a development set (20 texts, 87
relations) and (ii) test set (69 texts, 270 relations).
We used the development set to induce the ATs
described in Section 2.2 and conduct several trial
annotations.

2.2 Argument Templates

We build our inventory of ATs based on Walton
et al. (2008)’s argumentation schemes and ana-
lyze the development set for identifying the types
of argumentation schemes. As the arg-microtexts
corpus consists of policy arguments, we find that
the most commonly used argumentation schemes
from the corpus include the Argument from Pos-
itive (Negative) Consequences schemes, hereby
referred to as the Argument from Consequences
(AC) scheme. The scheme is as follows:

• Premise : If x is brought about, good (bad)
consequences y will occur.

• Conclusion: x should (not) be brought
about.

We create ATs for a SUPPORT relation by consid-
ering the relation between the premise and conclu-
sion (e.g. Ss and St in Figure 1, respectively).

To represent ATTACK relations with argumenta-
tion schemes, we assume that a premise supports
the opposite conclusion.

(2) St : German universities should not charge
tuition fees.
Ss: However, tuition fees could promote bet-
ter education quality.

For instance, in Example 2, an ATTACK relation
exists from Ss to St . The premise, Ss, is in support

of the opposite conclusion (i.e. “German universi-
ties should charge tuition fees”). We represent this
phenomena using the ATTACK templates shown in
Figure 2.

AC-inspired templates As shown in Figure 2,
we first create four ATs for a SUPPORT relation
(AT-S1 to AT-S4). An example is as follows:

AT-S1: St , the target segment, implies/states
that x, an entity/event, is GOOD and should
be brought about. Ss, the source segment,
implies/states that x is GOOD, because when
x exists/happens (or existed/happened), y, a
GOOD entity/event, will be (or was) PRO-
MOTED (or NOT SUPPRESSED)6

In Example 1, the reasoning is instantiated by AT-
S3, with x=“charge tuition fees”, a BAD thing, and
y=“a right to education”, a GOOD thing.

The terms GOOD and BAD refer to the value
judgment (VJ) a writer has towards a template
slot. This differs from the original stance in
the arg-microtexts corpus, which considers the
stance of the whole argumentative segment to-
wards the topic. PROMOTE and SUPPRESS refer
to the causality between slot-fillers x and y, where
PROMOTE refers to the activation of something
(e.g. smoking leads to cancer) and SUPPRESS

refers to the inactivation (e.g. smoking destroys
lives) (Hashimoto et al., 2012). To reduce the com-
plexity of the annotation study, we do not consider
the modality of causality.

For an ATTACK relation, we create four ATs
(AT-A1 to AT-A4), as illustrated in Figure 2.

6For our annotation, we consider both PROMOTED and
NOT SUPPRESSED and both SUPPRESSED and NOT PRO-
MOTED as equivalent in order to control the complexity of
the task.
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Figure 3: Argument templates for non-AC reasoning.

AT-A1: St implies/states that x is GOOD and
should be brought about, but Ss implies/states
that x is BAD because when x exists/happens
(or happened), y, a GOOD entity/event, will
be (or was) SUPPRESSED (or NOT PRO-
MOTED).

In Example 2, the reasoning is instantiated by AT-
A3, with x=“corporate income tax”, a BAD thing,
and y=“better education quality”, a GOOD thing.

Additional templates We create a few ATs to
capture minor, non-AC reasoning for each rela-
tion, including UNDERCUT relations. In total, we
create four additional types of ATs: presuppo-
sition, argument from analogy, proposition, and
quantifier. We create four templates (not shown)
for an UNDERCUT relation. We thus assume St as
a link, denoted as Rt . An example is as follows:

AT-U1: Rt supports the goodness of x, but Ss im-
plies/states that x is BAD because when x hap-
pens (or happened), y, a GOOD thing, will be
(or was) SUPPRESSED (or NOT PROMOTED).

Figure 3 shows analogous and propositional
templates for SUPPORT (AT-SA1 and AT-SA2)
and ATTACK (AT-AA1 and AT-AA2) relations.
The template is as follows (e.g. AT-AA1):

AT-AA1: St states that x is BAD, and Ss states
that x is BAD because y is BAD and is analo-
gous to x.

For the UNDERCUT relation, our analysis re-
vealed that a quantifier in a relation could be at-
tacked. Thus, we create the template AT-UQ1 for
UNDERCUT, represented as:

AT-UQ1: R1 assumes a quantifier q, but Ss dis-
agrees with it.

(3) R1Sx
: Intelligent services must urgently be

regulated more tightly by parliament;
R1Sy

: this should be clear to everyone after
the disclosures of Edward Snowden.
Ss: Granted, those concern primarily the
British and American intelligence services,

In Example 3, R1, a SUPPORT(Sx,Sy) relation, as-
sumes that all intelligent services should be regu-
lated more tightly; however, Ss states that only two
services are concerned.

To capture the argument where the underlying
assumptions in one segment are supported or at-
tacked by another, we introduce the relations AT-
SP1, AT-AP1, and AT-UP1 for SUPPORT, AT-
TACK, and UNDERCUT, respectively. The tem-
plate can be interpreted as follows (e.g. AT-AP1):

AT-AP1: St assumes a presupposition p, but Ss

agrees with it.

(4) St : For dog dirt left on the pavement dog
owners should by all means pay a bit more.
Ss: Indeed, it’s not the fault of the animals

In Example 4, St presupposes that dog dirt is
the fault of the animals, but Ss disagrees. Thus,
template AT-AP1 would be selected.7

We also create templates for propositional ex-
planations, represented in templates AT-SP2 and
AT-AP2. The templates can be interpreted as fol-
lows (e.g. AT-SP2):

AT-SP2: St states a proposition p, and Ss re-
states it.

7¬presupposition means that Ss disagrees with the presup-
position in St (R1 in the case of UNDERCUT). This notion is
similar for quantifier and proposition.
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2.3 Annotation Study

For testing the feasibility of our templates, we
observe two metrics using the test set: (i) inter-
annotator agreement and (ii) template coverage.
For our inter-annotator agreement study, we asked
two fluent-English speakers with knowledge of
ASs to explain each AR with an argument tem-
plate and to fill in the template’s slots using the an-
notation tool brat (Stenetorp et al., 2012). To study
the coverage of relations which can be represented
with an AT, we asked the annotators to mark a re-
lation as the special pattern “OTHER” when any
AT cannot be instantiated for a given relation. The
annotators were given the original, segmented ar-
gumentative text, its ARs (i.e. SUPPORT, ATTACK,
and UNDERCUT relations), and the predefined list
of ATs. As a training phase, both of the annotators
were asked to annotate the development set and to
discuss disagreements amongst each other.

Next, the annotators were instructed to individ-
ually annotate all 270 relations in the test set. As
we were aware that an annotation may consist of
two or more compatible instantiations, one being
more salient than the others, we wanted to re-
gard all semantically compatible templates as cor-
rect. For example, consider the following text
from the annotation: St : The death penalty should
be abandoned. Ss: Innocent people are convicted.
Both of the annotators agreed that an AT from
Figure 2 was appropriate and slot x was “death
penalty”. However, one annotator chose AT-A3
with y = “Innocent people”, a GOOD entity, and
the other annotator chose AT-A4 with y = “Inno-
cent people are convicted”, a BAD event. The an-
notators agreed with each other’s annotation be-
cause PROMOTE(death penalty, Innocent people
are convicted) and SUPPRESS(death penalty, In-
nocent people) are semantically compatible.

Therefore, when analyzing the inter-annotator
agreement, we categorized each pair of template
instantiations as “agreeable” if the following con-
ditions were met: (i) the ATs selected by both an-
notators are exactly the same and the phrases asso-
ciated with the template slots are exactly the same
or overlapped, or (ii) if (i) was not met, each of
the annotators agreed on the other’s annotation.8

46.3% (125/270) of the relations were categorized
as “agreeable” for (i) only. For both (i) and (ii),

8The results were unbiased, as one of the annotators
agreed 72 times and did not agree 74 times; the other an-
notator agreed 64 times and did not agree 82 times.

85.9% (232/270) of the relations were categorized
as “agreeable”. The Cohen’s Kappa (κ) score is
0.80, indicating a good agreement. This difference
in agreement signifies the variety of semantically
compatible instances for a given pair of argumen-
tative relations. This also indicates the importance
of conducting a large-scale annotation, where a
pair of ARs may have two or more semantically
compatible instances.

The coverage of relations representable with an
AT for the test set is 74.6% (173/232).9. Although
our set of ATs is small, we cover a majority of
patterns on a test set consisting of multiple, diverse
topics. Our results support our hypothesis that ATs
are not uniformly distributed but highly skewed.

3 Instantiating ATs with Constrained
Structured Prediction

3.1 Overview
The full-fledged task of automatically instantiat-
ing ATs for two argumentative segments is com-
putationally challenging due to a large amount of
arbitrary slot-fillers x and y for an AT. As a first
step towards full-fledged parsing, due to the small
size of our corpus, we simplify this challenge in
our current task setting by (i) limiting AT instanti-
ations to ATTACK and SUPPORT relations instan-
tiated with an AC template (i.e. 8 templates in
Figure 2) due to the low distributions of other ATs
(e.g. undercut, presupposition, etc) and (ii) assum-
ing slot-fillers x and y have already been identified.
In our future work, we will relax these conditions
by testing against arbitrary slot-filler pairs and rea-
soning which may not be instantiated using ATs.

Let us formally define the simplified task of
AT instantiation. Our input is two argumenta-
tive segments St ,Ss and slot-fillers x in St and y
in Ss. Our output is an appropriate AT repre-
senting the writer’s reasoning behind St and Ss in
terms of slot-fillers x,y. To represent an AT in-
stantiation, we use the notation 〈r,vx,c,vy〉, where
r ∈ {SUPPORT,ATTACK}, vx,vy ∈ {GOOD,BAD}
and c ∈ {PROMOTE, SUPPRESS} represent an ar-
gumentative relation, a VJ of slot-fillers x and
y, and the type of causality from x to y, respec-
tively (e.g. 〈SUPPORT,BAD, PROMOTE,BAD〉 for
AT-S4). We refer to r,vx,c,vy as AT ingredients.

The core idea of the proposed method is as fol-
lows. Observing the AT dev set, we found that

9For the distribution of templates, please see the supple-
mentary materials.
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contextual clues are typically not available for all
AT ingredients but for some AT ingredients. Thus,
we hypothesize that AT ingredients with no ex-
plicit clue can be inferred using the knowledge of
ATs their ingredients identified by explicit clues.
In Example 1, for instance, if we already know
that (i) the value judgment vx of “charge tuition
fees” is BAD, (ii) the value judgment vy of “a right
to education” is GOOD, and (iii) the argumentative
relation r is SUPPORT, then we can uniquely iden-
tify that the causality is SUPPRESS.

3.2 Models for AT ingredients
We create three models marg,mval, and mcau for
identifying an AR, VJ, and causality, each of
which returns a confidence score of their decision.
As this is the first attempt at automating the instan-
tiation of ATs, we use simple models for identify-
ing AT ingredients rather than developing sophis-
ticated models. This makes the framework trans-
parent and analysis simple while allowing us to ex-
amine the effectiveness of template constraints.

Value Judgment (mval) We train a Support
Vector Machine (SVM)-based binary classi-
fier (Cortes and Vapnik, 1995) to identify the VJ
of the given slot-fillers x,y (i.e. GOOD or BAD).
From observation of the AT dev set, we found
the following features useful for VJ identification:
(i) auxiliary verbs (e.g. should, must, ought) and
(ii) negated auxiliary verbs (e.g. should not, must
not).10 We also found that adjectives, both inside
and outside a slot-filler, are useful. For example,
consider the following text: “Yes, it is annoying
and cumbersome to separate your trashx”. The
keywords annoying and cumbersome explicitly in-
dicate that the VJ of the slot-filler x (i.e. to sepa-
rate your trash) is bad. Simultaneously, we dis-
covered that slot-fillers had clues themselves for
indicating VJ (e.g. Innocent in “Innocent peo-
ple”). Thus, we introduce two additional features:
(iii) the average sentiment of each adjective out-
side the slot-filler and (iv) inside the slot-filler. 11

Causal Relations (mcau) We develop a simple
rule-based classifier for identifying causal rela-
tions between the given slot-fillers x and y. We
use a predefined list of causal phrases (i.e. causes,
will lead to, etc. for PROMOTE, and destroy,

10We parse each segment using Spacy (Honnibal and John-
son, 2015).

11We use an existing sentiment lexicon (Warriner et al.,
2013) to extract the sentiment polarity of each adjective.

kill, etc. for SUPPRESS) composed from Reis-
ert et al. (2015). We use the AT development
set to expand the phrase list for any PROMOTE

or SUPPRESS phrases not in the list. Given the
source Ss and target St segments, we use the fol-
lowing rules: If a PROMOTE phrase appears af-
ter x in St , then predict PROMOTE with a con-
fidence score of 1.0, namely mcau(PROMOTE) =
1.0,mcau(SUPPRESS) = 0.0. The same rule is ap-
plied to a SUPPRESS phrase. Else if a PROMOTE

phrase appears before y in Ss, then predict PRO-
MOTE with a confidence score of 1.0. The same
rule is applied to a SUPPRESS phrase. Otherwise
(i.e. there are no PROMOTE or SUPPRESS phrases),
we predict PROMOTE, the majority relation (66%)
in the AT development set. Since we are less confi-
dent than other ingredients if there is no contextual
clue for the causality, we set the confidence scores
to mcau(PROMOTE) = ε,mcau(SUPPRESS) = 0.1ε .
ε is a number less than all confidence scores given
by AR and VJ models.

Argumentative Relations (marg) We replicate a
simple classification model (Peldszus and Stede,
2015b) for identifying the argumentative relation
between given segments Ss and St (as either SUP-
PORT or ATTACK). The classifier is based on a
logistic regression and uses surface features such
as lemma, part-of-speech tags, and segment length
from the source and target segments.

3.3 Putting all things together

To instantiate an AT, we use a standard lin-
ear model constrained by ATs as follows:
argmax
r,vx,c,vy

w ·Φ(r,vx,c,vy)s.t. 〈r,vx,c,vy〉 ∈ T ,

where w is a weight vector, Φ is a feature
function of an AT instantiation 〈r,vx,c,vy〉 and
T represents the SUPPORT and ATTACK tem-
plates from Figure 2. The feature function
Φ(r,vx,c,vy) returns an 8-dimensional fea-
ture vector characterizing an AT instantiation
as follows: {marg(SUPPORT),marg(ATTACK),
mval(x,GOOD), mval(x,BAD), mcau(PROMOTE),
mcau(SUPPRESS),mval(y,GOOD),mval(y,BAD)}.
We use the confidence values of each AT ingre-
dient calculated by the separate models described
in Section 3.2. For instance, given an AT in-
stantiation 〈SUPPORT,BAD, PROMOTE,BAD〉,
we create the following feature vec-
tor: {marg(SUPPORT),0,0,mval(x,BAD),
mcau(PROMOTE) ,0,0,mval(y,BAD)}. We
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learn w on training data by using an averaged
structured perceptron (Collins, 2002). We call
this a template-constrained inference model, or
TCI. To see the effectiveness, we consider the
model without 〈r,vx,c,vy〉 ∈ T , which we call
non-constrained inference model, or NI. If the NI
model’s output does not match an AT, we output
〈SUPPORT,GOOD, PROMOTE,GOOD〉 (AT-S1),
the majority AT in the dev set.

The advantage of TCI is that if a model of each
ingredient is not confident about its prediction and
the most-likely AT is invalid, the wrong predic-
tion can be fixed by combining the knowledge of
ATs and other confident AT ingredient predictions.
The NI model entirely depends on the independent
decision of each ingredient model, regardless of
whether the predictions are confident or not, which
is compensated by TCI.

4 Evaluation

4.1 Setting
In Section 2, the annotators were given an argu-
mentative relation and instructed to instantiate an
AT. Towards fully automating the task of AT in-
stantiation, we also test our system when no ar-
gumentative relation is given. Therefore, we con-
sider two settings: (i) predict an AT with the gold-
standard argumentative relation (G) and (ii) with
no gold-standard relation (N). Thus, we examine
four models: NI-G, NI-N, TCI-G, and TCI-N.12

For all models for AT instantiation, we con-
duct a 5x10-fold cross validation using 231 unique
SUPPORT and ATTACK AC instantiations collected
from the annotations on the 69 texts (270 rela-
tions) from our test set.13 In each fold, we create
a validation set consisting of one-fifth of the train-
ing data. We then oversample the training data.
We employ early stopping with a patience of 2
and measure its performance using the accuracy
of predictions on the validation set.

4.2 Results and discussion
The results (F1 score) for the marg,mval, and mcau
subtask models are as follows: 0.59, 0.65, 0.42.
The results indicate that the rule-based causality
classifier has lower performance. We attribute this

12For mval, we estimate the hyperparameters of SVM by
performing an exhaustive grid search with a 3-fold cross-
validation on the AT dev set instances (Radial Basis Function
(RBF) kernel, c=1000, gamma=0.005).

13One relation may have two unique, semantically compat-
ible instantiations amongst our two annotators.

Table 1: Performance of our AT instantiation mod-
els with standard deviation across 5-folds.

Model Precision Recall F1
Majority 0.03±0.00 0.12±0.00 0.05±0.00
Random 0.02±0.01 0.12±0.00 0.04±0.01
NI-N 0.17±0.06 0.17±0.02 0.13±0.01
TCI-N 0.23±0.01 0.21±0.02 0.19±0.01
NI-G 0.35±0.08 0.24±0.01 0.21±0.02
TCI-G 0.44±0.02 0.41±0.02 0.38±0.01

Table 2: The performance of implicit causality
(CS) and value judgment (VJ) ingredients between
NI-G / TCI-G.

Ing. Precision Recall F1
CS 0.48 / 0.88 0.43 / 0.88 0.38 / 0.88
VJ 0.59 / 0.61 0.65 / 0.62 0.57 / 0.60

to the lack of explicit contextual clues indicating
the causality between slot-fillers. Through a sub-
jective analysis, we found that roughly 88% of
causal relations are implicit in the AT test set, thus
PROMOTE is mainly predicted.

Table 1 shows the results of AT instantiation.
The low performance of a majority and random
baseline indicates that the AT instantiation task
is not simple. The proposed models (NI, TCI)
clearly outperform these baseline models. The
TCI model consistently outperforms the NI model
in both settings G and N. This indicates that tem-
plate constraints are useful for instantiating ATs.

To further test our hypothesis that AT ingredi-
ents without an explicit contextual clue (i.e. im-
plicit) can be inferred with a template constraint,
we manually analyzed all 231 of the testing in-
stances and label whether or not an explicit con-
textual clue exists for VJ and causality. We then
compared the accuracies of each ingredient on
implicit problem instances for NI-G and TCI-G.
Shown in Table 2 are our results which indicate
that our model is able to infer ingredients with no
explicit contextual clue more reasonably with the
introduction of a template constraint, especially in
the case of causality.

The following shows an AT without an explicit
contextual clue for causality that was predicted
correctly using TCI-G: “St : Nevertheless, every-
body should contribute to the funding of the public
broadcastersx in equal measure, Ss: for we need
general and independent mediay.”, where explicit
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clues (i.e. should contribute to and we need) indi-
cate the VJ of x,y, both GOOD, but the causality
between x and y is implicit. Combining this with
the SUPPORT relation, the template constraints in-
dicate that AT-S1 is the only possibility.

5 Related Work

ATs Reed (2006) annotated the Araucaria cor-
pus (Reed, 2006) with Walton et al. (2008)’s
argumentation schemes (AS), and successive
work (Feng and Hirst, 2011) created a machine
learning-model to classify an argument into five
sets of schemes. However, Reed (2006) does not
report the inter-annotator agreement. Lawrence
and Reed (2016) created a model for instantiat-
ing ASs with a natural language representation,
whereas we instantiate using templates and slot-
fillers. Green (2015) conducted work on identify-
ing new ASs used in biomedical articles.

Several argumentative corpora have been cre-
ated for argumentation mining fields such as ar-
gument component identification, argument com-
ponent classification, and structure identification
(Reed et al., 2008; Rinott et al., 2015; Stab and
Gurevych, 2014). Earlier work on discourse struc-
ture analysis includes discourse theories such as
Rhetorical Structure Theory (Mann and Thomp-
son, 1987). The Penn Discourse TreeBank, the
largest manually annotated corpus for discourse
relations, targeted both implicit and explicit re-
lation detection for either adjacent sentences or
clauses (Prasad et al., 2008). However, these stud-
ies do not aim for capturing implicit reasoning be-
hind arguments.

AT ingredients Although we adopted a sim-
ple approach for AT ingredient identification for
our first attempt (see Section 3.2), many sophis-
ticated approaches have been proposed. Shallow
discourse analysis of ARs has been extensively
studied (Cocarascu and Toni, 2017; Niculae et al.,
2017; Peldszus and Stede, 2015a,b). VJ iden-
tification is similar to targeted sentiment analy-
sis (Mitchell et al., 2013; Dong et al., 2014). So-
masundaran and Wiebe (2010) developed an an-
notation method for targeted sentiment. However,
we aim to expand the annotation to other types
of arguments, and their work only considers the
task setting of stance classification. Finally, causal
relation identification between an entity pair in
a sentence has been studied (Zhang and Wang,

2015). In the future, we will incorporate these so-
phisticated techniques into our model.

6 Conclusion and future work

In this work, we propose a feasible annotation
scheme for capturing a writer’s reasoning in argu-
mentative texts. We first developed a small list of
predefined templates (ATs) for capturing the rea-
soning of ARs, where each template encodes a
causal label that enables annotators to avoid man-
ual generation of natural language slot-fillers, and
conducted a corpus study. Our results indicate that
ATs are highly skewed, and even with a small set
of ATs, we can capture a majority of reasoning
(74.6%) for multiple, diverse policy topics. We
believe that the design decision to leave a wide
variety of long-tailed, minor classes of reasoning
as “OTHER” helps keep the AT instantiation sim-
ple. Furthermore, our results can be considered
a good achievement (Cohen’s κ=0.80). The an-
notated corpus is made publicly available.14 We
then created several preliminary models for auto-
matically instantiating ATs. We discovered that
template-constrained inference helps towards in-
stantiating ATs with implicit ingredients necessary
for understanding the reasoning behind an argu-
ment.

In the future, we will extend our work by
conducting a large-scale annotation of ATs using
methods such as crowdsourcing, and we will ex-
periment with full-fledged parsing via recent neu-
ral models for capturing argumentative component
features (Eger et al., 2017; Schulz et al., 2018;
Ajjour et al., 2017). We plan to use other available
argumentative corpora for conducting our experi-
ments. We will also work towards expanding our
templates and integrating them into the argument
reasoning task proposed in SemEval2018 (Haber-
nal et al., 2017). Finally, we plan to capture the
causal information lost by annotating other factors
of the causality such as severity, truthfulness, like-
lihood, to name a few.
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Eddo Rigotti. 2006. Relevance of context-bound loci
to topical potential in the argumentation stage. Ar-
gumentation, 20(4):519–540.

88



Ruty Rinott, Lena Dankin, Carlos Alzate, Mitesh M
Khapra, Ehud Aharoni, and Noam Slonim. 2015.
Show me your evidence–an automatic method for
context dependent evidence detection. In Proceed-
ings of the 2015 Conference on EMNLP, pages 17–
21.

Claudia Schulz, Steffen Eger, Johannes Daxenberger,
Tobias Kahse, and Iryna Gurevych. 2018. Multi-
task learning for argumentation mining in low-
resource settings. In Proceedings of NAACL, pages
35–41. Association for Computational Linguistics.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Genera-
tion of Emotion in Text, pages 116–124. Association
for Computational Linguistics.

Yi Song, Michael Heilman, Beata Beigman Klebanov,
and Paul Deane. 2014. Applying argumentation
schemes for essay scoring. Proceedings of the First
Workshop on Argumentation Mining, pages 69–78.

Christian Stab and Iryna Gurevych. 2014. Annotating
argument components and relations in persuasive es-
says. In Proceedings of COLING, pages 1501–1510.

Christian Stab and Iryna Gurevych. 2017. Parsing ar-
gumentation structures in persuasive essays. Com-
putational Linguistics, 43(3):619–659.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
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Abstract

Common-sense argumentative reasoning is a
challenging task that requires holistic under-
standing of the argumentation where external
knowledge about the world is hypothesized to
play a key role. We explore the idea of using
event knowledge about prototypical situations
from FrameNet and fact knowledge about con-
crete entities from Wikidata to solve the task.
We find that both resources can contribute
to an improvement over the non-enriched ap-
proach and point out two persisting challenges:
first, integration of many annotations of the
same type, and second, fusion of complemen-
tary annotations. After our explorations, we
question the key role of external world knowl-
edge with respect to the argumentative reason-
ing task and rather point towards a logic-based
analysis of the chain of reasoning.

1 Introduction

Recently, Habernal et al. (2018) introduced a chal-
lenging dataset for Argument Reasoning Compre-
hension (ARC) used in the SemEval-2018 shared
task. After reviewing the participating systems,
they hypothesize that external world knowledge
may be essential for ARC.1 We explore enriching
models with event and fact knowledge on ARC to
investigate into this hypothesis.

Semantic tasks profit from external knowledge:
language understanding requires more complex
knowledge than that contained in current systems
and word embeddings. For the task of semantic
plausibility, Wang et al. (2018) reveal the failure of
models only relying on distributional data, whilst
the injection of world knowledge helps. Glockner
et al. (2018) point out the deficiency of state-of-
the-art approaches for understanding entailment on
∗ First and second authors contributed equally to this work.

1SemEval-2018 Task 12: https://competitions.
codalab.org/competitions/17327

the large-scale SNLI corpus (Stanford Natural Lan-
guage Inference) (Bowman et al., 2015). In their
study, the model incorporating external lexical in-
formation from WordNet, KIM (Knowledge-based
Inference Model) (Chen et al., 2018), does not yield
the awaited improvements — where the crucial
point might be WordNet (Miller, 1995) which does
not contain explicit world knowledge in the form
of event- and fact-based knowledge. Previous work
argues that information in WordNet overlaps with
word embeddings (Zhai et al., 2016), therefore we
focus on other types of knowledge in our work.

Complementary sources of external knowledge:
we experiment using the lexical-semantic resource
FrameNet (FN) and the knowledge base Wikidata
(WD). These resources provide information be-
yond the lexical relations encoded in WordNet and
thus have a potential to enhance the underlying
model with other kind of external world knowledge.
On the one hand, FN provides qualitative event-
knowledge about prototypical situations. Thus,
identifying frames (FrameId) unveils the situation
or action that is happening. On the other hand, WD
provides fact-knowledge about the concrete entities.
So, linking entities to a knowledge base (EntLink)
disambiguates the participants. Furthermore, both
resources provide meta-knowledge about how their
frames or entries relate to each other.

Multiple levels of knowledge processing help:
combining several kinds of annotations benefits
question answering (Khashabi et al., 2018), exter-
nal knowledge about synonyms enhances inference
(Chen et al., 2018), and jointly modeling several
tasks (e.g., frame-semantic parsing and dependency
parsing) is fruitful (Peng et al., 2018). In partic-
ular, the idea of connecting event semantics and
fact knowledge was confirmed by Guo et al. (2016):
they jointly formalize semantic role labeling and
relation classification and thereby improve upon
PropBank semantic role labeling.
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Outline In this paper, we investigate whether ex-
ternal information in terms of event-based frames
(FN) and fact-based entities (WD) can contribute
to holistic understanding of the argumentation in
the ARC task. First, we examine the effect of
both annotations separately and second, we explore
whether a joint annotation benefits from the inher-
ent complementarity of the schemata in FN and
WD and eventually leads to a better annotation cov-
erage. We enhance the baseline model provided
with the ARC task in order to contrast three system
configurations: ‘+FN’, ‘+WD’ and ‘+FN/WD’.

Contributions We (1) present a proof of con-
cept for semantic enrichment for the ARC task, (2)
identify the importance of advanced combinations
of complementary semantic annotations and (3)
question the key role of external world knowledge
with respect to ARC.

Code The code for the experiments with the
enriched model is available online: https:
//github.com/UKPLab/emnlp2018-
argmin-commonsense-knowledge

2 Our Approach: Semantic Enrichment
for Argument Reasoning
Comprehension (ARC)

First, we explain the ARC task together with the
baseline that we will build upon (cf. Sec. 2.1).
Second, we review our two external knowledge
sources, FN and WD, and comment on their com-
plementarity (cf. Sec. 2.2, 2.3, 2.4). Finally, we
present our approach with preprocessing and the
actual model enrichment (cf. Sec. 2.5, 2.6).

2.1 ARC Task
The ARC task (Habernal et al., 2018) is formulated
as follows: given a debate title (a), claim (b) and
reason (c), a system chooses the correct warrant (i)
over the other (ii), see Figure 1. The warrants vary
only slightly, e.g., by a single negation. The argu-
mentation chain is sophisticated and uses logical
reasoning and language understanding. In order to
automatically draw the correct decision, a holistic

Figure 1: An instance of the ARC corpus, illustrating ti-
tle (a), claim (b), reason (c) and the warrants (i) and (ii).

understanding of the context of both, claim and
reason, is crucial – for which Habernal et al. (2018)
recommend the inclusion of external knowledge.

Baseline The baseline provided by Habernal et al.
(2018) is an intra-warrant attention model that
reads in Word2Vec vectors (Mikolov et al., 2013)
of all words in (a-c) and adapts attention weights
for the decision between (i) and (ii).

Shared task winner The shared task winner,
GIST (Choi and Lee, 2018), transfers inference
knowledge (SNLI, Bowman et al., 2015) to the task
of ARC and benefits from similar information in
both datasets.

Our approach in contrast to GIST Our ap-
proach extends the baseline model with two exter-
nal knowledge schemata, FN and WD, to explore
their effects. The intuition can be explained with
the instance in Figure 1: FN could be helpful by
disambiguating ‘companies’ and ‘corporations’ to
the same frame with meta-knowledge how it relates
to other frames and WD could be of additional help
by mapping them to entities with detailed informa-
tion and examples for such institutions. We focus
on utilizing the two knowledge schemata of FN and
WD and thus, our interest is orthogonal to GIST.
The advantage of our approach is independence of
domain and task, which becomes especially rele-
vant in scenarios lacking large-scale support data.

2.2 FrameNet’s Event Knowledge
The Berkeley FrameNet (Baker et al., 1998; Rup-
penhofer et al., 2016) is an ongoing project for
manually building a large lexical-semantic resource
with expert annotations. It embodies the theory
of frame semantics (Fillmore, 1976): frames cap-
ture units of meaning corresponding to prototypical
situations. It consists of two parts, a lexicon that
maps predicates to frames they can evoke, and fully
annotated texts. For example, the verb buy can
evoke either the frame Commerce buy or Fall for,
depending on the context (buying goods versus buy-
ing a lie). Furthermore, the lexicon gives access
to frame-specific role-labels (e.g., Buyer, Goods or
Deception, Victim) as applied in semantic role label-
ing. Finally, FN specifies high-level relations (e.g.,
inherit, precede) between frames, forming a hier-
archy with a collection of (frame,relation,frame)-
triples. We use FN 1.5 which contains ∼1K frames
and ∼12K distinct predicate-frame combinations.2

2framenet.icsi.berkeley.edu/fndrupal
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2.3 Wikidata’s Fact Knowledge

Wikidata is a collaboratively constructed knowl-
edge base that encodes world knowledge in the
form of binary relations. It contains more than 40
million entities and 350 million relation instances.3

The binary relations express both semantic and
ontological connections between the entities (e. g.
CAPITAL (Hawaii, Honolulu); INSTANCE OF (Hawaii,
location)). Wikidata includes an ontology of fine-
grained classes and is interlinked with other seman-
tic web resources. A broad community curation,
similar to Wikipedia, ensures a higher data qual-
ity compared to other knowledge bases (Färber
et al., 2015). Formally, Wikidata can be described
as a graph W = (E,R, I), where E is a set of
entities, R is a set of binary relation types and
I is a collection of relation instances encoded as
r(e1, e2), r ∈ R, e1, e2 ∈ E.

2.4 Complementarity of Annotations

Work on event semantics hints at two annotation
types complementing each other: additional in-
formation about participants benefits event predic-
tion (Ahrendt and Demberg, 2016; Botschen et al.,
2018) and context information about events bene-
fits the prediction of implicit arguments and entities
(Cheng and Erk, 2018). The complementarity is
further affirmed by efforts on aligning WD and
the FN lexicon: the best alignment approach only
maps 37% of the total WD properties to frames
(Mousselly-Sergieh and Gurevych, 2016). The
complementarity of FN an WD annotations is the
reason for also testing a model with the joint anno-
tation ‘+FN/WD’.

2.5 Preprocessing - Obtaining Annotations

We use two freely available systems to obtain se-
mantic annotations for the claim (b), the reason (c)
and the alternative warrants (i, ii): the frame iden-
tifier by Botschen et al. (2018) for frame annota-
tions and the entity linker by Sorokin and Gurevych
(2018). We employ pre-trained vector representa-
tions to encode information from FN and WD. We
use the pre-trained frame embeddings (50-dim.)
that are learned with TransE (Bordes et al., 2013)
on the structure of the FN hierarchy with the collec-
tion of (frame, relation, frame)-triples (Botschen
et al., 2017). We also use TransE to pre-train entity
embeddings (100-dim.) on the WD graph. The an-

3www.wikidata.org/wiki/Special:
Statistics

Figure 2: Different embeddings from layers of annota-
tions for a sentence: words, frames, entities.

notation of the ARC data leads to more frames per
sentence (6.6 on avg.) than entities per sentence
(0.7 on avg.).

2.6 Model - Enriching with Semantics

We extend the baseline model by Habernal et al.
(2018) with embeddings for frames and entities
(cf. Sec. 2.5 for frame embeddings and entity em-
beddings). The baseline model is an intra-warrant
attention model that only uses conventional pre-
trained word embeddings as an input. We apply a
late fusion strategy: obtain the annotations sepa-
rately and combine them afterwards by appending
the frame and entity embeddings to the word vec-
tors on the token level. Each input sentence is
processed by a bi-directional long short-term mem-
ory (LSTM) network that reads not only word em-
beddings, but also frame embeddings for all event
mentions and entity embeddings for all entity men-
tions (Figure 2). Now, the attention weights for
the decision between the two warrants are adapted
based on the semantically enriched representation
of claim (b) and reason (c).4

We optimize hyperparameters on the develop-
ment set with random search. All models are
trained using the Adam optimizer (Kingma and
Ba, 2014) with a batch size of 16. For our evalua-
tion, we perform ten runs and report the mean and
max accuracy together with the standard deviation.

3 Results

In Table 1 we report our results on the ARC task.
Our extended approaches ‘+FN’ and ‘+WD’ for se-
mantic enrichment with information about frames
and entities increase the averaged performance by
more than one percentage point against the baseline.
For the best run, the advantage of ‘+FN’ and ‘+WD’
becomes even clearer (+2.2 pp.). On the other
hand, the straightforward combination of the two
external knowledge source, ‘+FN/WD’, does not
lead to further improvements. This points out the

4We refer to Habernal et al. (2018) for more details.
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mean max
Approach Dev. (±) Test (±) Test

Habernal et al. (2018) (reimpl.) 0.6712 0.0155 0.5570 0.0184 0.5878
+WD 0.6623 0.0071 0.5680 0.0235 0.6036
+FN 0.6741 0.0119 0.5676 0.0257 0.6104
+FN/WD 0.6630 0.0088 0.5592 0.0164 0.5946

Table 1: Mean and max accuracy over ten runs on the ARC dev. and test sets (best results highlighted in bold).

need for advanced models that are able to fuse anno-
tations of different types. Albeit positive the results
do not seem be a strong support for the hypothesis
of (Habernal et al., 2018) about external knowl-
edge being beneficial for the defined task, as we
observe only moderate improvements. Overall, the
enriched models (‘+WD’, ‘+FN’ and ‘+FN/WD’)
make mostly the same predictions as the baseline
system. For instance, for ‘+WD’ there is 79, 5%
overlap of the predictions with the baseline, and
for ‘+FN’, it is 76.6%. In the following section,
we try to identify the reasons why the structured
knowledge in the form of FN and WD does not
further improve the results.

3.1 Error analysis

The amount of semantic information that the model
can utilize is dependent on the number of annota-
tions for a test instance5. We analyze the perfor-
mance of the enriched models by the number of
annotations for ‘+WD’ and for ‘+FN’.

Figure 3 shows the performance of ‘+WD’ in
comparison to the baseline against the number of
WD entities per test instance. As expected, there
is no difference in performance for the instances

5Each instance is four sentences: a claim, a reason, a
debate title and a candidate warrant.
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Figure 3: Performance for the ‘+WD’ approach by the
number of WD entities in a test set instance.

without WD annotations. We can see a clear im-
provement for the instances with one or two en-
tities, which indicates that some semantic knowl-
edge is helping to draw the decision between the
two warrants. Contrary, ‘+WD’ performs equal to
the baseline for three or more annotations.

The performance of the ‘+FN’ model against
the number of the frame annotations is plotted in
Figure 4. Whilst the difference between ‘+FN’
and baseline varies more, we can observe a simi-
lar tendency: once some semantic annotations are
available the enriched model outperforms the base-
line, whereas with the growing number of frames
the difference in performance decreases.

Both annotation tools, the WD entity linker as
well as the FN frame identifier, introduce some
noise: for the entity linker, Sorokin and Gurevych
(2018) report 0.73 F-score and the frame identifier
has an accuracy of 0.89 (Botschen et al., 2018). We
perform a manual error analysis on 50 instances
of the test set to understand the effect of the noisy
WD annotation.6 In 44% of errors, no WD anno-
tation was available and in 52%, the annotations
were (partially) incorrect. Only 4% of errors oc-

6Judging if a predicted frame is correct requires deep lin-
guistic expertise and special training on the FrameNet guide-
lines. Therefore, we excluded FN from this first study.
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Figure 4: Performance for the ‘+FN’ approach by the
number of frames in a test set instance.
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cur despite correct entities being available to the
model. Notably, in 65% of the cases a correct entity
annotation leads to a correct prediction.

Taken together, for instances with little context
and therefore only some annotations with frames
or entities, the semantic enrichment helps to cap-
ture a broader context of the argumentation chain
which in turn benefits the classification. However,
for instances with more context and therefore more
annotations with frames or entities, the benefit is
turned down by a worse precision of the annota-
tion tools. Interestingly, the effect of improved
performance only for shorter sequences with less
annotations is in line with findings of research on in-
formation retrieval (Müller et al., 2008), where the
trade-off between some annotations that increase
the accuracy and more annotations that can hurt the
performance is known as precision-recall balance
(Riedel et al., 2010; Manning et al., 2008).

3.2 Qualitative analysis

When manually inspecting the annotations of
frames and entities, it becomes questionable
whether these actually have the potential of con-
tributing to a clear distinction between the two war-
rants. Figure 5 shows two instances of the ARC
corpus with FN and WD annotations. Both anno-
tation layers contribute useful information about
the world, which is not contained in the textual
input. For instance, ‘companies’ and ‘corporations’
are correctly disambiguated and linked to the same
frame and the phrase ‘use of force’ is mapped to
the entity Q971119 for a legal concept. Neverthe-
less, when manually inspecting the annotations of
frames and entities it becomes apparent that the
provided background knowledge is not sufficient
to draw the distinction between the two warrants.
In the first example in Figure 5, the key difference
between the two warrants is the negation (and simi-
lar in the second example). Even if our approach
performs a semantic enrichment of the context, the
crucial capability of performing reasoning is still
missing. This means, our input representation is
semantically enriched, but is not parsed into a logic-
based representation.

To sum up, in the previous Section 3.1, we show
that our approach is of help by successfully en-
riching the context with semantics for shorter in-
stances; and in this Section 3.2, we analyze why
our approach is too limited to solve some key chal-
lenges of the ARC task. We conclude with the

Figure 5: Instances of ARC corpus, with claim (b) and
reason (c) annotated with frames and entities.

key challenge of ARC not being lexical-semantic
gaps between warrants but rather different phenom-
ena such as negation and that this challenge is to
be resolved with logical analysis rather than with
integrating world knowledge.

4 Conclusion

We integrate world knowledge from FrameNet and
Wikidata into the task of common-sense argumen-
tative reasoning and achieve an improvement in
performance compared to the baseline approach.
Based on the experiments and the manual analysis,
we conclude that external world knowledge might
not be enough to gain significant improvements
in argumentative reasoning, and we rather point
towards logical analysis.

Starting from the hypothesis of the evaluators of
the shared task about world knowledge being essen-
tial for the Argument Reasoning Comprehension
task, we show the potential of semantic enrichment
of the context for shorter instances. Our results
offer a first perspective on using external resources
for the Argument Reasoning Comprehension task.
More broadly, our approaches ‘+FN’ (events) and
‘+WD’ (facts) showcase the contribution of seman-
tic enrichment to high-level tasks requiring com-
mon sense knowledge.

FrameNet and Wikidata are open-domain re-
sources and our enrichment approach is task-
independent. Consequently, we encourage utilizing
event- and fact-knowledge in further language un-
derstanding tasks, e.g., Story Cloze (Mostafazadeh
et al., 2016) or Semantic Textual Similarity (Agirre
et al., 2012), using our freely available model.
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Abstract

In this paper, we propose to incorporate topic
aspects information for online comments con-
vincingness evaluation. Our model makes use
of graph convolutional network to utilize im-
plicit topic information within a discussion
thread to assist the evaluation of convincing-
ness of each single comment. In order to test
the effectiveness of our proposed model, we
annotate topic information on top of a pub-
lic dataset for argument convincingness evalu-
ation. Experimental results show that topic in-
formation is able to improve the performance
for convincingness evaluation. We also make
a move to detect topic aspects automatically.

1 Introduction

With the popularity of online forums such as ide-
bate1 and convinceme2, researchers have been
paying increasing attention to analyzing persua-
sion content (Wei et al., 2016a,b). Argument con-
vincingness assessment plays an important role in
persuasion content analysis. Previous researchers
attribute the convincingness of arguments to ar-
gument structure (Potash et al., 2017; Peldszus
and Stede, 2015), strong evidence (Hasan and
Ng, 2014; Park and Cardie, 2014), specific ar-
gument components (Habernal and Gurevych,
2016a; Persing and Ng, 2015), interactions (Ji
et al., 2018), domain knowledge (Wei et al., 2017)
and so on. Most efforts of convincingness eval-
uation focus on using explicit linguistic features,
such as words (Chalaguine and Schulz, 2017) and
part-of-speech (POS) (Wachsmuth et al., 2017a)
etc. Considering people construct their arguments
based on different topic aspects, we thus argue that
topic information can be crucial for convincing-
ness evaluation.

∗*Corresponding author
1https://idebate.org/
2http://convinceme.net/

Argument1 Argument2
Content The American Water

companies are Aquafina
(Pepsi), Dasani (Coke),
Perrier (Nestle) which
provide jobs for the
american citizens.

If bottled water did not
exist, more people would
be drinking sweetened
liquids because it would
be the only portable
drinks! People would
become fat!

Topic Aspect Economy Convenience and health

Table 1: Example of an argument pair and correspond-
ing topic aspects. Debate: Ban plastic water bottles
Stance: No; Label: A1>A2

To illustrate this idea, Table 1 gives a brief ex-
ample of an argument pair. Both arguments ex-
press opinions against the banning of plastic water
bottles. Argument 1 is expressed from the topic
aspect of economy while Argument 2 makes the
point from the aspect of convenience and health.
As we can see, for a specific discussion subject,
different aspects might reveal various degree of
convincingness. Wang et al. (2017) has already
made attempt to make use of latent persuasive
strengths of topic aspects for quality evaluation on
a formal debate dataset. However, there is still no
further research on online debating texts, which is
un-structured with multiple participants.

In this paper, we propose to incorporate latent
topic aspects information to evaluate the convinc-
ingness of comments in online forum. We make
use of graph convolutional networks (GCN) to uti-
lize the latent topic information of comments for a
specific subject. We assume that arguments shar-
ing the same topic aspect are more likely to have
similar degree of convincingness, and GCN is able
to make use of the topic similarity among argu-
ments. Bi-directional long short-term memory
(Bi-LSTM) is used to encode each argument. We
annotate topic aspects information on top of a pub-
lic dataset collected from online forum Habernal
and Gurevych (2016b) to evaluate our proposed
model.

Main contribution of this article are three folds:
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(1) we annotate topic aspects for each argument
in an existing dataset over 16 discussion threads
(2 stances for each subject); (2) we propose a
BiLSTM-GCN model and prove the effectiveness
of topic aspects in convincingness evaluation; (3)
we implement several baseline models to detect
the topic aspect automatically.

2 Data Description

Our experiments are conducted on UKPCon-
vArg1 corpus released by Habernal and Gurevych
(2016b). The source argument is from 16 debates
on Web debate platforms createdebate.com
and convinceme.net. Each debate is about
a specific topic and has two stances. We call
each (debate,stance) tuple a ”split”, so there are
32 splits in total. The dataset includes sets of ar-
gument pairs according to 32 splits, and each ar-
gument pair is annotated with a binary relation (0
and 1) which represents the pairwise convincing-
ness relationship (more/less convincing), 11,650
in total. Since we take the UKPConvArg1Strict
version as our dataset, the equal instances are re-
moved. The topic aspect annotations are not from
the initial dataset, but from our own annotations.

In order to extract topic aspects from each topic,
we manually annotate each argument by two anno-
tators. The annotation process is as follows. First,
two annotators have a discussion and then de-
termine possible topic aspect candidates for each
split. Second, two annotators independently check
every argument and summarize one main topic as-
pect. As for arguments carrying multiple aspects,
we pick the primary topic aspect. Third, after all
the annotations are made, they are asked to rank
the topic aspects under a split according to topic
aspect strength by discussion. Due to the quality
of the corpus, some arguments have to be assigned
to the aspect None if it (1) has nothing to do with
the topic, or (2) has no point of view, or (3) is con-
tradictory/ambiguous. Results of topic aspect an-
notations are shown in Appendix.

To clarify the annotations of topic aspects, we
will take the annotation process for comments un-
der the topic of “banning plastic water bottles” as
an example. Comments from the con-side of the
this debating might hold different topic aspects.
Some of them concern about the economic de-
cay after banning plastic water bottles. And some
of them suggest that we can recycle plastic water
bottles instead of banning them. The others care

more about the inconvenience and safety after ban-
ning plastic water bottles. After reading all these
arguments, annotators conclude that there should
be three main topic aspects, “economics”, “bottle
recycling” and “convenience and health” respec-
tively. There are some arguments which have no
point of view or seem ambiguous, and the topic
aspects of these arguments will be set as “None”.
Since the average length of arguments is relatively
short, so most of the arguments hold a single topic
aspect. Therefore, each argument only has one la-
bel to simplify the problem. The dataset is avail-
able here3.

3 Proposed Model

In this paper, we propose a BiLSTM-GCN model
to solve the convincingness evaluation task. The
BiLSTM acts as the the foundation to generate
the representation of each argument, and GCN
is built upon BiLSTM to make use of the inter-
relationships of similar arguments. The architec-
ture of our model is shown in Figure 1. In general,
Our aim is predicting a binary relation (0 and 1)
representing more/less convincing given an argu-
ment pair. All the arguments in the same split are
considered as a batch.

Figure 1: BiLSTM-GCN model architecture

3.1 Content Layer

The input of the content layer is the word embed-
ding matrix of each argument and the output of

3http://www.sdspeople.fudan.edu.cn/
zywei/data/5thargmine-topic-convince.zip
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content layer is the representation vector of each
argument. BiLSTM plays the role of encoder
in this layer, and it has been proved effective to
encode sentences (Goodfellow et al., 2016; Dyer
et al., 2015; Wang and Jiang, 2016).

We simply employ the word embeddings re-
leased by Glove (Pennington et al., 2014), and we
choose the 840B tokens, 300 dimensional vector
version. As to the word which is absent in the
Glove vocabulary, we randomly generate a 300 di-
mensional vector to represent those out of vocab-
ulary vectors. These vectors are then put into BiL-
STM to get the basic representation of each argu-
ment. The dimension of argument representation
is set to 64 after tuning.

3.2 Topic Layer
The input of topic layer is the representation vec-
tor of each argument. The output of topic layer
is the updated representation vector of each argu-
ment. The core of our topic layer is GCN (Kipf
and Welling). The main function of this layer is
utilizing the topic aspect information.

We consider a single-layer GCN for better argu-
ment representation. The GCN layer propagates
the information of a node onto its nearest neigh-
bours.

Our GCN model simply takes the following
form. A represents the adjacency matrix, X repre-
sents the feature matrix, which is a stacked version
of raw argument representations generated from
BiLSTM. W is a parameter matrix which can be
trained in the training process. We add self con-
nected edges to A to keep the information of the
original argument itself. Â is the normalized form
of A. Normalization is a compulsory part for com-
bining information, since we have to keep the ra-
tio of self information and neighbours’ informa-
tion the same for each argument. Z is the final
feature matrix, and each row represents the new
representation of each argument.

Z = f(X,A) = Relu(ÂXW ) (1)

The normalization process is described below:

Â = D− 1
2 (A+ IN )D

1
2 (2)

Here, IN is the identity matrix, which repre-
sents the self-connections. Dii =

∑
j Aij is a

diagonal matrix and each element on the diago-
nal represents the degree of argument i. The self-
connections are not normalized since we think that

original argument is more useful than other argu-
ments.

3.2.1 Adjacency Matrix
The adjacency matrix represents whether there is
an edge between two nodes, but the graph struc-
ture among the arguments is implicit. We can cap-
ture the implicit structure by making use of argu-
ment similarity or topic aspect.

Argument similarity: We can calculate the
similarity of two arguments by distance under
embedding setting and use threshold to decide
whether there is an edge.

Topic aspects: When two arguments share the
same topic aspect, they are supposed to have an
edge between corresponding nodes.

3.2.2 Feature Matrix
Feature matrix is built upon BiLSTM, and is a
stacked version of argument representation. The
argument representation is the mean pooling of the
BiLSTM result. In fact, the result of graph con-
volutional network is still a feature matrix which
absorbs information from neighbours. The feature
dimension is set to 64, and the dimension of each
matrix is fixed over 32 splits by setting the max-
imum argument quantities as the row dimension.
Default arguments are filled by zero vectors. The
result of graph convolutional network is still a fea-
ture matrix, which involves related nodes’ infor-
mation.

3.3 Convincingness Layer

The input of convincingness layer is the updated
representation vector of each argument. The out-
put of convincingness layer is a binary label (0 and
1) representing more/less convincing given an ar-
gument pair. As a result the core of this convinc-
ingness layer is a classifier.

We can simply apply the softmax classifier.
However, inspired by DistMult (Yang et al., 2014),
we design a classifier which will perform better.
Our classifier takes the following form. es repre-
sents the representation of argument 1, and eo rep-
resents the representation of argument 2, and W is
a parameter matrix. We set the parameter matrix
as a real antisymmetric matrix. Therefore, the re-
sult of comparing argument 1 and argument 2 will
be opposite to the result of comparing argument 2
and argument 1.

f(s, r, o) = eTs Reo (3)
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Our parameter matrix is better than the normal lin-
ear layer mainly because it can capture the interac-
tive relationship between different feature dimen-
sions.

4 Experiments

4.1 Experiment Setup

We test our model on the dataset depicted in Sec-
tion 2 to evaluate convincingness of arguments. To
compare with the algorithms applied in the initial
task (Habernal and Gurevych, 2016b), we still use
32-fold cross-split cross-validation, which means
31 splits are training data and the other one is test
data. The preprocessing part is the same as the
original task as well. And we train our BiLSTM-
GCN model as described in Section 3 and evaluate
prediction accuracy on the test split.

In this paper, we implement our BiLSTM-GCN
model by Pytorch. Each split is considered as a
batch to train and test. The loss function we use
is simply the quadratic loss function. We have
tried the cross entropy loss and the quadratic loss,
and latter performs better when using our classi-
fier. The batch loss is calculated by summing the
loss of each argument pair. The weights of the pa-
rameter matrix classifier are initialized randomly
from the normal distribution, and the initial hidden
state of our BiLSTM is set to zero. And we take
topic aspects to build adjacency matrix in convinc-
ingness evaluation task.

4.2 Baselines

The baselines for convincingness evaluation in-
clude: (1) SVM (Habernal and Gurevych, 2016b):
The SVM with RBF kernel is based on a num-
ber of linguistic features. (2) BiLSTM (Haber-
nal and Gurevych, 2016b): The input word em-
bedding is as depicted in Section 3.1, and hidden
dimension is 64. (3) BiLSTM+argument length:
Since BiLSTM will transform all the arguments
into same dimension, the information of argument
length will be lost to some extent. Here we men-
tion argument length since it can handle this task
quite well. The accuracy of judging convincing-
ness by its length can be 0.73, which is not men-
tioned in the original work. As a result, we take it
as a useful feature to help our model work better.

Here, we don’t list the baseline with our topic
aspects annotations because the topic aspects
among different debates are not the same, so it
can’t play the role of an explicit feature. We have

to encode the topic aspect information, that is also
a reason of applying Graph Convolutional Net-
work in our work.

We also try different methods to build the adja-
cency matrix as depicted in Section 3.2.1, includ-
ing unit matrix, Jaccard similarity, cosine similar-
ity, word mover’s distance and topic aspects. (1)
Unit matrix: Unix matrix means that the adja-
cency matrix is just a unit matrix, and the GCN
here act as a single linear layer. (2) Jaccard sim-
ilarity: Jaccard similarity is calculated by the fol-
lowing form. A and B means the argument 1 and
argument 2 in an argument pair. In our experi-
ments we find that use threshold to build adjacency
is better than use weighted adjacency matrix. As a
result , we all use the threshold to build a zero-one
adjacency matrix in the following building meth-
ods.The threshold of Jaccard similarity is set to 0.5
after normalizing.

J(A,B) =
|A ∩B|
|A ∪B| (4)

(3) Cosine similarity: Cosine similarity is repre-
sented using a dot product and magnitude as the
following form. The threshold of cosine similarity
is set to 0.95 after normalizing.

C(A,B) =
A ·B
‖A‖ ‖B‖ (5)

(4) Word mover’s distance(Kusner et al., 2015):
The word mover’s distance calculating is repro-
duced by reading the original paper. And the
threshold is set to 0.35 after adjusting.

4.3 Experimental Results
This part, we compare our BiLSTM-GCN model
with baselines mentioned above. Table 2 lists the
results of convincingness evaluation task. The ad-
jacency matrix of our BiLSTM-GCN model in Ta-
ble 2 is based on our topic aspects annotations. In
Table 3, We test other adjacency matrix building
methods as described above and analyze the re-
sults.

The result shows that our BiLSTM-GCN model
performs better than best baseline model, and ob-
viously better than models utilized in the initial
task. What’s more, we have proved that the inter-
relationships of arguments can help us evaluate the
convincingness better by using GCN.

The results in Table 3 show that our annotations
perform the best among all the metrics, which
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Model Accuracy
SVM 0.78
BiLSTM 0.76
BiLSTM+argument length 0.797
BiLSTM-GCN+argument
length (topic aspects)

0.811

Table 2: Results of convincingness evaluation task

Adjacency metric Accuracy
Unit matrix 0.800
Jaccard similarity 0.799
Cosine similarity 0.793
Word mover’s distance 0.808
Topic aspects 0.811

Table 3: Results of BiLSTM-GCN model with various
adjacency matrix building methods

means topic aspect is an excellent way to evalu-
ate the relationship between arguments. And we
can know that some state-of-the-art text similarity
metric like word mover’s distance performs better
than classical text similarity metrics like Jaccard
similarity and cosine similarity.

4.4 Further analysis of topic detection

We know that the topic aspects are not labeled in
most data. Since we already have the annotations
of topic aspects, so we can set a classification task,
which can be further used for automatic annota-
tion. The training data and test data are the same
as convincingness evaluation. However, the labels
will change. Here, if two arguments in an argu-
ment pair share the same topic aspect, the label
will be set to 1, or it will be set to 0. We also sug-
gest that None type is different from all other types
including None type itself. We test some baseline
models and our BiLSTM-GCN model on this task
and evaluate F-score on the test split. We don’t
use accuracy since the labels are imbalanced here,
only about thirty percent of argument pairs have
positive labels.

The baselines for topic aspect detection include:
(1) Random classification: Select zero or one
randomly. (2) LDA clustering (Blei et al., 2003):
Automatically cluster the arguments by LDA over
each split into the number of topic aspects we an-
notate. (3) SVM: The SVM with RBF kernel is
based on a number of linguistic features.

We choose word mover’s distance to build ad-
jacency matrix instead of our annotations, since it

is the kind of the latest metric of text similarity
calculation.The word mover’s distance calculation
is reproduced by reading the original paper (Kus-
ner et al., 2015). The threshold is set to 0.35 after
adjusting. Table 4 lists the results of topic aspect
detection task.

Model F-score
Random classification 0.425
LDA clustering 0.524
SVM 0.589
BiLSTM-GCN 0.612

Table 4: Results of topic aspect detection task

The result shows that our BiLSTM-GCN model
performs the best among all the methods, and su-
pervised training methods like SVM performs bet-
ter than unsupervised methods like LDA cluster-
ing. All these models perform significantly better
than the lower bound given by random classifica-
tion.

5 Conclusions and Future works

In this paper, we apply BiLSTM-GCN model on a
convincingness evaluation task and the model per-
forms 3-5% better than the original method on the
online debate dataset. Our model utilizes not only
the explicit argument features like length but also
topic aspects which are latent features. Our exper-
iments proves that topic information is able to im-
prove the performance for convincingness evalua-
tion. In future, we will consider to utilize external
knowledge to further improve the performance of
convincingness evaluation. The possible external
knowledge can be similar arguments from other
websites, or argument search engine (Wachsmuth
et al., 2017b).
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A Topic aspect annotations

Debate Stance Aspects

BAN No [A1] Economy; [A2] Bottle recycling; [A3] Convenience and health; [A4] None
Yes [A1] Environment; [A2] High price of bottled water; [A3] Health; [A4] None

CHR Atheism [A1] Challenging Christianity/God; [A2] Atheism is more scientific; [A3] None
Christianity [A1] Faith and belief; [A2] Attacking Atheism; [A3] None

EVO Creation [A1] Paradox of evolution; [A2] Religion; [A3] None
Evolution [A1] Evidence of evolution; [A2] Challenging Creation/God; [A3] None

FIR Firefox [A1] Extensions; [A2] Poor performance of IE; [A3] IE copies other browsers;
[A4] None

IE [A1] Universality; [A2] Useful functions; [A3] Poor performance of Firefox;
[A4] None

GAY Right [A1] Gay marriage is ones right; [A2] It is none of others business; [A3] None
Wrong [A1] Gay marriage is unnatural; [A2] Religion; [A3] Ethics; [A4] Law

SPA No [A1] Spanking makes children behave; [A2] Only last resort
Yes [A1] Parents can use other ways; [A2] It will hurt children; [A3] Children will

think hitting others is alright; [A4] Bad for relationship; [A5] Children are too
young to know what is right; [A5] None

SPO No [A1] Love/relationship; [A2] It depends on what happened; [A3] People make
mistakes; [A4] None

Yes [A1] Murder is wrong; [A2] Self security; [A3] Unwillingness to live with a
murderer

IND No [A1] Politics; [A2] Economy; [A3] Diplomacy; [A4] Population; [A5] None
Yes [A1] Economy; [A2] Education and talents; [A3] Politics; [A4] Culture; [A5]

Patriotism; [A6] None

LOU Fatherless [A1] Lousy father is harmful to kids growth; [A2] Lousy father is a stain ; [A3]
Fatherless kids can still be fine

Lousy Father [A1] Lousy father still helps; [A2] Lousy father can get better; [A3]Lousy father
motivates one to be better; [A4] None

POR No [A1] Sexual desires; [A2] Entertainment; [A3] Porn does no harm; [A4] None
Yes [A1] Health and addiction; [A2] Porn does no good; [A3] Women rights; [A4]

Religion; [A5] None

SCH Bad [A1] Creativity; [A2] Futility; [A3]Low quality; [A4] None
Good [A1] Equality; [A2] Uniforms make students concentrate on study; [A3] Logo

of school; [A4] None

PER Common Good [A1] Helping others is better; [A2] It also helps oneself; [A3] None
Personal Pur-
suit

[A1] Helping oneself is prerequisite; [A2] Human nature; [A3] Personal fulfill-
ment

PRO Pro-Choice [A1] Right of decision; [A2] Unwanted pregnancy; [A3] None
Pro-Life [A1] No right to kill; [A2] Adoption;[A3] None

PHY No [A1] PE is useless; [A2] Studies; [A3]PE is tiring; [A4] PE causes bullying;
[A5] None

Yes [A1] Health and obesity; [A2] Students can develop good habits, attitudes, etc.;
[A3] None

TVB Books [A1] Books are better for learning; [A2] TV does harms to health; [A3] Books
save money; [A4] None

TV [A1] TV provides richer information; [A2] Convenience; [A3] None

WIL No [A1] Raffles contributions; [A2] Farquhar was a subordinate
Yes [A1] Farquhar solved problems; [A2] Reputation; [A3] None

Table 5: (1) BAN: Banning plastic water bottles; (2) CHR: Christianity or Atheism; (3) EVO: Evolution vs.
Creation; (4) FIR: Firefox vs. Internet Explorer; (5) GAY: Gay marriage: Right or wrong; (6) SPA: Should parents
use spanking as an option to discipline? (7) SPO: If your spouse committed murder and he or she confided in you,
would you turn them in? (8) IND: India has the potential to lead the world; (9) LOU: Is it better to have a lousy
father or to be fatherless? (10) POR: Is porn wrong? (11) SCH: Is the school uniform a good or bad idea? (12)
PER: Which type of endeavor is better, a personal pursuit or advancing the common good? (13) PRO: Pro-Choice
vs. Pro-Life; (14) PHY: Should physical education be mandatory in schools? (15) TVB: TV is better than Books;
(16) WIL: William Farquhar ought to be honored as the rightful founder of Singapore.
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Abstract 

This paper presents a proposed 
method for annotation of scientific 
arguments in biological/biomedical 
journal articles. Semantic entities 
and relations are used to represent 
the propositional content of 
arguments in instances of argument 
schemes.  We describe an 
experiment in which we encoded the 
arguments in a journal article to 
identify issues in this approach. Our 
catalogue of argument schemes and 
a copy of the annotated article are 
now publically available. 

1 Introduction 

This paper presents our current work on 
semantic annotation of scientific arguments in 
full-text biological/biomedical journal articles.  
The goal is to provide a method for semantic 
representation of arguments that can be used in 
empirical studies of scientific discourse as well 
as to support applications such as argument 
mining (Lippi and Torroni, 2016). 
Computational research on scientific discourse 
has focused on classification of text segments 
in terms of rhetorical goals (Teufel, 2010), 
experimental science activities (Liakata et al., 
2012), or coherence relations (Prasad et al., 
2011).  Although some categories of those 
classification schemes are related to 
argumentation, those approaches are inadequate 
for representation of argumentation. Focusing 
mainly on non-technical literature and social 
media, argument mining researchers have 

investigated automatic classification of text 
segments in terms of argumentation concepts, 
e.g., premise/ conclusion,  support/attack 
(Peldszus and Stede, 2016; Stab and Gurevych, 
2016). 
    However, the propositional content of 
scientific arguments does not map neatly to text 
segments: two distinct arguments may be 
expressed in overlapping or embedded text; 
argument premises and conclusions may occur 
in non-contiguous text segments of varying 
granularity, and sometimes they may be 
implicit.  As an alternative, we proposed a 
semantics-informed approach to argument 
mining in the biological/biomedical sciences as 
follows (Green, 2018).  First, BioNLP tools 
could be used to derive a partial semantic 
interpretation of a text; next, argument schemes 
implemented as logic programs could be used 
to identify the propositional content of 
arguments, including implicit conclusions.    
     Consistent with that approach, we created a 
publically available catalogue of 15 argument 
schemes that we identified in journal articles on 
health effects of genetic variants. The schemes 
are expressed in terms of domain concepts used 
in our logic programs, rather than by generic 
definitions as in, e.g., (Walton et al., 2008).  
Here we describe an experiment in which we 
manually encoded the arguments in the 
“Results/Discussion” section of an article from 
that domain. The goals were to evaluate the 
feasibility of the task and to identify issues in 
the semantic representation of the arguments, 
as a step towards building a publically available 
corpus of argument-annotated full-text 
scientific journal articles. There are currently 
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no corpora of argument-annotated articles from 
the natural sciences research literature. The 
information gained will be used to refine our 
approach as we build a corpus. The catalogue 
and annotated article are available at 
https://github.com/ greennl/BIO-Arg. 

2 Method 

An article (van de Leemput et al., 2007) was 
selected from the open-access CRAFT corpus1 
in case the syntactic and concept annotations 
of that corpus (Bada et al. 2012; Verspoor et 
al. 2012) might be useful in the future in 
combination with our argument annotations. 
We annotated the arguments in the first eight 
paragraphs of the ten-paragraph “Results/ 
Discussion” section. (Although not 
participating in the annotation, a domain expert 
had previously helped interpret the article.) 
Encoded in XML, annotations were added 
using a text editor. (We adopted a lightweight 
approach to annotation tools due to the 
experimental nature of this work.) Part of the 
DTD for argument-related tags   is   shown   in    
Figure 1.   
 
<!ELEMENT  DSEG (content* | entities‐props* |  

argument* )*  > 
<!ATTLIST     DSEG  ID  CDATA #REQUIRED > 
<!ELEMENT entities‐props (entity* | prop*)*  > 
<!ATTLIST    entity ID CDATA #REQUIRED > 
<!ATTLIST    entity paraphrase CDATA > 
<!ELEMENT argument (premise‐list, conclusion ) > 
<!ATTLIST   argument ID CDATA #REQUIRED > 
<!ATTLIST   argument scheme CDATA #REQUIRED > 
<!ELEMENT premise‐list (premise+ ) > 
<!ATTLIST    premise prop CDATA > 
<!ATTLIST    premise domain‐prop CDATA > 
<!ATTLIST    premise paraphrase CDATA > 
<!ATTLIST    premise conclusion‐of CDATA > 
<!ATTLIST    conclusion prop CDATA > 
<!ATTLIST    conclusion inferred‐prop CDATA > 
<!ATTLIST    conclusion paraphrase CDATA > 

 
Figure 1:  Part of DTD 

 

                                                            
1 Article 17590087 in http://bionlp-
corpora.sourceforge.net/CRAFT/ 

For illustration, Figure 2 shows an excerpt of 
the annotated document. (Text of some 
<content> elements has been elided to save 
space.) 
 
<DSEG ID="Observation" > 
<content> During the generation of a line of mice 
with knockout of the gene Park7 we noted an early 
movement disorder that was inherited 
independently of targeting vector transmission. Our 
initial observations suggested the affected mice 
suffered from an apparently paroxysmal movement 
disorder, often induced by touch … At initial 
examination, … likened the disorder to episodic 
intermittent ataxia … </content>          
<entities‐props> 

 <entity ID="group1"  

      paraphrase="the affected mice" />  

 <entity ID="pheno1"  

      paraphrase="ataxia‐like movement disorder" /> 

<prop>have_pheno(group1, pheno1)</prop> 

</entities‐props> 

</DSEG> 

<DSEG ID="Experiment 1"> 

<content>  To  map  the  location  of  the  disease‐

causing  lesion, we performed genome‐wide  linkage 

analysis …  Analysis  of  these  data  showed  a  single 

genomic  region with  significant  linkage  to  disease, 

providing a  two‐point  LOD  score of 5.13 at marker 

20.MMHAP85FLG2 Chromosome 6qE1 …</content> 

<entities‐props> 

<entity ID="geno1"  

 paraphrase="homozygous mutation on  

 chromosome 6qE1" />  

<prop>have_geno(group1,geno1)</prop> 

</entities‐props>  

<argument ID="1" scheme="Agreement">   

<premise‐list> 

    <premise prop="have_pheno(group1, pheno1)" /> 

    <premise prop="have_geno(group1,geno1)"/> 

</premise‐list> 

<conclusion inferred‐prop=  

  "cause(geno1, pheno1, group1)” 

  paraphrase="A homozygous mutation on  

  chromosome 6qE1 may be the  cause of the  

  ataxia‐like disorder in the affected mice" /> 

</argument>  

</DSEG> 
 

Figure 2:  Annotated excerpt 
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    The article presents a narrative of scientific 
discovery: a fortuitous observation followed by 
a series of experiments, intermediate 
conclusions, more experiments and final 
conclusions.  To preserve this contextual 
information we divided the Results section into 
narrative <DSEG> (discourse segment) 
elements correspondingly.  Fig. 2 illustrates the 
first two <DSEG>s.  Each <DSEG> may 
contain several types of elements: <content>, 
<entities-props>, and <argument>. In our 
proposed annotation approach, the text of an 
article is enclosed within <content> elements of 
variable length -- from one to nine sentences in 
this annotated article.  
     Immediately following a <content> element, 
a partial semantic interpretation of that content 
may be given in an <entities-props> element.  
This element may contain <entity> tags for 
entities that have been introduced into the 
discourse in the preceding <content> element. 
The ID attribute of an <entity> uniquely 
identifies it in the discourse. Since an entity 
may have been introduced earlier, the annotator 
must determine if mentions are coreferential.  In 
Figure 2 the first <entities-props> element 
shown describes the preceding <content> as 
introducing two discourse entities, assigned the 
IDs group1 and pheno1 by the annotator. The 
paraphrase attribute of <entity> and other 
elements is used to help the human reader. 
     An <entities-props> element also may 
contain propositions, marked <prop>.  A 
proposition consists of a relation name used in 
the definition of argument schemes in our 
catalogue and the entity ID of its arguments, 
e.g., have_pheno(group1, pheno1).  A set of six 
semantic relations is used:  have_geno, 
have_pheno, have_protein, difference, similar, 
and cause. Propositions may be negated. 
Although entities and relations were manually 
extracted, this is a stop-gap approach until NLP 
tools can assist in semantic extraction.   
    After <entities-props> elements are added, 
any arguments conveyed in the preceding 
<content> element are added. Argument 
annotations are not added inside of <content> 
elements due to the problems noted in the 
Introduction. In other words, separating 

annotation of semantic interpretations from the 
source text, and separating annotation of 
arguments from semantic interpretations 
provides the flexibility to overcome those 
problems. The decision was made to place 
<argument> elements immediately following 
the elements conveying them (rather than, e.g., 
at the end of the document) to preserve the 
context of the argument, since context informs 
dialectical structure and may constrain 
recognition of argument schemes.   
    A key attribute of an <argument> is the 
name of the scheme in our catalog of argument 
schemes.  To assist the annotator, the schemes 
in the catalog are organized in a taxonomy 
(shown in Figure 3), defined, and accompanied 
by one or two examples.  Most of the schemes 
involve causation; the causal schemes are 
differentiated first by whether the conclusion is 
based upon observation of one group or a 
comparison of two groups of individuals. 
 
1. Causation 
1.1 One Group 
1.1.1 Agreement Arguments 
1.1.1.1 Agreement 
1.1.1.2 Failed Method of Agreement (effect) 
1.1.1.3 Failed Method of Agreement (cause) 

1.1.2 Eliminate Candidates 
1.1.3 Explanation‐Based 
1.1.3.1 Effect to Cause 
1.1.3.2 No Effect to No Cause 
1.1.3.3 Consistent with Predicted Effect 

1.2 Two Group  
1.2.1 Difference 
1.2.2 Analogy (Causal) 
1.2.3 Explanation‐Based 
1.2.3.1 Consistent Explanation 
1.2.3.2 Difference Consistent Explanation 

2. Other 
    2.1   Classification   
    2.2   Confirmation 

 
Figure 3:  Taxonomy of argument schemes 

 
    An <argument> element consists of the 
<premise-list>,   a list of <premise>s,   and a 
<conclusion>.  For example, Argument 1 
shown in Figure 2 is an instance of the 
Agreement argument scheme from our 
catalogue.  Its premises are copies of two 
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<prop> elements, derived from two different 
<content> elements.  Its conclusion, labeled 
inferred-prop, has been inferred by the 
annotator based upon constraints of the 
Agreement argument scheme. To paraphrase 
the first premise, the phenotype2 of group1 (a 
certain group of mice) is pheno1 (an ataxia-
like disorder).  The second premise is that the 
genotype of group1 is geno1 (a mutation on 
chromosome 6qE1).  According to this 
argument scheme, one may defeasibly 
conclude that the cause of pheno1 in group1 is 
geno1. Note that all of the annotated 
conclusions are of the type cause(genotype, 
phenotype, group). 
    Other aspects of our annotation scheme not 
illustrated in Figure 2 are illustrated (and 
underlined) in Figure 4. Implicit premises 
marked as domain-prop are reconstructed by 
the annotator based on domain knowledge that 
the reader is assumed to possess and which are 
required by the argument scheme. In Figure 4, 
the annotator supplied the domain knowledge 
that geno2a (a homozygous mutation of Itpr1, 
a gene on chromosome 6qE1) is similar to 
geno1 (a homozygous mutation on 6qE1). 
Some premises may be tagged with an optional 
conclusion-of attribute to indicate when the 
premise is a conclusion of a preceding 
argument. In Figure 4, the second premise is 
the inferred conclusion of argument 1.  
 
<argument ID="2" scheme="Analogy">   

<premise‐list> 

<premise prop="have_pheno(group1, pheno1)" /> 

<premise prop="cause(geno1, pheno1, group1)" 

conclusion‐of="ARG 1 " /> 

<premise  prop="have_pheno(group2,  pheno2)"  /> 

<premise prop="similar(pheno2,pheno1)" /> 

 <premise prop="cause(geno2, pheno2, group2)" /> 

 <premise domain‐prop="similar(geno2a,geno1)" /> 

<conclusion inferred‐prop="cause(geno2a, pheno1,  

group1)" /> 

</argument> 

 
Figure 4:  Argument with two implicit 

premises 

                                                            
2  Phenotype describes a deleterious effect on an 
organism. Genotype describes a variation at the level of 
chromosome or gene that may have a deleterious effect.   

     Due to the preliminary, experimental nature 
of this annotation effort, it did not seem 
essential to adopt a particular tag set used by 
other researchers. However the <entities-
props> elements were designed so that they 
could be automatically transformed into a 
Prolog knowledge base like the one used in 
(Green, 2018) for argument mining, and the 
structure of <argument> elements reflects the 
structure of logic programming rules used for 
argument mining in that work.  Furthermore, at 
this stage of our research, we were more 
concerned with identifying relevant 
argumentation features to be annotated, rather 
than XML coding style.     

3 Results and Discussion  

We annotated 15 arguments in the 
Results/Discussion section of the article -- 
instances of seven schemes from our 
catalogue. In decreasing order, the number of 
instances of each are as follows:  Agreement 
(4), Difference (4), Analogy (2) Consistent 
Explanation (2), Failed Method of Agreement 
(effect) (1), Eliminate Difference (1), 
Difference Consistent Explanation (1). In 
addition, we found two fairly domain-specific 
arguments, e.g. about the proportion of 
phenotypes predicted by Mendelian genetics, 
not represented in the catalogue. 
    In order to annotate the arguments, we also 
annotated 27 discourse <entity> elements 
(instances of nine entity types: human, mouse, 
chromosome, gene, variant, gene product, 
gene function, disorder), and 41 proposition 
(<prop>) elements.  Two (implicit) premises of 
arguments were marked as domain-prop and 
five premises were conclusions of previous 
arguments. Nine of the 15 arguments had 
implicit conclusions.  
    Practically speaking, manual annotation of 
discourse entities was the most difficult aspect 
of the annotation process.  It was difficult to 
keep track of coreferential entity IDs due to the 
number of <entity> elements.  Furthermore, it 
was sometimes necessary to annotate discourse 
entities which were indirectly introduced.  For 
example, the text introduced a discourse entity 
that could be described as a specific mutation 
of the gene Itpr1, namely Itpr1opt/opt; then a 
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subsequent argument referred to the related 
entity, some mutation of Itpr1, i.e., a 
generalization of Itpr1opt/opt. 

We are aware of limitations of this work, 
due to a lack of resources (annotators and 
domain experts), and welcome collaboration 
with other researchers to address them.  First, 
the schemes in the catalogue have not been 
rigorously evaluated for inter-annotator 
agreement.  However, a previous study (Green, 
2017) suggested that some of the schemes, 
such as Agreement, as well as implicit 
conclusions of arguments, could be 
consistently identified. The current catalogue 
improves upon the materials used in our 
previous study. Still, work remains to evaluate 
(and possibly refine) the definitions of the 
argument schemes in the new catalogue.      

Second, as noted earlier we have employed 
manual annotation of entities and propositions 
as a stop-gap effort until the articles can be 
preprocessed by NLP tools.  BioNLP is an 
active area of research and our hope is that in 
the near future this step can be automated or 
semi-automated. Also, after annotating this 
article we became aware of BEL (Fluck et al., 
2016), a formal language for describing causal 
relationships in biology, and are interested in 
exploring its use for expressing the 
propositional content of arguments in this 
domain.   

In future work, we would like to analyze 
arguments in other articles in this subfield as 
well as in another subfield of genetics, such as 
evolutionary biology, and extend the present 
argument scheme catalogue as required.  We 
welcome collaborators to work with us on that 
as well.  The corpus could be used to derive 
semantic rules for argument mining. 

4 Related Work  

Most previous computational research on 
arguments in scientific discourse addressed 
something different than what we mean by 
‘argument’.  That work is concerned with how 
an author justifies the publication of his article 
and positions it with respect to previous claims 
in his field (Teufel, 2010). It also covers the 
different functions of text segments in 
scientific communication, such as reporting the 

method or results (Liakata et al., 2011). In 
contrast, we are interested in arguments that 
present the author’s scientific reasoning for 
validation by other scientists. 
    There are some correspondences between 
argument structure and discourse structure 
induced by certain text coherence relations in 
models such as Rhetorical Structure Theory 
(RST) (Mann and Thompson, 1988). However, 
standard text coherence models are challenged 
by the existence of arguments with non-
contiguous, overlapping, embedded, or implicit 
components. Also, coherence relation 
definitions do not encode distinctions among 
argument schemes. Identification of argument 
schemes is necessary for evaluating argument 
acceptability, and for inferring implicit 
components. In earlier work (Green, 2010), we 
tried to adapt RST to overcome these problems 
for the description of arguments in short 
documents for non-experts about medical 
conditions. In addition to relaxing text 
constraints of RST, we annotated the RST 
analyses with argument schemes. It is not clear 
though whether this approach could adequately 
represent the structure of a full-text scientific 
journal article. 
    There has been little work addressing 
argument mining of scientific journals. White 
et al. (2011) annotated part of the CRAFT 
corpus with functional labels similar to those 
of (Liakata et al., 2011) and suggested that 
patterns of labels might be used to recognize 
arguments. Mercer’s group (2016) is 
attempting to mine text of biomedical 
publications as a step towards extracting 
components of the Toulmin (1998) model of 
argument. Kirschner et al. (2015) annotated 
text segments in a corpus of educational 
research articles. Argument schemes were not 
annotated. It would be interesting to re-analyze 
that corpus to compare the types of arguments 
in it with the types of biological/biomedical 
arguments identified in our catalogue. 
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Abstract

We created a corpus of utterances that attempt
to save face from parliamentary debates and
use it to automatically analyze the language of
reputation defence. Our proposed model that
incorporates information regarding threats to
reputation can predict reputation defence lan-
guage with high confidence. Further exper-
iments and evaluations on different datasets
show that the model is able to generalize to
new utterances and can predict the language
of reputation defence in a new dataset.

1 Introduction

Goffman (1967) defines face, or reputation, as
“the positive social value a person effectively
claims for himself by the line others assume he
has taken during a particular contact. Face is
an image of self delineated in terms of approved
social attributes”. Criticisms and persuasive at-
tacks pose threats to reputation or face and they
are common in all social interactions. Allegations
are often made against organizations (e.g., compa-
nies and governments) and individuals (e.g., med-
ical practitioners and politicians), and various ar-
gumentation tactics and persuasive strategies are
used in response to these allegations to attempt
to defend the respondent’s reputation and thereby
save face. Previous studies on reputation defence
mostly use manual content analysis, such as the
studies by Benoit and Henson (2009) and Zhang
and Benoit (2009) on political cases, and by Pen-
man (1990) and Tracy (2011) on courtroom cases.
While these studies reveal much about reputation
defence strategies in various social settings, they
do not analyze in detail the actual language used
in the defence of reputation.

Here, we examine political speeches and inves-
tigate whether we can detect the language of rep-
utation defence. We created a corpus of reputa-

tion defence,1 in which the annotations are based
on the structure of parliamentary debate. This
corpus is based on the oral question period of a
Westminster-style parliamentary system, specifi-
cally that of Canada, where the government of the
day is held accountable for its actions and tries to
defend its reputation.2 Using this naturally anno-
tated data lets us avoid the subjectivity of man-
ual analysis, any interpretation by the annotators,
and any annotation inconsistencies. We investi-
gate whether we can predict the language of rep-
utation defence and whether the context in which
the reputation defence occurs can help in identi-
fying this language. We first perform experiments
on a sampled dataset from Canadian parliamentary
proceedings of 1994–2014. We then explore the
performance of our approaches on two different
governments. We show that the context of reputa-
tion defence is effective in its recognition.

2 Related work

Reputation defense is more broadly related to
Aristotelian ethos (Aristotle, 2007) or one’s credi-
bility that is reflected through the use of language.
Previous studies on face-saving and reputation
management focused on identifying various per-
suasive strategies and their effectiveness (Benoit,
1995; Coombs and Holladay, 2008; Burns and
Bruner, 2000; Sheldon and Sallot, 2008). In the
NLP field, Naderi and Hirst (2017) performed a
manual annotation analysis on reputation defence
strategies in Parliament and proposed a computa-
tional model to identify strategies of denial, ex-
cuse, justification, and concession. Naderi and
Hirst (2018) further proposed two approaches to

1The data is freely available at http://www.cs.
toronto.edu/˜nona/data/data.html

2https://www.ourcommons.ca/
About/Compendium/Questions/c_d_
principlesguidelinesoralquestions-e.htm
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automatically annotate unlabeled speeches with
defence strategies. Another related NLP study fo-
cuses on extracting ethos from the United King-
dom’s parliamentary debates; Duthie and Budzyn-
ska (2018) used a set of features, such as sen-
timents and part-of-speech tags, to extract nega-
tive and positive references. Here, instead, we are
interested in studying whether we can classify a
speech as reputation defence or not, and whether
the context can improve this classification.

3 Reputation defence

The main purpose of the oral question period in a
Westminster-style parliamentary system is to hold
the government accountable for its actions and
to highlight the inadequacies of the government.3

Members of the opposition and government back-
benchers both may ask questions, and government
ministers must respond. The questions asked by
the opposition members are confrontational, in-
tended to criticize or embarass the government,
and are considered reputation threats; the answers
to these questions by government ministers try to
defend the government’s choices and the minis-
ters’ reputations. Therefore, these questions and
answers are a rich dataset for characterizing the
language of reputation attack and the language
of reputation defence. Government backbenchers
can also pose questions. However, these questions
are most often friendly and promotional questions,
and the answers given to these questions try to pro-
mote the government’s plans. Thus these ques-
tions and their answers are ordinary reputation-
building or reputation-enhancing pairs. They thus
act as negative examples.

This dichotomy between the two types of ques-
tions in Parliament is supported by qualitative
studies such as those of Peŕez de Ayala (2001),
Ilie (2006), and Bates et al. (2012). Peŕez de Ay-
ala (2001) describes Question Time in the U.K.
House of Commons as a ”face-threatening genre”
and examines politeness strategies used in the
face-threatening language of a set of questions.
Bates et al.’s (2012) analysis shows that govern-
ment backbenchers ask either questions that allow

3The Westminster system originated in the United King-
dom and is used in Commonwealth nations, such as Canada,
Australia, India, and New Zealand. The tradition of question
time for government accountability is practiced under differ-
ent names in these countries; in the United Kingdom, it is
known as oral questions, in Canada as oral question period,
in Australia and New Zealand as question time, and in India
as question hour.

the minister to talk about the government’s poli-
cies and positions, or questions that are straight-
forward to answer. While concerns with repu-
tation are of particular importance not only for
politicians but are salient in all social encounters,
gathering a dataset of reputation threats and de-
fences from encounters other than parliamentary
settings is challenging. Hence, we use the avail-
able parliamentary proceedings for characterizing
these languages.

The following question posed by the opposition
in the Canadian Parliament and the Minister’s re-
ply to it is an example of a reputation threat and
the defence made in response. In the example, the
[Deputy] Prime Minister is confronted by an op-
position member with a persuasive attack, and he
tries to defend and justify the actions of the gov-
ernment:4

Example 3.1 Q. Mr. Speaker, the former finance
minister continues to amaze the crowds with his
dance of the veils, with the ethics counsellor stand-
ing just off stage catching whatever is shed. The
first layer was the blind trust that no one could
see through. Next came blind management. Now
we are down to the last and flimsiest layer, the su-
pervisory agreement. Could the Prime Minister
explain why the former finance minister was al-
lowed the opportunity for hands on management
by the ethics counsellor while all other ministers
adhered to the stricter blind trust or blind man-
agement agreements?

A. Mr. Speaker, the arrangements that were in
place were those that were appropriate to the cir-
cumstances and, in fact, reflect the views of the
Parker commission that reviewed these matters in
the past. The former minister complied entirely
with the requirements before him.

The next example shows a non-threatening
question and answer pair, where the question is
posed by a government backbencher.5

Example 3.2 Q. Mr. Speaker, my question is for
the Minister of the Environment. Recently we have
been reading more and more articles in the media
concerning high levels of sulphur in fuels, air pol-
lution and health problems that result from these
high levels. On this issue could the minister tell the

42003-02-20, John Reynolds (Q) and John Manley,
Deputy Prime Minister, representing the Prime Minister (A).

52001-06-04, Shawn Murphy (Q) and David Anderson
(A).
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House what actions are being taken to deal with
the issue of high sulphur levels in fuels in Canada?

A. Mr. Speaker, the announcement I made ear-
lier this year covers gasoline, diesel and fuel oils
outside road fuels. It will reduce the amount of
sulphur in gasoline from its average now of 360
parts per million to 30 parts per million. In on
road diesel, the figure will go from 500 parts per
million to 15. The dates for this are the end of
2004 for gasoline and June 1, 2006, for diesel.

4 Data

We extracted our Canadian data from the Lipad6

dataset of the Canadian parliamentary proceedings
(Hansard) from 1994 to 2014. This data consists
of the proceedings of the 35th to 41st Canadian par-
liaments. We focused on only the first question
and answer pair of each topic of discussion dur-
ing the oral question period of parliament sessions
in order to minimize dependency on the broader
topical context. We created a balanced corpus
by randomly sampling the same number of ques-
tions posed by the opposition members (reputation
threats) as those asked by the government back-
benchers (friendly non-threats). This resulted in
9,048 pairs of questions and answers on more than
1,600 issues over the 20-year period.

To further analyze reputation defence strategies
used by different governments, we extracted the
question and answer pairs from parliaments with
different governing parties. The Liberal Party was
the government in the 36th, 37th, and 38th Parlia-
ments, and the Conservative Party was the govern-
ment in the 39th, 40th, and 41st Parliaments. This
allows us to examine the language of reputation
defence used by different political ideologies. Fur-
thermore, by training and testing models on par-
liaments with different governing parties, we can
ensure that the models are not affected by the ide-
ology of the speaker and the topic of day or interest
of the accuser. Table 1 shows the statistics of these
datasets, which, unlike the 1994–2014 dataset, are
not balanced.

5 Reputation threat analysis

A principled analysis of the language of face-
threats or accusations themselves falls outside the
scope of this work, but here we characterize the

6LInked PArliamentary Data, https://www.lipad.
ca

Party Parliaments Opposition Government
Liberal 36, 37, 38 11,090 1,736
Conservative 39, 40, 41 11,504 2,004

Table 1: Corpus statistics; Party shows the govern-
ing party; Opposition shows the number of questions
asked by the opposition members and their respective
answers, Government shows the number of questions
asked by the government backbenchers and their re-
spective answers.

differences between the questions asked by op-
position members (reputation threats) and ques-
tions asked by government backbenchers (friendly
non-threats). We randomly sampled 3,400 ques-
tions asked by the oppositions and 3,400 questions
asked by the government backbenchers. We per-
formed our analysis using Linguistic Inquiry and
Word Count (LIWC) (Tausczik and Pennebaker,
2010), which is widely used in social science stud-
ies. Table 2 presents the ratio of averages between
reputation threats and non-threat questions for a
set of LIWC features, including anger, negative
and positive emotions, achievement, and cognitive
processes. Ratios greater than 1.0 indicate fea-
tures that are more prominent in reputation threats
and ratios less than 1.0 indicate features that are
more prominent in non-threats. The results show
that, unsurprisingly, anger and negative emotions
used more in reputation threats than non-threats,
whereas positive emotions are used more in non-
threats. These features are motivated by theories,
such as Brown and Levinson (1987) and Parting-
ton (2003) that recognize varying degrees of po-
liteness in threatening or saving the addressee’s
face. Achievements are used more in non-threats
and cognitive processes are used more in reputa-
tion threats. This is consistent with theories (Mul-
holland, 2003) that recognize mentioning the con-
sequences of the fault as one mode of accusation.

6 Approach

Convolutional Neural Networks (CNN) have been
shown to be effective for classification tasks (Kim,
2014). Here, we used a CNN model to represent
the question and answer pairs for binary classifi-
cations of face-saving language. We first repre-
sented each word in the question and the answer
with its associated pre-trained embedding. We
then applied a convolution operation to each pos-
sible window of x words from the question and the
answer to produce a feature map, similar to the ap-
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Feature Ratio Text
Anger 1.15 Opp: Prime Minister has the annoying habit of blindly exonerating . . .
Negative emotion 1.35 Opp: We all know there is a nasty trade dispute going on between . . .
Positive emotion 0.69 Gov: . . . presenting new and exciting opportunities . . .
Achievement 0.82 Gov: . . . foundation has successfully concluded agreements with . . .
Cognitive processes 1.20 Opp: . . . Minister of the Environment ought to read the U.S. . . .

Table 2: Ratios of linguistic features in opposition questions to government backbenchers’ questions. Text shows
an example for each feature. Opp shows an opposition question and Gov shows a government backbencher’s
question.

proach of Kim (2014). We then applied a sliding
Max Pooling and concatenated the representation
of the question and the answer. We used 20 and 10
filters for the five-fold cross-validation and cross-
parliament experiments, respectively. We used fil-
ter windows of 3 and 4, a dropout of 0.8, and
mini-batch sizes of 32 and 50 for five-fold cross-
validation and cross-parliament experiments, re-
spectively.

Recurrent neural networks have been used ef-
fectively in NLP for sequence modeling. Here,
we further used two long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) net-
works7 with 128 units to represent questions and
answers, separately. The LSTM layers were then
passed to a dropout layer (Hinton et al., 2012)
with a rate of 0.6. We then merged the two rep-
resentations. For all our Neural Network models,
we initialized our word representations using the
publicly available GloVe pre-trained word embed-
dings (Pennington et al., 2014)8 (300-dimensional
vectors trained on Common Crawl data), and re-
stricted the vocabulary to the 5,000 most-frequent
words. The models were trained with binary cross-
entropy with the Adam optimizer (Kingma and
Ba, 2014) for 10 and 5 epochs for five-fold cross-
validation and cross-parliament experiments, re-
spectively. We also tried encoding the questions
and answers using a layer of Gated Recurrent
Units (GRU) (Cho et al., 2014) with shared pa-
rameters, but this model performed worse than the
other models, and for brevity we do not report the
results here.

We further trained an SVM classifier (using the
scikit-learn package (Pedregosa et al., 2011)) with
all possible combinations of words extracted from
the cross-product of questions and answers to cap-

7Using https://keras.io/
8https://nlp.stanford.edu/projects/

glove/

ture the interaction between reputation threat and
reputation defence. The features are tuples of
word pairs from question and answer pairs. We
removed word pairs that occurred fewer than 80
times in the datasets. Our use of this set of fea-
tures is inspired by the effectiveness of word pairs
in classifying discourse relations (Biran and McK-
eown, 2013; Pitler et al., 2009) regardless of their
sparsity issue.

7 Evaluation and results

We approach the recognition of the face-saving
language as a binary supervised classification task.
Our baselines are majority class (which is always
answers given to the opposition questions), an
SVM model trained with answer unigram vectors
(weighted using tf–idf, represented with the no-
tation ‘-Answers’ in the result tables), and one
layer of GRU to model answer sequences. Since
reputation defence is expressed in response to the
reputation threat, we further considered the ques-
tion as the context of the reputation defence and
trained an SVM model with question and answer
unigrams (weighted using tf-idf, represented by
the notation ‘-Questions&Answers’ in the result
tables). For comparison, we further include the re-
sults of an SVM model trained on only unigrams
from questions (‘-Questions’). We also use one
layer of GRU to model the concatenation of ques-
tion and answer pairs as one sequence. The SVM
model trained on word pairs is represented with
the notation ‘-Questions×Answers’ in the result
tables.

In the cross-parliament setting, we used the
36th, 37th, and 38th parliaments with Liberal gov-
ernments and the 39th, 40th, and 41st parliaments
with Conservative governments. We first per-
formed a five-fold cross-validation on the Lib-
eral and Conservative governments individually
(three parliaments each), and then performed a
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Model Accuracy F1 Precision Recall
(1) Canada 1994–2014; Opposition: 4,524; Government: 4,524

Majority 50.00
Unigrams-Answers 76.57 76.57 76.59 76.57
Unigrams-Question&Answers 88.00 88.00 88.01 88.00
Unigrams-Questions 90.10 90.10 90.11 90.10
1 GRU(128)-Answers 81.60 82.64 77.27 89.99
1 GRU(128)-Questions&Answers 94.39 94.23 93.94 94.91
CNN(128)-Questions&Answers 91.40 91.16 90.54 92.41
2 LSTMs(128)-Questions&Answers 92.26 91.92 93.34 91.04
Word-pairs-Questions×Answers 91.46 91.46 91.47 91.46

(2) Parliaments 36, 37, 38; Opposition: 11,090; Government: 1,736
Majority 86.47
Unigrams-Answers 88.57 88.26 88.10 88.57
Unigrams-Questions&Answers 92.77 92.59 92.50 92.77
Unigrams-Questions 93.59 93.43 93.43 93.59
1 GRU(128)-Answers 90.89 94.91 91.53 98.70
1 GRU(128)-Questions&Answers 95.72 97.52 96.52 98.66
CNN(128)-Questions&Answers 94.50 96.87 95.12 98.81
2 LSTMs(128)-Questions&Answers 94.11 96.52 97.23 95.99
Word-pairs-Questions×Answers 95.06 94.95 94.98 95.06

(3) Parliaments 39, 40, 41; Opposition: 11,504; Government: 2,004
Majority 85.16
Unigrams-Answers 87.27 86.95 86.82 87.27
Unigrams-Questions&Answers 95.87 95.75 95.78 95.87
Unigrams-Questions 97.45 97.41 97.42 97.45
1 GRU(128)-Answers 91.05 94.93 91.63 98.63
1 GRU(128)-Questions&Answers 98.33 99.02 98.77 99.30
CNN(128)-Questions&Answers 97.10 98.31 97.50 99.20
2 LSTMs(128)-Questions&Answers 97.11 98.27 98.98 97.63
Word-pairs-Questions×Answers 97.48 97.43 97.45 97.48

Table 3: The performance of different models for binary classification of reputation defence language using five-
fold cross-validation on (1) a balanced set from 1994–2014; (2) three Liberal governments; (3) three Conservative
governments.
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cross-parliament classification. For all datasets
and models, we randomly used 10% of the training
data as the development set. We evaluated the per-
formance of reputation defence classification us-
ing the metrics Accuracy, Precision, Recall, and
F1. Table 3 shows the results of five-fold cross-
validation on a balanced set from all parliaments in
the period 1994–2014, on just the Liberal govern-
ments, and on just the Conservative governments.
Both CNN and LSTM models improve the classi-
fication compared to the baselines. In general, we
can see that all the models that rely only on the
answer or reputation defence perform poorer than
the models that rely also on the questions. The
best model achieves an accuracy and F1 measure
of above 98% on the parliaments with Conserva-
tive governments. The highest accuracy and F1
measure on the Liberal dataset is above 95% and
97%, respectively.

Table 4 shows the results of the cross-
parliament classification. We trained the mod-
els on all Liberal parliaments, and tested them
on all Conservative governments, and then vice
versa. The SVM model trained using question-
and-answer unigrams is a strong baseline. Both
the CNN and LSTM models improved F1 mea-
sure compared to the baseline models. On the
cross-parliament classification setting, again the
models trained on both questions and answers per-
form better. The overall performance of the neu-
ral net models across parliaments is poorer than
the classification performance within parliaments.
This can be explained by the differences in fram-
ing strategies used in the language of defence by
the two parties, which each defend their actions
and choices from their own point of view. The
SVM model trained on the words extracted from
the cross-product of questions and answers (word-
pairs) achieves the best accuracy, reaching an ac-
curacy and F1 measure above 92% across parlia-
ments. These results show that reputation defence
language can be detected with high accuracy re-
gardless of differences in ideologies and framing
strategies.

An error analysis shows that most errors oc-
curred in the classification of answers to non-
threat questions. One reason for this is that while
the government ministers do not defend them-
selves in the answers in response to the govern-
ment backbenchers, they do try to enhance their

image. Consider the following example9:

Example 7.1 Q. Mr. Speaker, my question is for
the Minister of the Environment. Over the week-
end, the leader of the Bloc Québécois had the
temerity to claim that the 2005 budget did not
serve the interests of the people in Quebec. I know
full well that the environment is very important to
the people in my riding. Could the minister tell the
House how the environmental initiatives contained
in the budget will benefit Quebec?

A. Mr. Speaker, Quebeckers are impatiently
awaiting the greenest budget since Confederation.
Very successful contacts have been established
with the Government of Quebec for the use of the
partnership fund. Projects are sprouting up all
over for the climate fund, for new investments, for
national parks and for investment in renewable
and wind energy. Mayors are waiting for green
investments for cities and municipalities through
the new deal, the green municipal fund, the Ener-
Guide program for cities and so on. Quebec must
not be blocked, but greened even more.

We further examined the cases where a repu-
tation defence was erroneously assigned a non-
defence label. These cases require real-world
knowledge to determine that they are indeed repu-
tation defence. Here is an example10:

Example 7.2 Q. Mr. Speaker, this country was
built upon common interests by and for the people
here. We cannot allow the House of Commons to
introduce a bill which, in reality, provides a recipe
for destroying this country. Does the government
realize that this draft bill is an avowal of failure by
this government as far as the future of the federa-
tion is concerned?

A. No, Mr. Speaker. This bill is a follow-up
to the Supreme Court judgment referring back
to the political stakeholders the responsibility to
establish the conditions of clarity under which
they would agree to negotiate the secession of a
province from Canada, and it seems to me that
one of those stakeholders is the Canadian House
of Commons.

The models that rely on only the answer have par-
ticular difficulty in distinguishing these cases.

92005-05-31, David Smith (Q) and Stéphane Dion (A).
101999-12-13, André Bachand (Q) and Stéphane Dion (A).
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Model Accuracy F1 Precision Recall
Train 36, 37, 38 (Opp: 11,090; Gov: 1,736) and test 39, 40, 41 (Opp: 11,504; Gov: 2,004)
Majority 85.16
Unigram-Answers 82.22 82.63 83.10 82.22
Unigrams-Questions&Answers 89.60 89.23 89.02 89.60
Unigrams-Questions 91.56 91.07 91.04 91.56
GRU(128)-Answers 84.02 91.21 85.23 98.25
GRU(128)-Questions&Answers 83.48 90.83 85.65 96.84
CNN(128)-Questions&Answers 85.86 92.32 86.53 99.10
2 LSTMs(128)-Questions&Answers 85.27 91.88 86.10 98.66
Word-pairs-Questions×Answers 93.59 93.36 93.33 93.59
Train 39, 40, 41 (Opp: 11,504; Gov: 2,004) and test 36, 37, 38 (Opp: 11,090; Gov: 1,736)
Majority 86.47
Unigram-Answers 86.95 85.44 84.87 86.95
Unigrams-Questions&Answers 90.34 89.10 89.40 90.34
Unigrams-Questions 91.14 90.52 90.42 91.14
GRU(128)-Answers 86.29 92.58 86.49 99.71
GRU(128)-Questions&Answers 85.58 92.14 86.49 98.75
CNN(128)-Questions&Answers 86.75 92.73 87.67 98.55
2 LSTMs(128)-Questions&Answers 86.72 92.78 87.10 99.45
Word-pairs-Questions×Answers 92.95 92.31 92.62 92.95

Table 4: The performance of different models for binary classification of reputation defence in the cross-parliament
setting. Opp shows the number of opposition members’ questions and their respective answers and Gov shows the
number of government backbenchers’ questions and their respective answers.

Model Accuracy F1 Precision Recall
Train 36, 37, 38 and test 39, 40, 41 (balanced, 3400 instances train and 3400 test)

Majority 50.00
Unigrams-Answers 67.94 67.92 67.99 67.94
+NRC Emotion (anger+pos+neg) 69.77 69.70 69.94 69.77
+Bigrams 73.41 73.33 73.73 73.41
+Vagueness cue words 73.85 73.75 74.22 73.85
Word-pairs-Questions×Answers 83.97 83.95 84.14 83.97

Train 39, 40, 41 and test 36, 37, 38 (balanced, 3400 instances train and 3400 test)
Majority 50.00
Unigrams-Answers 71.24 70.68 72.99 71.24
+NRC Emotion (anger+pos+neg) 71.71 71.14 73.57 71.71
+Bigram 73.71 72.91 76.88 73.71
+Vagueness cue words 73.88 73.91 76.98 73.88
Word-pairs-Questions×Answers 83.77 83.67 84.82 83.77

Table 5: The performance of different models for binary classification of reputation defence in the cross-parliament
setting with the balanced data (1700 instances of each class).
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8 Analyzing the language of defence

To help discover more about the underlying struc-
ture of the data, we conducted an exploratory fea-
ture analysis. We created two balanced datasets
from the two governments, where each dataset
consists of 3,400 question and answer pairs (1,700
questions asked by opposition members and 1,700
questions asked by government backbenchers).
The question and answer pairs were selected ran-
domly. In this setting, we focused only on the text
of the answers or reputation defence.

We consider emotions, such as positive, nega-
tive, and anger. For extracting these features, we
used the NRC Word-Emotion Association Lexi-
con (NRC Emotion lexicon)11. This lexicon pro-
vides manually assigned association scores for ba-
sic emotions including anger, fear, joy, sadness,
disgust, anticipation, trust, surprise, and senti-
ments (positive and negative) (Mohammad and
Turney, 2013). It consists of 14,182 unigrams
that are manually annotated through crowdsourc-
ing. We compute the total association scores of
the lexicon words in the answer for each class of
emotions and sentiments.

We further examined the NRC VAD Lexicon12

for our analysis. This lexicon provides valence
(positiveness–negativeness / pleasure / displea-
sure), arousal (active–passive), and dominance
(dominant–submissive) scores for 20K English
words (Mohammad, 2018). These dimensions
have been used for analysis of human interaction
(Burgoon and Hale, 1984). We use the total score
of each dimension in the answer as a feature. We
also consider vagueness cue words (Bhatia et al.,
2016; Lebanoff and Liu, 2018). This set of fea-
tures (40 cue words) is represented by the fre-
quency of the vagueness cues in the answer. The
use of these features is motivated by theories such
as that of Fraser (2012) that suggest that hedge
words can be used to avoid face-threatening acts.
We also use bigrams as additional features. We
performed the classification using SVM. The re-
sults of the binary classification of face-saving lan-
guage on the balanced data of the cross-parliament
setting is presented in Table 5.

The only emotion that contributed to the classi-
fication was anger. The positive impact of anger

11http://saifmohammad.com/WebPages/
NRC-Emotion-Lexicon.htm

12http://saifmohammad.com/WebPages/
nrc-vad.html

Predicted

A
ct

ua
l Non-defence Defence

Non-defence 1,360 340
Defence 549 1,151

Table 6: Confusion matrix for the best performing
model that relies only on features extracted from an-
swers, including unigrams and bigrams, NRC emo-
tions (anger+pos+neg), and vagueness cues. Trained
on 36,37,38 (3,400 instances) and tested on 39,40,41
(3,400 instances).

Predicted

A
ct

ua
l Non-defence Defence

Non-defence 1,368 332
Defence 213 1,487

Table 7: Confusion matrix for the model trained on
word pairs. Trained on 36,37,38 (3,400 instances) and
tested on 39,40,41 (3,400 instances).

on the classification performance is in line with
theories such as those of Mulholland (2003) and
Benoit (1995) that find that attacking the accuser
is a type of face-saving strategy. Both positive
and negative sentiments also improved the perfor-
mance of the classification, as did vagueness cues
and bigrams. However, using valence, arousal,
and dominance hurt the performance.

The confusion matrices for the best model
trained on the features extracted from the answers
(unigrams and bigrams + NRC Emotions includ-
ing negative and positive sentiments and anger +
vagueness cues) and the model trained on word
pairs are presented in Tables 6 and 7, respectively.
Both models are trained on 3,400 instances from
the 36th, 37th, and 38th parliaments and tested on
3,400 instances from the 39th, 40th, and 41st par-
liaments.

9 Conclusion

Face-saving language is employed in everyday hu-
man interaction. In this study, we introduced the
task of automatically recognizing the language of
face-saving. We created a corpus of reputation-
defence language on various issues from parlia-
mentary proceedings that is freely available. We
further presented two neural network approaches
to classify this language. We showed that the
context of reputation defence is important for this
classification task. Our results supported our an-
notation decision based on the adversarial struc-
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ture of the parliament and showed that our cor-
pus is appropriate for analyzing the language of
reputation defence. A practical application of our
model will be to analyze human behavior and to
examine the effectiveness of reputation defence in
various social settings.
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Abstract
In this paper, we explore the problem of de-
veloping an argumentative dialogue agent that
can be able to discuss with human users on
controversial topics. We describe two sys-
tems that use retrieval-based and generative
models to make argumentative responses to
the users. The experiments show promising
results although they have been trained on a
small dataset.

1 Introduction

Research in argument mining has mainly focused
on the problem of identifying claims, premises
(Boltužić and Šnajder, 2014, 2015; Levy et al.,
2014), assessing arguments, classifying stances,
detecting political beliefs (Hasan and Ng, 2013;
Iyyer et al., 2014; Bamman and Smith, 2015)
or finding connection between claims (Stab and
Gurevych, 2014). Very few research has addressed
the problem of generating arguments directly in a
conversational form.

To study and analyse debates, it is important
to understand how to formulate claims, how argu-
ments develop and relate to each other, what fac-
tors influence the next argument. In this work, we
explore the question whether we can teach com-
puters to make or generate arguments and follow
the ideas/stances/sides of actors in a debate. To
start inspecting this challenging problem, we de-
velop two debate dialogue systems, a retrieval-
based and a generative model. The aim of the sys-
tem is to mimic a debater, make arguments and
give relevant responses to users on given topics.

Such argumentative dialogue systems could be
useful in a lot of future applications, such as in
information campaigns, where the users can get
objective answers for controversial topics to make
evidence-based decisions; in an interactive argu-
mentative dialogue system, where the users can
practice making arguments, learning to persuade
people.

2 Related work

Analyzing public debates about controversial is-
sues is a well-studied area in social and political
science. Natural language processing and machine
learning could help building a scalable and data-
driven predictive modelling for public debates. In
this rapidly growing field, most of the work has
focused on the identification of claims and jus-
tifications in text (Boltužić and Šnajder, 2014,
2015; Levy et al., 2014), connecting claims (Stab
and Gurevych, 2014), actors with discourse anal-
ysis (Peldszus and Stede, 2015), stance detection
(Hasan and Ng, 2013), or the categorization of
political beliefs (Iyyer et al., 2014; Bamman and
Smith, 2015).

Most of these studies have focused on public de-
bates which can be found in newspaper articles,
written essay (Stab and Gurevych, 2017) or par-
liament debates (Koehn, 2005). Another line of
research works on Internet dialogues such as those
in social networks, online forum debates (Walker
et al., 2012a). The dialogic language used in these
forms is usually different from that found in news-
papers. While it also contains stances, arguments,
opinions, this language is usually more informal,
can contain typos and subjective acts such as sar-
casm (Justo et al., 2014; Swanson et al., 2017).
There are a number of studies focusing on this
kind of data, working on sarcasm and nastiness
detection (Justo et al., 2014; Swanson et al., 2017)
as well as topic stance classification (Walker et al.,
2012b).

Little research has been done on using machine
learning to generate arguments in a conversation.
The most relevant idea is the one reported in (Rak-
shit et al., 2017; Rach et al., 2018). In (Rakshit
et al., 2017), the authors describe Debbie, a debate
bot of the future. It is an initial working proto-
type, in which the system retrieves the most ap-
propriate counter-arguments using a similarity al-
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gorithm. In particular, they used Latent Seman-
tic Similarity for word similarity and Wordnet, to-
gether with hierarchical agglomerative clustering
to retrieve the most similar responses. Evalua-
tion has been done based on the time the system
took to retrieve the results. While this work is the
most similar to our ideas, it is currently an initial
prototype and fully-retrieved based. Our work on
the other hand explores several options focusing
on the currently challenging direction, generative
model in argumentative dialogue systems.

Research on conversational systems has two
main directions: task-oriented dialogue systems
(Williams et al., 2017; Bordes and Weston,
2016; Eric and Manning, 2017) and general/open-
domain chatting systems such as those described
in (Vinyals and Le, 2015; Zhou et al., 2017; Li
et al., 2016a; Serban et al., 2016). For the task-
oriented dialogue systems, it is usually important
to have an intent classifier together with a dialogue
state tracker that keeps track of which information
is needed to be requested and finally a language
generation module (Williams et al., 2017; Bordes
and Weston, 2016). Our work is more related
to the second direction, a general/open-domain
chatting system. Besides the common retrieval-
based approach, a growing interest in the research
area focuses on a generative, end-to-end system.
One of the first study using sequence to sequence
model for building conversational models is de-
scribed in (Vinyals and Le, 2015). These systems
can generate new responses in daily conversational
topics, but are still quite limited in making sense
of these responses. The main problem often lies in
the decoder and objective parts, where usually the
most generic and safe responses such as “I don’t
know” are selected. To deal with this problem,
(Li et al., 2016a) proposed using another objective
function to promote diversity in responses. Some
other work investigates the problem of integrat-
ing emotion and persona into the conversational
agents such as (Zhou et al., 2017; Li et al., 2016b).

3 The debater system

In this section, we describe our argumentative con-
versational system, which can give responses in
two different modes: using a retrieval-based ap-
proach and using a generative model.

3.1 Format of a debate

The aim of the chatbot is to be able to carry a
conversation with humans to debate about a given
topic. At the initial step, the system suggests a
topic (Table 1) and the user can decide to debate
on this topic or move on to another one. When a
topic is selected, the user can give her opinions and
the system should generate coherent responses to
the user’s message. Ideally, the system’s response
should be meaningful, relevant to previous mes-
sages and present opinions/arguments about the
given topic.

3.2 Dataset

In the demo, we use the Internet Argument Cor-
pus (Abbott et al., 2016), which is a collection
of 65K posts in 5.4K debate topics (Table 1) re-
trieved from Convinceme website1. While debates
from medias such as those in newspapers, broad-
cast news are more officially and formally written,
online debate posts are often more colorful, per-
sonal and may be rational, contain emotional lan-
guages. Such kinds of debates tend to be more
subjective and naturally present how humans de-
bate with each other. Topics of discussion in this
online forum are various, ranging from political
debates (e.g., should guns be controlled?) to ev-
eryday life topics (e.g., How much should I tip the
pizza man for my 20$ lunch order?).

Star Wars vs. Lord of the Rings
Pepsi vs. Coke, the true taste test
A billboard saying “There is no God and life is still great”
is offensive?
Is atheism a taboo in the USA?
Should .50 Cals be allowed in warfare?
Pencils vs. Pens
Should the Government allow NAZI rallies in neighborhoods
where Holocaust survivors live?
Pronunciation: The letter Z, ‘Zed’ or ‘Zee”?
Would you be more disappointed to find out that your child
cheated on a test or smoked a cigarette?
How much should I tip the pizza man for my 20$
lunch order?
Cellphones While Driving
Smoking should be banned?
Should we judge motives or actions?

Table 1: Examples of debate topics

A debate can contain multiple posts from sev-
eral users. We use each debate as a training sam-
ple of a dialogue for the argument system, where
two consecutive posts are served as a quote and
response pair.

To build the conversational argument system,

1http://www.convinceme.net/
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we employ two typical approaches: a retrieval and
a generative method.

3.3 The retrieval-based system

In the retrieval-based system, the task is to select
the most relevant response given a user’s message
and the context of the conversation. While limited
in the sense that it cannot generate new responses,
retrieval-based systems are still often selected as a
base method for many applications including sum-
marisation, tasked-oriented dialogue systems. The
aim of the system is to learn how to select the best
argument from a pre-defined topic that matches
the current user’s response and the history of the
conversation. The architecture of the system is de-
picted in Figure 1.

Figure 1: The debater retrieval system architecture

We use a siamese adaption of the LSTM net-
work, which is called the Manhattan LSTM (MaL-
STM) model (Mueller and Thyagarajan, 2016) to
learn the similarity representation of two given
messages. Common approaches usually use neu-
ral networks to represent sentences whose word
vectors are trained on large corpora (Mikolov
et al., 2013b; Le and Mikolov, 2014). The MaL-
STM model on the other hand learns the semantic
similarity directly with its representation learning
objective function. It is reported to achieve state-
of-the-art results on the task of assessing semantic
similarity between sentences (Mueller and Thya-
garajan, 2016).

The model is composed of two networks
LSTMa and LSTMb, where the weights of these
two networks are shared. The first LSTMa repre-
sents candidate responses taken from the dataset,
while the second LSTMb represents the current
human’s response. A context tracker helps keep-

ing track of which responses have been retrieved
before to avoid repetition. The current user’s mes-
sage is compared to all candidates from the given
debate to find the most relevant one rktop, where k
is the index of the response in the dataset. Finally,
rk+1
top , the next response of rtop is selected to be-

come Dave’s response. Based on this approach,
the first response r1 will never be selected. To
avoid irrelevant responses (when the user’s mes-
sage is not similar to any of the posts in the de-
bate), we set a similarity threshold τ . For cases
when the system cannot find a response that is sim-
ilar (i.e., similarity value S < τ ), the system will
select the first post to return since the first post
is usually the most general one that describes the
topic of the debate. After a new response is se-
lected, the context tracker will add the response to
the context and only reset it when all responses
have been achieved to promote diversity in the
whole conversation.

For similarity metric, we use the simple func-
tion S(h(a)Ta

, h
(b)
Tb
) = exp(−||h(a)Ta

− h(b)Tb
||1) where

h
(a)
Ta

and h(b)Tb
are representation of posts and user’s

messages respectively. The similarity value S ∈
[0, 1]. l1 norm is used in the similarity function
instead of l2 in order to avoid the problem of cor-
recting errors in early stages due to vanishing gra-
dients of the Euclidean distance (Chopra et al.,
2005). It has also been reported to perform slightly
better than other metrics such as cosine similarity
(Mueller and Thyagarajan, 2016; Yih et al., 2011).

To train the MaLSTM, one needs to have a
parallel corpus with similarity annotation between
pairs of sentences. Unfortunately, there is no such
corpus that is directly representing posts’ similar-
ities in debates and is large enough for training.
We therefore use the Quora question pairs Kag-
gle competition dataset2 which contains 404,302
question pairs annotated with similarity informa-
tion (i.e., whether they are having the same mean-
ing or not). Examples of questions in the train-
ing set is given in Table 2. This dataset has an
open domain with questions covering many top-
ics, which are suitable to be applied to our online
post similarity assessment task. As can be seen
from Table 2, computing similarity between sen-
tences requires more than just word/word meaning
matching. A similarity classifier should be able
to do reasoning and take into account the struc-

2https://www.kaggle.com/c/
quora-question-pairs
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ture of the sentences. For the embedding layer,
we use the pre-trained word2vec of Google News
dataset3(Mikolov et al., 2013a).

Questions that are equal
How can I be a good geologist?
What should I do to be a great geologist?
How do I read and find my YouTube comments?
How can I see all my Youtube comments?
What can make Physics easy to learn?
How can you make physics easy to learn?

Questions that are not equal
What are the types of immunity?
What are the different types of immunity in our body?
What is abstract expressionism in painting?
What are major influences of abstract expressionism?
Why do girls want to be friends with the guy they reject?
How do guys feel after rejecting a girl?

Table 2: Examples of Quora questions used for training
the MaLSTM for the retrieval-based approach

3.4 The generative system

Figure 2: The debater generative system architecture

Although retrieval-based method is straightfor-
ward and guarantee to produce high quality mes-
sages, it is limited to only arguments that are avail-
able in the dataset and cannot adapt or tailor to
every new responses from the users. A common
trend in dialogue system community is to push
towards generative models, where they are able
to generate new messages based on the context
and/or current states of the conversation (Vinyals
and Le, 2015; Li et al., 2016a; Zhou et al., 2017).

Debating is different from normal open-
domain conversation: argumentative responses
may present attributes such as emotion, agree-
ment, disagreement, sarcasm and stance.

3https://code.google.com/archive/p/
word2vec/

To study if an end-to-end model could gener-
ate such responses, we use a hierarchical recurrent
(RNN) encoder-decoder architecture as depicted
in Figure 2. The original hierarchical RNN was
introduced in (Sordoni et al., 2015) for the task
of generating context-aware query suggestion for
search engines. Its model attempts to capture the
context of user queries based on sessions and sam-
ple suggestion one word at a time.

Applying to the task of generating debater re-
sponses, this architecture could take into account
previous users’ responses and is context sensitive.
The order of messages in history is captured and
encoded in a session-level recurrent state and the
current response is represented in a response level
recurrent state.

A given topic is treated as the first message
starting a conversation. When the user submits the
first response, it is fed into a bidirectional RNN
(Jain and Medsker, 1999), in our case using GRU
cells (Cho et al., 2014). Each word in the response
is embedded using the pre-trained word embed-
dings. The encoder RNN then updates its inter-
nal vector, the response-level recurrent state. To
capture the context of the previous messages in
the dialogue and condition the next response gen-
eration based on the context, the session-level re-
current state is updated using another RNN on top
of the previously computed current response-level
encoder. This therefore forms a hierarchical ar-
chitecture that could be able to capture the deep
dialog context together with the current response
encoder.

Given a set of responses R = {r1, r2, ..., rM}
where M is the number of responses in the given
session and the responses are submitted in a
chronological order. Each response is represented
by a set of words rm = {wm

1 , w
m
2 , ..., w

m
Nm
},

where Nm is the total number of words in that re-
sponse.

Response-level encoder. For each wordwn, the
response-level recurrent encoder state hm(enc),n is
computed based on the previous state and the cur-
rent word:

hm(enc),n = g(enc)(h
m
(enc),n−1, w

m
n ) (1)

The first initial state h0 is set to 0. hm(enc),n stores
information about the current response rm and
word wm

n .
Session-level encoder. In the session-level en-

coder, we encode the context of the previous re-
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Figure 3: Dave the debater web demo

sponses in state c

cm(enc) = g(enc)(c
m−1
(enc), r

m) (2)

The session level encoder sums up the context
of all responses that the network has seen so far in
a chronological order. It additionally builds up on
the response vector rm.

Response decoder. In this model, the response
is sampled one word at a time. In particular, the
prediction of the next response rm based on the
context r1:m−1 is based on the estimation of the
probability:

P (rm|r1:m−1) =

Nm∏

n=1

(wn|w1:n−1, r
1:m−1) (3)

The current state dmn of the decoder is computed
using another GRU:

dm(dec),n = g(dec)(d
m
(dec),n−1, w

m
n ) (4)

To embed the context information into the de-
coder space dm, we initialize the first recurrent
state dm0 using a tanh function:

dm(dec),0 = tanh(D0c
m−1 + b0) (5)

where D0 projects the context summary vector
cm−1 into the decoder space and b0 is a bias vector.

Finally, the probability of a word wm
n takes the

form u is computed based on the previous words
and given context as:

P (wm
n = u|wm

1:n−1, r
1:m−1) =

exp(eTu f(d
m
n−1, w

m
n−1))∑

k exp(e
T
k f(d

m
n−1, w

m
n−1))

where eu and ek are the word embeddings of
word u and k; f is the function that is com-
puted based on both response-level and session-
level states, similar to those used in (Sordoni et al.,
2015; Cho et al., 2014).

f(dmn−1, w
m
n−1) = H0d

m
n−1 + E0w

m
n−1 + b0 (6)

Objective function. In this framework, we use
the maximum mutual information (MMI) as pro-
posed in (Li et al., 2016a) instead of the tradi-
tion likelihood function. As reported in (Li et al.,
2016a), MMI objective function helps produce
more diverse and interesting responses.

The likelihood objective function is computed
as:

r∗ = argmax
r
{logP (r|r1:m)} (7)

while the MMI objective function is defined as:

r∗ = argmax
r
{logP (r|r1:m)− logP (r)} (8)

Generation and reranking. We use sampling
method, where each word is sampled based on
the output distribution. The results are finally re-
ranked based on the log likelihood or the MMI
score.

4 Web Demo for Dave the debater

A demo of the system described in the previous
sections is available at http://114.212.80.
16:8000/debate/. The interface is illustrated
in Figure 3. A topic is randomly selected for a
user, he or she can start talking about this topic by
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giving own arguments. The user can also select to
switch to a new debate topic with the button “Let’s
change the topic”.

There are two different modes depending on
which debater system the user wants to talk to.
In the retrieval mode, each topic has a pre-defined
list of responses. Note that these responses are or-
dered chronically. The selected responses are cho-
sen based on the comparison of the user’s current
message and the history of the debate. In particu-
lar, the message from the user is being compared
to every responses in the pre-defined set and the
response coming after the most similar one is go-
ing to be selected. We keep track of all responses
that have been retrieved to not get repeated re-
sponses again. More details about the approach
is explained in section 3.3.

For the generative mode, the user can talk about
the given topic or any other topics. The responses
are generated based on the current message (en-
coded in the response-level recurrent state) and the
context, which is the history of the whole conver-
sation from the beginning (encoded in the session-
level recurrent state) (section 3.4).

To collect feedbacks for each response to re-
train the models, users are able to rate each re-
sponse with rating from 1 (very bad) to 5 (very
good). These ratings are stored in the database to-
gether with the responses and their contexts to use
in the future so the models can learn from them.

5 Experiments and results

In this section, we report the first evaluation re-
sults we have so far for both retrieval-based and
generative argumentative dialogue system.

5.1 Retrieval-based model

We evaluate the MaLSTM as describe in section
3.3 for the similarity assessment task on the Quora
dataset. As we do not have directly gold stan-
dard data for similarity evaluation performing on
the argumentation dataset, we use the Quora as a
measurement of the similarity assessment for the
MaLSTM. We used 50 hidden layers, word em-
bedding length of 300, batch size of 2048, dropout
rate of 30%. For the loss function, we used the
mean square error and Adam Optimizer (Kingma
and Ba, 2014). After several experiments, we ob-
serve that the model accuracy and loss converge at
around 50 epochs. The model accuracy and loss
on the train and validation dataset are plotted in

Figure 4. The final result obtained on the test set
is 81.92%.

Topic: Is anything in this world free?
Human: Nothing in this world is completely free, there
must always be a cost somewhere
Dave: Nothing in this world is free.. Everybody
has to pay a price for anything they want or recieve..
Life is not free.. Death is not free.. Happiness is not
free.. No matter what it is, there will always be a toll..
Nothing in this world is free..
Human: I totally agree with you
Dave: Close, there is no energy cost to giving up life,
entropy takes care of that.. But there is an energy cost
to having life to give up.. I was running under the
assumption that ”free” was referring to currency,
not energy.. If we’re going to argue that energy is
a currency for the purposes of this debate,
then there’s really no debate to be had at all..
Human: Happiness is free
Dave: I’m sorry to ruin your fun, but ”picking up
a penny on the street” is MOST definitely not free,
the effort to bend down and grab that penny
costs you energy loss etc.. of course on minuscule
level but still causes some sort of work.. In general for
one thing to be free another has to lose true,
BUT there is still never anything free for the one
that is receiving the ”gift”, even the portion
of receiving is some sort of exchange!
Human: how about dead?
Dave: Death comes with many expense’s there is
a energy cost, you have to give up life to gain death, Death
can come at the price of pain..

Table 3: Examples of a conversation in the retrieval
mode

5.2 Generative model
Evaluation metric. To evaluate the responses
from the generative model, following (Vinyals and
Le, 2015; Li et al., 2016a; Zhou et al., 2017), we
use the perplexity metric PP evaluated on the test
data:

PP = 2−
∑

y logP (y) (9)

Usually the lower the perplexity the better the
model is, and more specialized corpus also often
obtains lower perplexity.

To measure the degree of diversity of responses,
we use the distinct-1 and distinct-2 metrics fol-
lowing (Li et al., 2016a). They are the number
of distinct unigrams and bigrams in generated re-
sponses, scaled by total number of tokens.

Settings. In our experiments, for both encoder
and decoder, the number of recurrent layers is set
to two, the number of dimensions for the recur-
rent layer is 512 and the drop-out ratio is 0.2. We
use the batch size of 192, the Adadelta method for
adapting learning rate (Zeiler, 2012).

For the decoder, we examine two methods: the
Sampling method, in which responses are sampled
from output distribution token by token. For each
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Figure 4: Retrieval-based model: MaLSTM results

token, the temperature transform is performed
prior to sampling. Generally, the low tempera-
ture sample is more grammatically correct while
the high temperature sample represents greater lin-
guistic variety. In our experiments, we set the
default temperature to 0.5. The second model is
Sampling with MMI re-ranking. In this model, the
sampling procedure is done the same as the other
one, but candidates are ranked according to their
MMI-score (see section 3.4).

Human: I think guns should be banned
Dave: So, if you want to ban guns, then they’re not
completely legitimate. I don’t think that the government
should start a legal system..

Topic: There are no good arguments for the
non-existence of God.
Human: sure, I believe in God.
Dave: I am not a christian but there are so many
of the bible.. The bible has written to it, and if a dog
do have the same in the existence of god, then that
would be the only true gods..
Human: it does not make much sense what you
are saying
Dave: I think they are..
Topic: evolution: scientific or unscientific?
Human: scientific should be better
Dave: Well i’m not to say he was the first person
who would have been on the same - life
Human: alright..
Dave: You are a good debater!
Human: which one would you pick?
Dave: I am a fan of both..

Table 4: Random context-sensitive examples in the
generative mode

Finally, to prevent the model from generating
the same tokens over and over again, we use a pe-
nalized coefficient method, in which tokens that
have been generated before will have their prob-
abilities lower down by a factor of 10.0. Tokens

that are not penalized including modifiers (such as
a, an, the) and punctuations.

Testing data. For testing the perplexity of the
model and the distinctness metrics, we prepare
two datasets: a context free dataset that contains
200 argumentative sentences and a context sensi-
tive dataset containing 200 consecutive argumen-
tative responses from an online debate.

The results are reported in table 5. The context
sensitive perplexity is higher than the context free
perplexity. In both cases, the reranking method
helps reducing the perplexity of the model by 13%
(in context sensitive case) and 3.1% (in context
free case). Reranking also helps increasing the di-
versity of the responses: the distinct-1 increased
by 3.8% and the distinct-2 increased by 13.16%.

While these metrics may not be the most use-
ful in evaluating conversational systems, they are
most widely used metrics and could somehow give
a reflection on how different models perform.

Figure 5: Generative model on random army topic:
white bubbles (left) are responses from Dave

6 Conclusion and future work

In this paper, we have described an argumentative
dialogue agent, whose aim is to be able to debate
with human on a given topic. We explored two
approaches, using a retrieval-based and a genera-
tive system. The systems have been trained on a
limited open-domain dataset, but have shown in-
teresting and promising results. Still there is a lot
of work that can be done to improve the system, in-
cluding training on a much larger dataset, combin-
ing both retrieving and generating methods alter-
natively to give interesting responses to the users
based on different scenarios. For the retrieval-
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Model Sampling Sampling & MMI re-ranking
Context-sensitive Perplexity 88.51 76.97 (-13.0%)
Context-free Perplexity 75.53 73.17 (-3.1%)
Distinctness distinct-1 0.708 % 0.736 (+3.8%)
Distinctness distinct-2 5.94% 6.84% (+13.16%)

Table 5: Perplexity and distinctness for the sampling method and sampling with MMI re-ranking method

Figure 6: Generative model on random gay/society
topic: white bubbles (left) are responses from Dave

based system, one can try the un-tied version of
the Manhattan LSTM, since responses could vary
in length and may not be symmetric. In the gen-
erative system, different decoding methods could
be applied such as a traditional beam search, sam-
pling output based on topics, increasing the depth
and power of the model. One can also integrate
argument strategies as those described in (Rosen-
feld and Kraus, 2016) to the generative system to
have a more structural and persuasive conversa-
tion. Such system can put the first milestones in
developing a machine that can someday fully en-
gage in a debate and discussion with human on
controversial topics.
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Abstract

We consider unsupervised cross-lingual trans-
fer on two tasks, viz., sentence-level argumen-
tation mining and standard POS tagging. We
combine direct transfer using bilingual em-
beddings with annotation projection, which
projects labels across unlabeled parallel data.
We do so by either merging respective source
and target language datasets or alternatively by
using multi-task learning. Our combination
strategy considerably improves upon both di-
rect transfer and projection with few available
parallel sentences, the most realistic scenario
for many low-resource target languages.

1 Introduction

In recent years, interest in multi- and cross-lingual
natural language processing (NLP) has steadily in-
creased. This has not only to do with the recogni-
tion that performances of newly introduced systems
should be robust across several tasks (in several lan-
guages), but more fundamentally with the idea of
truly ‘universal’ NLP methods which should not
only suit English, an arguably particularly simple
exemplar of the world’s roughly 7,000 languages.

A further motivation for cross-lingual ap-
proaches is the fact that many labeled datasets are
to this date only available in English and labeled
data is generally costly to obtain—be it via expert
annotators or through crowd-sourcing. Therefore,
methods which are capable of training on labeled
data in a resource-rich language such as English
and which can then be applied to typically resource-
poor other languages are highly desirable.

Two standard cross-lingual approaches are pro-
jection (Yarowsky et al., 2001; Das and Petrov,
2011; Täckström et al., 2013; Agic et al., 2016)
and direct transfer (McDonald et al., 2011). Di-
rect transfer trains, in the source language L1, on
language-independent or shared features and then

directly applies the trained system to the target lan-
guage of interest L2. In contrast, projection trains
and evaluates on L2 itself. To do so, it uses par-
allel data, applies a system trained on L1 to its
source side and then projects the inferred labels
to the parallel L2 side. This projection step may
involve word alignment information. After projec-
tion, an annotated L2 dataset is available on which
L2 systems can be trained.

Projection and direct transfer each ignore impor-
tant information, however. For example, standard
projection ignores the available data in L1 once
the L2 dataset has been created and standard direct
transfer does not use any L2 information.

In this work, we investigate whether the inclu-
sion of both L1 and L2 data outperforms transfer
approaches that exploit only one type of such in-
formation, and if so, under what conditions. More
precisely, we first train a system on shared fea-
tures as in standard direct transfer on labeled L1
data. Then, we make use of two further datasets.
One is based on the source side of parallel unla-
beled data; it is derived similarly as in self-training
(Yarowsky, 1995) by applying the trained system
to unlabeled data, from which a pseudo-labeled
dataset is derived. The other is based on its target
side—using annotation projections—as in standard
projection. Thus, we explore the effects of com-
bining Projection and Direct transfer using three
datasets (PD3). Our approach is detailed in §2.

We report results for two L2 languages (French,
German) on one sentence-level problem (argumen-
tation mining) and one token-level problem (POS
tagging). We find that our suggested approach PD3
substantially outperforms both direct transfer and
projection when little parallel data is available, the
most realistic scenario for many L2 languages.

While our approach is general, our focus is
particularly on argumentation mining (ArgMin),
a rapidly growing research field in NLP. Cross-
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lingual transfer is majorly important for ArgMin
because it is inherently costly to get high-quality
annotations for ArgMin due to: (i) subjectivity of
argumentation as well as divergent and competing
ArgMin theories (Daxenberger et al., 2017; Schulz
et al., 2018), leading to disagreement among crowd-
workers as well as expert annotators (Habernal and
Gurevych, 2017), (ii) dependence of argument an-
notations on background knowledge and parsing of
complex pragmatic relations (Moens, 2017). Thus,
in order not to reproduce the same annotation costs
for new languages, cross-lingual ArgMin meth-
ods are required. These techniques should both
perform well with little available parallel data, to
address many languages, and with general (non-
argumentative) parallel data, because this is much
more likely to be available. Our experiments ad-
dress both of these requirements.1

2 PD3

LetLS = {(xS , yS)} denote a set of L1 data points
in which each xS is an instance and yS its corre-
sponding label. We assume that xS is either a sen-
tence or a sequence of tokens, and yS is either a
single label or contains one label for each token in
the sequence. We assume access to a set US,T =
{(xS , xT )} of unlabeled L1 and L2 data points in
which target and source instances xT and xS are
translations of each other. We let US = US,T

S stand
for the L1 part of US,T , i.e., US consists of the data
points xS only: US = {xS | (xS , xT ) ∈ US,T }.
We let UT = US,T

T be analogously defined. Finally,
we assume that our instances xS and xT have a
shared representation, e.g., that their words have
a bilingual vector space representation in which
mono- and cross-lingually similar words are close
to each other. Table 1 (a),(b) illustrates our resource
assumptions.

PD3 is described in Algorithm 1. We first train a
classifier C (e.g., a neural network) on our labeled
L1 data LS . Then we apply the trained model
on the unlabeled xS instances from US , yielding
pseudo-labeled dataset D̂S . Next, we create an-
other pseudo-labeled L2 data set ˆ̂DT by projecting
the label ŷS of xS in a pair (xS , xT ) ∈ US,T to the
instance xT . We note that projection is trivial and
‘loss-less’ for sentence classification tasks because
there is exactly one label for the whole sentence.

1Data and code to reproduce our experiments are
available from https://github.com/UKPLab/
emnlp2018-argmin-workshop-pd3.

Algorithm 1: PD3
Input: LS ,US,T , C: labeled L1 data and unlabeled

L1-L2 translations, and a classifier C

Output: M
S~Ŝ~ ˆ̂

T
: a model trained (using C) on

LS as well as pseudo-labeled data derived

from US,T

1 MS ← trainC(LS);
2 ŶS ← predictMS

(US) ; // D̂S = {(xS , ŷS)}
3 ˆ̂DT ← {(xT , ˆ̂yS) | (xS , xT ) ∈
US,T , (xS , ŷS) ∈ D̂S};

4 M
S~Ŝ~ ˆ̂

T
← trainC(LS ~ D̂S ~ ˆ̂DT );

In contrast, for sequence tagging problems, projec-
tion typically requires word alignment information,
which is an error prone process. This is the rea-
son why we use a ‘double hat’ for ˆ̂DT to indicate
that there may be two sources of noise: one from
prediction and one from projection.

Finally, we combine our original dataset LS with
the two pseudo-labeled dataset D̂S and ˆ̂DT and
train our classifier C on it; after training, our goal
in cross-lingual transfer is to apply the trained clas-
sifiers to L2 data.

We denote this combination operation by ~. A
simple approach is to let ~ be the “merging” (or,
concatenation) of both datasets (PD3-merge). In
this variant of PD3, LS , D̂S and ˆ̂DT are merged
into one big dataset on which training takes place.

A more sophisticated approach is to let ~ repre-
sent a multi-task learning (MTL) scenario (Caru-
ana, 1993; Søgaard and Goldberg, 2016) in which
L1 and L2 instances represent one task each (PD3-
MTL). Here, rather than merging LS , D̂S and ˆ̂DT ,
we treat source language datasets (LS and D̂S) as
one task and target language datasets ( ˆ̂DT ) as an-
other task, each having a dedicated output layer.
This leads to a different network architecture than
in PD3-merge, in which we now have two sep-
arate output layers (i.e., one for each language);
this distinction is also illustrated in Figure 1 below.
Thus, for each input instance, we predict two out-
puts (e.g., two ArgMin labels), one in the source
language and one in the target language.2

The general idea behind MTL is to learn several

2During training, we update parameters for the ‘correct’
task as well as for all shared weights. At test time, we only
pick the output corresponding to the target language task, if
we focus on cross-lingual transfer, or corresponding to the
source language, if we focus on in-language evaluation.
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Not cooking [...] 1
To sum up [...] 0
For example [...] 2
I will [...] 3
...

...

(a) Labeled L1 data LS

He said [...] Er sagte [...]
A blue [...] Ein blauer [...]
Very good! Sehr gut!
How [...] Wie [...]
...

...

(b) Unlabeled parallel data US,T

LS D̂S
ˆ̂DT

Direct Transfer 3

Projection 3

PD3 3 3 3

· · ·
(c) Resources used by approaches

Table 1: Illustration of resources used for PD3: (a) labeled source language data; (b) unlabeled parallel
data; (c) comparison with Direct Transfer and annotation projection. Arrows indicate the information
flow: we use LS to label the source side of parallel data and then project to its target side. Note that both
variants of PD3 (PD3-merge and PD3-MTL) use the same resources but utilize/combine them differently,
as described in the text.

tasks jointly, in one architecture with shared pa-
rameters, so that generalized representations can
be learned (in the hidden layers of a neural net-
work) that benefit multiple tasks. In our case, the
two tasks solve the same problem (e.g., ArgMin),
but in different languages. A general advantage of
MTL over merging arises when tasks have different
output spaces, in which case merging may confuse
a learner due to heterogeneous labels across the
two tasks. We do not face this situation. However,
in our context, an advantage of MTL over merge
may still be that the MTL paradigm has more ca-
pacity because it has connecting weights between
the task-specific output layers and the network’s
last (common) hidden layer. Further, MTL can ac-
commodate task-specific losses, which can be used
to, e.g., down-weight one of the two tasks, besides
further conceptual differences (Caruana, 1993). In
our situation, splitting original and pseudo-labeled
datasets by languages, in MTL, may also better
account for syntactic and semantic idiosyncrasies
of individual languages than merge, where such
distinctions are blurred.

Table 1 (c) compares the different resource as-
sumptions of direct transfer, annotation projection,
and PD3. Note that other selections of resources
might be possible (e.g., ‘PD2’, using only LS and
ˆ̂DT , or even differently annotated L2 data). We dis-
cuss some of these in the supplementary material.

3 Data

Table 2 gives dataset statistics for our two tasks,
which we describe in the following.

ArgMin Our focus task is ArgMin on the
sentence-level: the task is to determine whether
a sentence contains one of the argumentative con-

structs major claim, claim, premise, or else is non-
argumentative (Peldszus and Stede, 2013; Stab and
Gurevych, 2014). We use the latest version of an
English student essay corpus (Stab and Gurevych,
2017), which has recently also been translated to
German by student crowd-workers (Eger et al.,
2018). We give four examples from the English
ArgMin dataset in Table 3. The majority of all in-
stances is labeled as premise (47%). We use 3,000
sentences of the original training split as our par-
allel corpus and only train on the remaining 2,086
sentences (this is the set LS). We additionally eval-
uate our approaches with parallel data from TED
(Hermann and Blunsom, 2014), where we train on
the full 5,086 sentences from the ArgMin training
split. TED contains a collection of talks on science,
education, and related fields, transcribed into writ-
ten English and translated by crowd-workers into
different languages. We take two sources of par-
allel data here because the domain of the parallel
data intuitively has an influence on results in tasks
such as argumentation mining. That is, while stan-
dard NLP tasks such as POS tagging are relatively
stable across different domains, arguments may be
very differently realized across different datasets
(Daxenberger et al., 2017). Frequency aspects also
play a role, since argumentation may be prominent
in domains such as student essays or debate portal,
but much less ubiquitous in, e.g., news articles.

POS Tagging We also include a standard NLP
task, namely, POS tagging. We use subsets of
the Universal Dependency Treebanks (Nivre et al.,
2016) with English as L1 and German and French
as L2s. For English, we select 800 random sen-
tences from the corresponding English treebank
as training data and 200 sentences as development
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Task Task type |Y| Train-EN Dev-EN Test-DE Test-FR
Sent. Tokens Sent. Tokens Sent. Tokens Sent. Tokens

POS Token-Level 18 800 13,292 200 3,174 799 12,512 1,478 35,766
AM Sentence-Level 4 5,086 105,990 607 12,658 1,448 29,234 - -

Table 2: Statistics for datasets used in this work. |Y| denotes the size of the label space.

data.3 We evaluate the system that transfers from
English to German or French on the original de-
velopment data provided in the corresponding tree-
bank splits. As our unlabeled parallel data, we
use subsets of various sizes from the TED parallel
corpus for English-French and English-German.

4 Experimental Setup

Sentence level network architecture: In our
sentence-level ArgMin experiments, we use a con-
volutional neural network (CNN) with 1-max pool-
ing to learn a representation of the input sentence
and feed this representation into a softmax regres-
sion classifier.4 We use 800 CNN filters with a
window size of 3. For optimization, we use Adam
with a learning rate of 0.001. Training sentences
are processed in minibatches of size 16. We do not
apply dropout or `2 regularization.

We report average macro F1 scores over 20 runs
with different random initializations. For PD3-
merge, we shuffle the merged data before training—
i.e., mini-batches can containLS , D̂S , and ˆ̂DT data.
For PD3-MTL, we shuffle L1 and L2 data individu-
ally and during training we sample each mini-batch
from either task according to its size. In the MTL
setup, we share the CNN layer across tasks and use
task-specific softmax regression layers.

Sequence tagging network architecture: For
token-level POS tagging, we implement a bidi-
rectional LSTM as in Ma and Hovy (2016) and
Lample et al. (2016) with a CRF output layer. This
is a state-of-the-art system for sequence tagging
tasks such as POS and NER. Our model uses pre-
trained word embeddings and optionally concate-
nates these with a learned character-level repre-
sentation. For all experiments, we use the same
network topology: we use two hidden layers with
100 hidden units each, applying dropout on the hid-
den units and on the word embeddings. We use

3We choose only 800 sentences in order to keep overall
computational costs of our experiments smaller. Note that 800
sentences yield an in-language performance of roughly 90%.

4An alternative would have been to directly work on
sentence-level representations using cross-lingual sentence
embeddings (Rücklé et al., 2018).

Adam as optimizer. Our network uses a CRF out-
put layer rather than a softmax classifier to account
for dependencies between successive labels.

In the MTL setup, we use the same architecture,
but connect the last hidden layer to individual out-
put layers, one for each task. Our MTL architecture
extends the architecture of Søgaard and Goldberg
(2016) by replacing the softmax output layer with a
CRF output layer, and by including character-level
word representations. The difference between MTL
and single-task learning (STL) is illustrated in Fig-
ure 1. STL is a network with only one task, as in
PD3-merge, direct transfer and standard projection.

We report average accuracy over five (or 10,
in case of very little data) random weight matrix
initializations. In the MTL setup, we choose a
mini-batch randomly in each iteration (contain-
ing instances from only one of the tasks as in our
sentence-level ArgMin experiments).

Cross-lingual Embeddings: For token-level ex-
periments, we initially train 100-d BIVCD em-
beddings (Vulić and Moens, 2015) from Europarl
(Koehn, 2005) (for EN-DE) and the UN corpus
(Ziemski et al., 2016) (for EN-FR), respectively.
For sentence-level experiments, we use 300-d
BIVCD embeddings. This means that we initially
assume that high-quality bilingual word embed-
dings are readily available for the two languages
involved. At first sight, this appears a realistic as-
sumption since high-quality bilingual embeddings
can already be obtained with very little available
bilingual data (Zhang et al., 2016; Artetxe et al.,
2017). In low-resource settings, however, even lit-
tle monolingual data is typically available for L2
and we address this setup subsequently.

Upper bound: For both ArgMin and POS, we
report the in-language upper bound, i.e., when the
model is trained and evaluated on L2. For this, we
choose random L2 train sets of size |LS |.

Projection strategy for sequence tagging: We
first word-align parallel data using fast-align (Dyer
et al., 2013). When an L2 word is uniquely aligned
to an L1 word, we assign it the L1 word’s unique
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Not cooking fresh food will lead to lack of nutrition Claim
To sum up, [...] the merits of animal experiments still outweigh the demerits Major claim
For example, tourism makes up one third of Czech’s economy Premise
I will mention some basic reasoning as follows O

Table 3: Simplified examples (EN) from our AM corpus, one for each of the four classes.

h1

s1

w1

h2

s2

w2

h1

s1 t1

w1

h2

s2 t2

w2

Figure 1: Sequence tagging STL vs. MTL with two tasks. For readability, character-level representations
and CRF connections in the output layers are omitted. Bidirectional connections in the hidden layers are
also missing. Here, w are the input words and s and t denote different tasks; h are the hidden layers.

label. When an L2 word is aligned to several L1
words, we randomly draw one of the aligned source
labels. When an L2 word is not aligned to any L1
word, we draw a label randomly from its unique la-
bels in the remainder of the corpus. Our projection
strategy is standard, cf. Agic et al. (2016).

5 Experiments

5.1 Results

Detailed results for PD3-merge, PD3-MTL, stan-
dard projection, and direct transfer as a function
of the available parallel data are given in Table 4
in the appendix. Condensed and averaged results
(over DE and FR) are shown in Figure 2.

ArgMin Results are shown in Figure 2 (right),
ranging over {50, 100, 500, 1000, 2000, 3000} par-
allel sentences. PD3 is consistently more effective
than projection and outperforms direct transfer with
at least 100 parallel sentences. In particular, PD3-
merge outperforms direct transfer already with 50
parallel sentences (∼44% for PD3-merge vs.∼39%
for direct transfer) and quickly closes the gap
towards the in-language upper-bound (∼54% vs.
∼59% with 500 parallel sentences). PD3-MTL on
the other hand only slightly (but consistently) im-
proves upon projection. With an increased number
of parallel sentences, we observe that all methods
reach performances very close to the in-language
upper bound.

POS Tagging Figure 2 (left) shows POS results,
averaged across DE and FR, when transferring
from English. Tagging accuracies are given as a
function of the size of the available parallel data,
ranging over {50, 100, 500, 1000, 5000} parallel
sentences. As for ArgMin, PD3 is consistently
better than projection and improves upon direct
transfer with more than 50 parallel sentences. As
the number of parallel sentences increases, PD3-
MTL, PD3-merge and standard projection become
indistinguishable, indicating that it does not pay
out anymore to use the more resource-intensive
approach PD3. However, most importantly, with
little parallel data, gains of PD3 over standard pro-
jection are substantial: for 50 parallel sentences
performance values are roughly doubled (∼30%
accuracy for projection vs. >55% for PD3). For lit-
tle available parallel data, PD3-MTL can also con-
siderably improve upon PD3-merge. For example,
with 100 parallel sentences, PD3-MTL achieves an
accuracy of ∼65%, whereas PD3-merge achieves
∼60% and direct transfer achieves ∼61%.

5.2 Analysis

We now analyze several aspects of our approach,
such as the errors it commits and the differences
between PD3-MTL and PD3-merge, as well as
whether we observe the same trends for high- and
low-quality bilingual embeddings.

PD3-MTL vs. PD3-merge For POS, the better
performance of PD3-MTL in some cases compared
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to PD3-merge may be due PD3-MTL having more
parameters due to independent connection weights
between the CRF classifier and the last hidden layer.
Moreover, some authors have also argued that MTL
is “fundamentally different” from simply adding
auxiliary data (Bollmann and Søgaard, 2016). In
contrast, for ArgMin, we observed that PD3-merge
substantially outperforms PD3-MTL in many cases.
We hypothesize that the reason is the model selec-
tion for PD3-MTL, which chooses the model with
best performance on the dev portion of ˆ̂DT . Since
the model trained on the small LS train set tends
to overpredict the majority class here, the label dis-
tribution on the parallel data differs substantially
from that of the test data. The effects in PD3-merge
are not as pronounced since it also contains parts
of data with the true label distribution.

Direct Transfer vs. PD3 Direct transfer some-
times outperforms PD3 for very few available par-
allel sentences because PD3 uses noisy data in the
form of projected labels, which are particularly
unreliable when parallel data is scarce (see our er-
ror analysis below). This is not true for ArgMin,
however, because projection is loss-less here, as
remarked above. Accordingly, direct transfer never
outperforms PD3 for ArgMin.

Domain shift of parallel data Using TED as
parallel corpus in ArgMin rather than a held-out
portion of the ArgMin dataset itself, we observe
the following, see Figure 3 (top) and Table 4: (i)
PD3-merge still outperforms all other methods; (ii)
PD3-MTL more strongly outperforms projection;
(iii) the in-language upper-bound is harder to reach.
Overall, however, our curves follow a very similar
trend as they do when parallel data comes from
ArgMin itself, even though argumentation in TED
is certainly much less pronounced than it is in stu-
dent essays. This means that our approach appears
robust to changes in domain of the parallel data
even for domain-specific problems such as ArgMin,
and can still outperform direct transfer in these
cases. This is important since parallel data is gen-
erally sparse and most likely there is a substantial
domain gap to the original L1 train data. The TED
results are also interesting insofar as PD3-merge
using 1K parallel sentences performs similarly as
standard projection does using 100K.

Error Analysis For POS, the projection system
that uses only 50 parallel sentences suffers not only
from a tiny L2 training corpus (50 sentences, 783

tokens). Because the parallel corpus is tiny, getting
high-quality alignments from fast-align on it is also
more difficult because the aligner lacks statistical
evidence. We checked alignment quality on 11 ran-
domly chosen short translation pairs (both pairs
shorter than 10 tokens) and on 3 long pairs (both
longer than 20 tokens) for EN-DE. On the short
pairs, 26% of the alignment decisions of fast-align
were wrong. On the long pairs, 46% were wrong.
In contrast, with 5000 parallel sentences error rates
were considerably lower: 11% and 16%, respec-
tively. Hence, projection uses a tiny corpus with
considerable noise in the case of very small amount
of parallel data, causing it to commit all kinds of
errors (e.g., tagging verbs as numbers, etc.). In con-
trast, PD3 uses a larger and much cleaner amount
of L1 data besides the tiny and noisy L2 corpus,
which causes it to perform substantially better.

Direct transfer systems suffer mostly from two
sources of noise: “syntactic shift” due to the L2
language having a different word order than the L1
counterpart on which they have been trained; “se-
mantic shift” due to the test words being all OOV
(this is analogous to monolingually replacing words
by OOV synonyms). The latter effect may be un-
derstood as a “blurring” of the input. Accordingly,
direct transfer easily confuses similar classes: for
example, the EN→DE direct transfer system has a
low F1-score on AUX (confusing auxiliary verbs
with actual verbs) of 35% and on NOUN (confus-
ing nouns with proper nouns) of 37%. Adding
L2 data to the train set, as in PD3, quickly alle-
viates this: the F1-score on AUX for 100 parallel
sentences is 37% and it is 62% for NOUN for PD3-
merge. For 5000 parallel sentences, corresponding
numbers are 56% and 76% respectively.

For ArgMin and tiny amounts of parallel data,
projection predicts all classes but has a very strong
tendency to predict the majority class ‘premise’.
The reason is not that projected labels are noisy—
in contrast, they are very good, because projection
is error-free, as stated above. The problem is rather
that the amount of training data for standard pro-
jection is tiny in this case (size of ˆ̂DT ). PD3 in
contrast trains on much more data and mimics the
true distribution much better. Common errors for
PD3 and direct transfer are confusing claims with
major claims; these often have very similar surface
realizations.

Low-resource shared representations In our
main experiments, we assumed access to high qual-
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Figure 2: Left: POS accuracies in % as a function of available parallel sentences. Right: Sentence-level
ArgMin F1 scores in % as a function of available parallel sentences.
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Figure 3: Top: Sentence-level ArgMin F1 scores
in % as a function of available parallel sentences
(sampled from the parallel TED corpus). Bottom:
Sentence-level ArgMin F1 scores in % as a func-
tion of available parallel sentences (low-quality
bilingual word embeddings).

ity bilingual word embeddings. This may not be
justified when the L2 language is low-resource.
Hence, we investigated performances when little
monolingual data in L2 is available. That is, we
limited monolingual data to only 30K sentences in
L2. Given that we assumed 50-3000 parallel sen-
tences for projections and given that monolingual
data is typically much more plentiful than parallel
data, we deemed 30K plausible. We report trends
for the ArgMin sentence classification problem.

Hence, we trained a monolingual word2vec
model on 30K DE sentences (randomly sampled
from the German Wikipedia). For English, we
trained a similar model on the whole of the En-
glish Wikipedia (since L1 is not low-resource). To
induce a bilingual vector space, we then mapped
English and German in a common space via the
method of Artetxe et al. (2017). This approach it-
eratively expands a small seed lexicon of matched
word pairs, thereby successively improving vec-
tor space alignment across two languages. It has
been reported to induce good bilingual represen-
tations even when only common digits in the two
languages or a few dictionary entries are available
as initial seed lexicon. We induced a seed dic-
tionary from our parallel sentences (ranging over
{50, 100, 500, 1000, 2000, 3000} pairs) using fast-
align and then applied the technique of Artetxe
et al. (2017). We subsequently re-ran PD3 and all
other models with the resulting low-quality bilin-
gual word embeddings. The results, for ArgMin,
are shown in Figure 3 (bottom). As can be seen,
direct transfer becomes considerably worse in this
case, which is expected, since the embedding space
is of much lower quality now. The performance
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drop is from 37% macro-F1 with high-quality em-
beddings to 23%. However, all trends stay the
same, e.g., PD3-merge remains the top performer
for the sentence-level experiments, followed by
PD3-MTL and standard projection. A difference
is that PD3-merge now becomes indistinguishable
from standard projection for 1K parallel sentences
already, rather than 2K as before.

In the extreme case when the bilingual vector
space separates into two independent spaces, one
for each language, then standard projection is at
least as good as PD3, for all sizes of parallel data.
This is because the L1 data cannot improve the L2
model since both operate on independent represen-
tations. However, it is likely that the added noise
may then even confuse a PD3 system if it is not
well-regularized.

We experimented with further reductions to 10K
monolingual sentences in L2 and still saw a sim-
ilar trend as in Figure 3 (bottom). Below 10K
sentences, we found that, somewhat surprisingly,
word2vec could not induce meaningful monolin-
gual embedding spaces, though it is conceivable
that other representation learning techniques, such
as those based on co-occurrence matrices, would
have performed better.

Comparison For POS, we note that our numbers
are generally incomparable to other works because
we use 800 monolingual sentences to train an En-
glish tagger from and (more importantly) treat the
number of parallel sentences as a variable whose
influence we investigate. Still, to give a reference:
Täckström et al. (2013) report cross-lingual tagging
accuracies of up to 90% for German and French as
L2 using a constraint feature-based CRF. They use
up to 5M parallel sentences and 500K size training
data in L2, massively more than we use.

For ArgMin, we also have no direct compar-
isons, because we are the first, to our knowledge,
to explore the student essay corpus of Stab and
Gurevych (2017) on sentence- rather than token-
level. Sentence-level annotation may be preferable
because it is sometimes both conventional as well
as difficult to decide which exact tokens should be
part of an argument component (Persing and Ng,
2016). In terms of cross-language drop, Eger et al.
(2018) report a similar drop of roughly 20pp when
training an argumentation mining system on En-
glish and applying it to similarly annotated German
data, for direct transfer. They close this gap using
machine translation, while we close it under much

milder assumptions using small amounts of parallel
data and a more sophisticated transfer approach.

6 Related Work

Our work connects to different strands of research.

Multi-Task Learning MTL was shown to be
particularly beneficial when tasks stand in a natural
hierarchy and when they are syntactic in nature
(Søgaard and Goldberg, 2016). Moreover, it has
been claimed that further main benefits for MTL
are observed when data for the main task is sparse,
in which case the auxiliary tasks may act as regu-
larizers that prevent overfitting (Ruder et al., 2017).
The latter is the case for PD3-MTL with little avail-
able parallel data.

MTL has also been made use of for supervised
cross-lingual transfer techniques (Cotterell and
Heigold, 2017; Yang et al., 2017; Kim et al., 2017;
Dinh et al., 2018). These assume small training
sets in L2, and a system trained on them is regular-
ized by a larger amount of training data in L1. In
contrast to these, we assume no gold labels in L2
(unsupervised transfer), which necessitates a pro-
jection step. Our approach could also be combined
with these supervised ones, by adding this small
gold data to the three different datasets that we use
in PD3.

Argumentation Mining ArgMin is a fast-
growing field in NLP with applications in decision
making and the legal domain (Palau and Moens,
2009) and can be solved on sentence-level (Daxen-
berger et al., 2017; Niculae et al., 2017; Stab et al.,
2018) or token-level (Eger et al., 2017; Schulz
et al., 2018). Cross-lingual ArgMin has recently at-
tracted interest (Aker and Zhang, 2017; Eger et al.,
2018). The proposed approaches mostly used ma-
chine translation, which is unavailable for the vast
majority of the world’s languages.

Low-resource transfer Low-resource language
transfer has recently become very popular, e.g.,
when relying on only very few translation pairs
for bilingual embedding space induction (Artetxe
et al., 2017; Zhang et al., 2016) or in unsupervised
machine translation using no parallel sources at all
(Artetxe et al., 2018; Lample et al., 2018). Low-
resource transfer (on a level of domains rather than
languages) has also been considered in ArgMin
(Schulz et al., 2018), assuming little annotated data
in a new target domain due to annotation costs of
ArgMin as a subjective high-level task.
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7 Concluding Remarks

We combined direct transfer with annotation pro-
jection, addressing short-comings of both methods
and combining their strengths. We saw consistent
gains over either of the two methods in isolation,
particularly in the small dataset scenario with 50-
500 parallel sentences. This is arguably the most
realistic scenario for a good portion of the world’s
languages, for which several dozens of parallel sen-
tences are readily available e.g. from Bible trans-
lations (Christodoulopoulos and Steedman, 2015).
We also note that while translating 50 sentences
by hand may be as easy as labeling 50 sentences
in L2, provided the problem requires no expert
knowledge, parallel data serves many NLP prob-
lems, while the cost of labeling multiplies by the
number of problems.

We also analyzed our approach under changes to
external factors such as the bilingual embeddings
and the domain of the parallel data, and found it to
perform stable under such shifts, consistently out-
performing the two baselines it is built upon in the
setting of little available parallel sentences. This
is particularly important for tasks such as ArgMin,
for which it is inherently difficult to get domain
specific parallel data, let alone for many languages.

Future work should consider further extensions:
E.g., for cross-lingual approaches, it is also pos-
sible to select predictions on the source side of
parallel data into the train sets only if the classi-
fier’s confidence exceeds a certain threshold, or to
apply this process iteratively (Täckström, 2012).
This can be immediately applied and extended to
the PD3 approach. Another extension is to perform
self-training on L2 data, which we briefly discuss in
the supplementary material. Moreover, PD3 should
also be applied in scenarios where L2 is a more
distant language to English than considered here,
or to setups where L1 is another language than En-
glish, although it is unlikely that the general trends
we detected here would not persist under L1 and
L2 variations. Further, while we did not observe
consistent gains of PD3-MTL (sometimes consid-
erable losses) over PD3-merge, we note that there
are refinements of the MTL paradigm (e.g., Liu
et al. (2017)) which might yield better results in
our situation.
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A Supplemental Material

In Table 4, we show detailed results across lan-
guages and tasks, as well as different transfer strate-
gies. Below, we discuss another transfer strategy
named L2-ST.

Further approaches When systems are trained
on shared features as in direct transfer, then an-
other approach for unsupervised cross-lingual trans-
fer is self-training on L2 data (Täckström, 2012;
Täckström et al., 2013). The idea is to train a sys-
tem on labeled source language data LS , and then
directly apply this trained system to the parallel
target language data (this is possible because of
the shared feature representation), rather than its
source side and merge this newly obtained “self-
labeled” dataset with LS .

We found this strategy, named L2-ST in Table
4 in the appendix, to perform substantially below
our considered transfer strategies when there is a
sufficient amount of L2 data available. Only with
very little target L2 data (50 parallel sentences) did
we observe some gains over PD3 in POS tagging.
The reason is that for very little parallel data, align-
ment links are very noisy, as discussed above, so
that the projected labels are of low quality. In this
case, however, the best strategy is then to combine
PD3 with self-training in L2, and thus to combine
four datasets: two of them in L1 and two of them
in L2. This strategy, which we dub PD4 in Table 4,
outperforms L2-ST, but is worse than PD3 for high-
and medium-sized parallel corpora. The reason is
that the system trained on LS is typically much
better when applied to L1 data than when applied
to L2—see our discussion on direct transfer—and
thus the L2 predictions resulting from labeling the
source side of parallel data and then projecting to
L2 are better than those from directly predicting
on L2, provided the projection step is sufficiently
good.

This is also the reason why PD4-merge always
underperforms PD3-merge for ArgMin—since pro-
jection is error-free for sentence level classification.
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Task Projection PD3-merge PD3-MTL L2-ST PD4-merge Direct Transfer In-Language
Parallel Sentences (upper bound)

Token-level POS tagging with TED as parallel corpus (EN→DE)

50 37.86 53.63 55.21 53.56 56.09 55.63 86.29
100 45.37 60.84 61.27 55.81 60.14
500 67.07 70.16 70.18 57.60 64.68
1,000 70.74 72.30 72.24 57.27 66.18
5,000 76.04 77.22 76.55 56.28 66.67

Token-level POS tagging with TED as parallel corpus (EN→FR)

50 25.16 58.36 58.78 67.21 67.55 67.87 92.67
100 46.97 60.64 68.96 70.02 71.42
500 66.49 72.00 72.79 70.34 73.81
1,000 69.86 73.51 74.14 70.07 73.23
5,000 77.41 78.29 77.81 68.92 74.37

Sentence-level AM with 3K sentences of AM as parallel corpus (EN→DE)

50 18.80 43.89 20.45 39.95 41.13 37.94 59.25
100 21.46 49.20 26.95 36.55 45.89
500 45.18 53.93 46.75 39.18 49.53
1,000 50.62 55.45 52.20 38.24 49.87
2,000 55.55 57.32 56.39 38.47 50.29
3,000 57.47 57.42 57.52 38.35 51.41

Sentence-level AM with TED as parallel corpus (EN→DE)

1,000 21.51 45.61 24.93 42.32 46.59 43.93 62.42
2,000 31.21 50.48 35.93 41.63 45.87
5,000 32.71 50.03 37.40 43.57 46.85
10,000 37.22 49.35 43.57 44.42 47.24
20,000 41.23 49.13 45.78 45.08 48.02
50,000 47.16 51.57 48.66 43.18 50.20
100,000 48.58 51.32 48.72 45.05 50.53

Table 4: Individual results for all tasks, languages, and number of parallel sentences. We report the accuracy
for our token-level POS tagging experiments and F1 scores for our sentence-level AM experiments. L2-ST
denotes cross-lingual transfer with self-training using L2 data as in (Täckström, 2012; Täckström et al.,
2013). PD4-merge combines PD3 with self-training in L2.
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Abstract

Argument mining aims to detect and identify
argument structures from textual resources. In
this paper, we aim to address the task of ar-
gumentative relation identification, a subtask
of argument mining, for which several ap-
proaches have been recently proposed in a
monolingual setting. To overcome the lack
of annotated resources in less-resourced lan-
guages, we present the first attempt to ad-
dress this subtask in a cross-lingual setting.
We compare two standard strategies for cross-
language learning, namely: projection and
direct-transfer. Experimental results show that
by using unsupervised language adaptation the
proposed approaches perform at a competitive
level when compared with fully-supervised in-
language learning settings.

1 Introduction

The aim of argument mining (AM) is the auto-
matic detection and identification of argumenta-
tive structures contained within natural language
text. In general, arguments are justifiable positions
where pieces of evidence (premises) are offered in
support of a conclusion. Most existing approaches
to AM build upon supervised machine learning
(ML) methods that learn to identify argumenta-
tive content from manually annotated examples.
Building a corpus with reliably annotated argu-
ments is a challenging and time-consuming task,
due to its complexity (Habernal et al., 2014). Con-
sequently, training data for AM is scarce, in par-
ticular for less-resourced languages. To overcome
the lack of annotated resources for AM in less-
resourced languages, we explore cross-language
learning approaches (Xiao and Guo, 2013). The
aim of cross-language learning is to develop ML
techniques that exploit annotated resources in a
source language to solve tasks in a target lan-
guage. Eger et al. (2018) propose the first attempt

to address the identification of argumentative com-
ponents in a cross-language learning setting. In
this paper, we aim to employ existing state-of-the-
art cross-language learning techniques to address
the task of argumentative relation identification,
leveraging knowledge extracted from annotated
corpora in English to address the task in a less-
resourced language, such as Portuguese. As it may
be costly to produce small amounts of training
data in many different languages, we employ un-
supervised language adaptation techniques, which
do not require labeled data in the target language.

The aim of argumentative relation identifica-
tion, the last subtask of the AM process (Peldszus
and Stede, 2015), is to classify each argumenta-
tive discourse unit (ADU) pair as argumentatively
related or not. We assume that the subtask of
text segmentation in ADUs is already solved (al-
though no ADU classification is assumed). The
task is formulated as a binary classification prob-
lem: given a tuple 〈ADUs, ADUt〉, we aim to
classify the relation from ADUs to ADUt as “sup-
port” (where ADUs plays the role of premise and
ADUt plays the role of conclusion), or “none”
(unrelated ADUs). This is a consistent way of
formulating the problem (i.e. the premise on the
left and conclusion on the right side of the tuple),
which is an important requirement for the learning
process as the relation we aim to capture is a direc-
tional relation (i.e. ADUs supports/refutes ADUt

and not on the way around).
We hypothesize that good semantic representa-

tions of text, capturing argumentative relations be-
tween ADUs, can be independent of the text lan-
guage. By capturing the semantics of such rela-
tions in a higher-level representation (through sen-
tence encoding and aggregation techniques) that
is agnostic of the input language, we believe that
transfer learning (Pratt and Jennings, 1996) is fea-
sible and, consequently, encouraging results can
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be obtained for less-resourced languages. For that,
we propose employing cross-language learning
techniques, such as projection (Yarowsky et al.,
2001) and direct transfer (McDonald et al., 2011).
We show promising results following the approach
presented in this paper, by obtaining performance
scores in an unsupervised cross-language setting
that are competitive (and in some settings better)
than fully-supervised in-language ML approaches.

To the best of our knowledge, this is the first
approach to consider the task of argumentative re-
lation identification in a cross-lingual setting.

2 Related Work

The full process of AM can be decomposed
into several subtasks (Peldszus and Stede, 2015),
namely: text segmentation, identification of
ADUs, ADU type classification, relation identifi-
cation, and relation type classification.

Addressing argumentative relation identifica-
tion in isolation, Nguyen and Litman (2016)
adopt a feature-based approach including lexical
(unigrams), syntactic (part-of-speech, production
rules), discourse indicators (PDTB relations) and
topic-context features. Recent works address the
task through deep learning architectures. Bosc
et al. (2016) employ an encoder-decoder architec-
ture and two distinct LSTMs to identify support
and attack relations on tweets. Cocarascu and Toni
(2017) follow architectures used for the recogniz-
ing textual entailment task, reporting results that
substantially improve accuracy as compared to a
feature-based ML approach on the same corpus.

Other approaches model the problem jointly
with previous subtasks of AM. Stab and Gurevych
(2017) follow a feature-based approach employ-
ing features at different levels of abstraction and
integer linear programming for joint optimiza-
tion of the subtasks. Eger et al. (2017) propose
an end-to-end AM system by framing the task
as a token-level dependency parser and sequence
tagging problem. Potash et al. (2017) use an
encoder-decoder problem formulation by employ-
ing a pointer network based deep neural network
architecture. The results reported by Potash et
al. (0.767 macro F1-score) constitute the cur-
rent state-of-the-art on the Persuasive Essays cor-
pus (Stab and Gurevych, 2017) for the subtask of
argumentative relation identification.

Related work aiming to capture relations be-
tween elementary units of texts is closely re-

lated to our task. For instance, recognizing tex-
tual entailment (RTE) also focuses on pair clas-
sification (Sammons et al., 2012). State-of-the-
art systems explore complex sentence encoding
techniques using a variety of approaches, such
as recurrent (Bowman et al., 2015a) and recur-
sive (Bowman et al., 2015b) neural networks, fol-
lowed by a set of hidden layers (including aggre-
gation functions (Chen et al., 2017; Peters et al.,
2018) and attention mechanisms (Rocktäschel
et al., 2015)). In another line of work, discourse
parsing approaches aim to identify the structure of
the text in terms of discourse or rhetorical rela-
tions between elementary units of text (e.g. propo-
sitions). Recent work focuses on building good
representations of text relying on neural network
architectures (Braud et al., 2017). Some attempts
exist to address these related tasks in cross-lingual
settings. For RTE there has been work using
parallel corpora (Mehdad et al., 2011) and lexi-
cal resources (Castillo, 2011), as well as shared
tasks (Camacho-Collados et al., 2017). Typically,
these systems explore projection approaches and
abstract representations that do not require prior
translation, namely bilingual dictionaries, syntac-
tic information, statistical knowledge and external
knowledge from lexical resources (e.g. Concept-
Net, WordNet, BabelNet). More recently, Agic
and Schluter (2018) provide multilingual test data
for four major languages (Arabic, French, Span-
ish and Russian) and baseline cross-language RTE
models. Preliminary work shows that projection
approaches work better in cross-lingual settings
than direct transfer.

Despite the similarity between the tasks of ar-
gumentative relation identification and RTE, since
both tasks are grounded in different conceptual
frameworks, the inherent semantic relations that
the tasks aim to capture is conceptually different
(as detailed by Cabrio and Villata (2013)). In this
respect, it is important to notice that the SNLI cor-
pus (Bowman et al. (2015a), the reference corpus
for RTE) is composed of literal descriptions of
scenes depicted in images, where pairs were man-
ually created. Compared to the Argumentative Es-
says corpus and, more specifically, to ADU pairs
extracted from it, we observe that the latter tend
to require higher-level semantic reasoning (this is
apparent when comparing the example provided in
Table 2 with the following example extracted from
the SNLI corpus: “A soccer game with multiple
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Lang Corpus #Docs #Rel #None #Support #Attack Arg. Schema Type

EN Argumentative
Essays 402 22,172 17,923 3,918 331 Premise, Claim,

Major Claim Essays

PT ArgMine 75 778 621 153 4 Premise, Claim Opinion
Articles

Table 1: Corpora Statistics

Lang. Source ADU Target ADU Label

EN

Teachers are not just teachers, they are also
friends and conseilieurs

In conclusion, there can be no school
without a teacher support

computers need to be operated by people no one can argue that technological
tools are must-haves for the classroom none

PT

Durante a última década, a saúde, o meio ambiente, a
biodiversidade, assim como a evolução humana tem sido

temas recorrentes em todos os meios de comunicação.
(During the last decade, health, environment,

biodiversity, as well as human evolution have been
recurring topics in all sorts of media)

O século XXI é sem sombra de dúvida
a era da Biologia

(The 21st century is undoubtedly
the era of biology)

support

Seria da mais elementar prudência não voltar a
precisar de lhe pedir dinheiro

(It would be most prudent
not to need asking it money again)

O fluxo de migrantes agravou o peso do
euroceptismo nos governos

(The flow of migrants has increased the
weight of euroscepticism in governments)

none

Table 2: Annotated examples extracted from the Argumentative Essays (EN) (Stab and Gurevych, 2017) and
ArgMine corpus (PT) (Rocha and Lopes Cardoso, 2017)

males playing.” entails “Some men are playing a
sport.”).

To the best of our knowledge, Eger et al.
(2018) present the first work exploiting cross-
lingual techniques for argument mining. The au-
thors address component extraction and classifica-
tion and show that machine translation and (naı̈ve)
projection work considerably better than direct
transfer. More details regarding cross-language
learning techniques are presented in Section 4.3.

3 Corpora

To address the task of argumentative relation iden-
tification in a cross-language setting, argument-
annotated corpora are required in different lan-
guages. Such corpora should, ideally, (a) con-
tain annotations of arguments in different lan-
guages, (b) follow the same argumentation the-
ory and (c) belong to the same genre of text
and similar domains. Currently, there are re-
sources for English (Stab and Gurevych, 2017)
and Portuguese (Rocha and Lopes Cardoso, 2017)
that follow the premise-conclusion argumentation
model and contain annotations of argumentative
relations between ADUs, and thus fulfill the first
and the second criteria listed above. However, the
corpora collected for this work (Table 1) do not
meet the third criterion because they contain an-
notations from different types of texts: persuasive
essays and opinionated articles. We focus our at-

tention on the language adaptation of the models
proposed in this paper, even though we are aware
that this domain shift might play an important role
in the performance of our proposed methods.

3.1 Data Preparation

Since we focus on a specific subtask of AM, argu-
mentative relation identification, we need to gener-
ate appropriate datasets from the corpora listed in
Table 1. As input, we receive texts annotated with
argumentative content at the token level follow-
ing a specific argumentation theory (i.e. premise-
conclusion model). For the task at hand, we
construct a dataset containing ADU pairs anno-
tated with “none”, “support” or “attack”. We
start by splitting each document into paragraphs,
for the following reasons: (a) in all corpora used
in this work, arguments are constrained to para-
graph boundaries; (b) paragraph splitting reduces
the number of “none” relations in the final dataset
and, therefore, leads to a less skewed class distri-
bution of the labels.

For each paragraph with ADUs c1, ..., cn, we
generate tuples 〈ci, cj〉, with i 6= j and i, j ∈ [1, n]
as argument component pairs, and label them with
“support”/“attack” if the original annotation con-
tains a direct argumentative relation from ci to cj ,
or with “none” otherwise. As shown in Table 1,
label distribution is skewed towards “none” rela-
tions. Given the low number of “attack” relations,
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we disregard them for this paper. Hence, we for-
mulate the task as a binary classification problem:
each tuple is classified as “none” or “support”.

Table 2 shows an example of the content avail-
able in the corpora for each of the labels.

4 Methods

Similarly to approaches that aim to learn univer-
sal sentence representations able to capture the se-
mantics of the sentence (Bowman et al., 2015b;
Conneau et al., 2017), we explore different deep
learning architectures to encode the meaning of
ADUs for the task of argumentative relation iden-
tification. To help replicate our results, we pub-
lish the code used in this work1. We propose five
neural network architectures that differ in the sen-
tence encoding techniques employed (as described
in Section 4.1), to which we add a fully-connected
hidden layer with the same dimension as the out-
put of the sentence encoding component, followed
by a softmax layer to obtain the final predictions.
To prevent the model from overfitting, we apply
dropout (Srivastava et al., 2014) in each model af-
ter the sentence encoding component.

4.1 Sentence Encoding

We explore different ways of encoding the mean-
ing of ADU pairs.

LSTM. LSTMs (Hochreiter and Schmidhuber,
1997) are recurrent neural networks (RNN) that
process each word at a time and decide which in-
formation to keep in order to produce a concise
representation of the word sequence. We concate-
nate word embedding representations of the words
in ADUs and ADUt with a special delimiter token
delim (with its embeddings randomly initialized).
The role of this delimiter is to indicate the RNN
that a transition from ADUs to ADUt is being
made. Then, the LSTM cell processes the entire
sequence. The final hidden state representation is
used as the sentence representation.

BiLSTM. Traditional LSTMs process the text
in a single direction and do not consider contextual
information of future words in the current step.
Bidirectional LSTMs use both previous and fu-
ture context by processing the input sequence in
two directions. We follow the same procedure de-
scribed for LSTM by concatenating ADUs using a

1https://github.com/GilRocha/
emnlp2018-argmin-workshop-xLingArgRelId

special token. The final representation is the con-
catenation of the forward and backward step.2

Conv1D. Both ADUs are encoded separately
using a convolutional neural network (CNN) (Le-
Cun et al., 1998), with a fixed kernel size of 2,
stride 1 and a max pooling layer to obtain the fi-
nal fixed-length representation. The motivation
for using CNNs is the fact that they can model the
sequence of words by processing subsequences
in parallel to obtain a final higher-level represen-
tation of the sentence. This is a promising ap-
proach when dealing with text in different lan-
guages, where the order of words are different.

Inner-Att. Inspired by previous successful
work using attention (Bahdanau et al., 2014; Stab
et al., 2018) in several NLP applications, we pro-
pose an attention-based sentence encoding that
learns the importance of weighting ADUt depend-
ing on the content of ADUs. We adopt an inner-
attention mechanism as proposed by Wang et al.
(2016). First, we encode ADUs using a LSTM.
Then, we determine the importance weighting on
the input sequence ADUt instead of on the hidden
states of the LSTM(ADUt): this has been shown
to prevent biased importance weights towards the
end of a sequence (Wang et al., 2016). This at-
tention mechanism uses the information encoded
in LSTM(ADUs) to inform which of the words
in ADUt the model should pay more attention to,
given ADUs. By employing this attention mecha-
nism, we obtain a weighted input embeddings rep-
resentation of ADUt, represented as x̃t The final
hidden state used as the encoding of the tuple is
obtained by applying a LSTM over the weighted
representation of ADUt: LSTM(x̃t).

4.2 In-Language Baseline Models

As in-language baselines, we present experiments
using the following models: (a) logistic regres-
sion employing a bag-of-words encoding (1 to
3 n-grams) for feature extraction based on word
counts, without employing weighting techniques3

(BoW+LR); (b) Chen et al. (2017): propose the en-
hancement of sequential inference models based
on chain networks to address the task of RTE. The
authors propose two models: a sequential model

2For both LSTM and BiLSTM sentence encoding, we also
tried to encode ADUs and ADUt separately using two dis-
tinct RNNs followed by a concatenation of both representa-
tions, obtaining a consistently lower performance.

3we also tried using TF-IDF encoding, obtaining lower
performance metrics consistently.
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ESIM and a model that incorporates syntactic
parsing information in tree LSTMs, Tree-LSTM.
Since the Tree-LSTM requires preprocessing tools
to obtain the syntactic parsing information, which
we argue are not suited for cross-lingual settings
targeting less-resourced languages, we only ex-
plore the ESIM model in this work. The neu-
ral inference model is composed by three ma-
jor components: input encoding (based on BiL-
STMs), local inference modeling, and inference
composition; and (c) Peters et al. (2018): a re-
implementation of the widely used decomposable
attention model developed by Parikh et al. (2016).
At the time of development of this work, models
(b) and (c) constitute current state-of-the-art mod-
els for RTE. We used the code publicly available
for both approaches with small modifications in
order to make predictions in our binary classifica-
tion task4. These baseline models were employed
to obtain a lower-bound for our task and to deter-
mine how well existing approaches perform. Since
all baselines were originally developed in a mono-
lingual setting, there is no trivial way to employ
them as baselines in a cross-lingual setting.

4.3 Cross-Language Learning Techniques

Several approaches have been presented for cross-
language learning, including projection, direct
transfer, and feature space analysis. As a con-
vention, LS denotes the source language (in which
most of the annotated data is available) and LT the
target language (in which the capability of the sys-
tem to perform cross-language adaptation will be
evaluated, typically containing few or no labeled
data).

In projection approaches (Yarowsky et al.,
2001; Hwa et al., 2005), annotated data in LS is
projected (by translation) to LT . More concretely,
the learning instances originally in LS are trans-
lated (e.g. using machine translation tools or using
parallel data) to LT and the corresponding labels
are projected to the new learning instances in LT .
Then, a ML system is trained and evaluated on
the projected data in LT . Typically, fine-grained
word alignment techniques are employed to obtain
high quality translations and to better preserve the
annotation’s token-level boundaries. The majority
of cross-language learning approaches follow the
projection approach. Recent studies, namely (Eger

4RTE considers three labels: “neutral”, “entailment”, and
“contradiction”.

et al., 2018), point out that the quality of cur-
rent machine translation systems and word align-
ment tools provide a good basis for projection ap-
proaches.

In a direct transfer approach (McDonald et al.,
2011), the system is fully trained on the source
language LS , and then the learned model is used
to initialize a new model that will work on the tar-
get language LT . If few or no annotated data is
available in LT , the model is used after updating
the embedding layer for the target language (us-
ing multilingual word embeddings), to make pre-
dictions on LT (unsupervised direct transfer learn-
ing). If enough (according to the task) annotated
data is available in LT , the model can be retrained
on LT (after supervised training in LS) for better
adaptation to the target language (supervised di-
rect transfer learning).

Feature space approaches (Bell et al., 2014) per-
form subspace analysis to find a feature space that
can be employed across different languages and at
the same time is suitable for the target language.

In this work, we explore the projection and di-
rect transfer approaches. We leave for future work
exploring feature space approaches. Regarding
the projection approach, we machine translate the
ADUs obtained from the Argumentative Essays
corpus (Stab and Gurevych, 2017), originally in
English, to the target language (i.e. Portuguese)
using the Google Translator API5. Since we for-
mulated the problem as a classification task given
two ADUs, the projection of the labels is trivial
(no token level alignment is required). Mandatory
for the direct transfer approach is the existence of
cross-lingual word embeddings, which are trained
to obtain a shared embedding space representa-
tion of words in different languages. With them,
we are able to employ techniques based on word
embeddings across different languages. Similarly
to monolingual word embeddings, various ap-
proaches for learning cross-lingual word embed-
dings have been proposed in recent years (Ruder,
2017). In this paper, we use pre-trained multilin-
gual embeddings publicly available (Ferreira et al.,
2016). The embeddings were obtained by combin-
ing parallel data from the TED Corpus with pre-
trained English GloVe embeddings6. Each embed-
ding contains 300 dimensions.

5https://cloud.google.com/translate/
6https://nlp.stanford.edu/projects/

glove/
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4.4 Dealing with unbalanced datasets

As shown in Table 1, the distribution of labels is
skewed towards the “none” class. In the presence
of unbalanced datasets, ML algorithms tend to fa-
vor predictions of the majority class. Aiming to
improve the results for the “support” label (mi-
nority class), we explore two widely used tech-
niques to deal with unbalanced datasets in ML
problems (He and Garcia, 2009): random under-
sampling and cost-sensitive learning.

Random undersampling consists of randomly
removing examples from the majority class un-
til a predefined number of examples, determined
to obtain a balanced dataset in the end of pro-
cess. In cost-sensitive learning, each class is as-
signed a weight that works as a penalty cost.
Higher/lower costs are used for examples of the
minority/majority class, respectively. The ML
model is then trained to minimize the total cost,
which will become more sensitive to misclassifi-
cation of examples in the minority class. To deter-
mine the weight matrix for each class we follow
the heuristic proposed by King and Zeng (2001).

For all the experiments presented in the follow-
ing sections, these techniques are only applied to
the training set (random undersampling) or during
the training phase (cost-sensitive learning).

5 Evaluation

In order to validate the main hypothesis proposed
in this paper – that the proposed models can cap-
ture argumentative relations between ADUs at
a semantic-level that is transferable across lan-
guages – we have run a set of in-language and
cross-language experiments.

Our cross-language experiments use 80% of
ADU pairs originally available in LS as training
data and the remaining 20% as test data. In order
to tune the parameters of the model, we sample
10% of the training set as the validation data. All
splits of the datasets are made at the document-
level (i.e., ADU pairs belonging to document D
are not spread in different partitions) and keeping
the original distribution of labels in each partition
(stratified splitting). Then, the models are evalu-
ated on the full dataset in LT without retraining
(unsupervised language adaptation).

In-language experiments aim to establish base-
line scores for a supervised ML system that can
make use of annotated resources in LT . We per-
form 5-fold cross-validation for in-language ex-

periments. Final scores correspond to the sum of
the confusion matrix from the test set predictions
in each fold (Forman and Scholz, 2010). Follow-
ing this procedure, we obtain final evaluation met-
rics for the full dataset in LT that are directly com-
parable with the scores reported on the full dataset
for LT in cross-language experiments, as the eval-
uation scores are obtained from exactly the same
data in both settings. Cross-validation splits are
also at the document-level and keep the original
label distribution.

Since reporting single performance scores is in-
sufficient to compare non-deterministic learning
approaches (Reimers and Gurevych, 2017), we re-
port average scores of 10 runs with different ran-
dom seeds. Due to the unbalanced nature of the
datasets, evaluation metrics reported in the exper-
iments are average macro F1-scores over all 10
runs. All models are trained using the Adam opti-
mizer, using the default parameters suggested in
the original paper (Kingma and Ba, 2014), and
cross-entropy loss function. The activation func-
tion used in all the layers was ReLU (Glorot et al.,
2011). To find the best model in each run, we
stop training once the accuracy on the validation
set does not improve for 5 epochs (early-stop cri-
terion) or 50 epochs are completed. The batch size
used in the experiments was set to 32 learning in-
stances. The dimension of the LSTM cell, used
by some of the models, was set to 96 after hyper-
parameter tunning (we tried with 32, 64, 96 and
128). Finally, to accelerate training, we set the
maximum length for all ADUs to 50 tokens7.

5.1 In-Language Results
Table 3 summarizes in-language results obtained
for the Argumentative Essays corpus, which con-
tains essays written in English.

Without using any technique to deal with the
unbalanced nature of the dataset (upper part of Ta-
ble 3), results show that all neural network mod-
els outperform the baselines. Surprisingly, state-
of-art models adopted from the RTE community,
namely Peters et al. (2018) and Chen et al. (2017),
perform poorly in our task. These results were un-
expected because: (a) the tasks are similar (both
approaches aim to classify pairs of propositions
in similar classes) and (b) the results reported for
RTE are quite impressive, namely 0.893 and 0.886

7Only 0.2% of ADUs in ArgEssays (Stab and Gurevych,
2017) and 4.5% of ADUs in ArgMine Corpus (Rocha and
Lopes Cardoso, 2017) exceed this length.
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of accuracy on the SNLI test set, respectively. We
hypothesize that despite the similarity of the tasks,
the fact that texts have inherently different gen-
res and the datasets different characteristics (la-
bel distribution and number of examples) prevents
the models proposed for RTE from generalizing
well to our task. Results show that the baseline
BoW+LR is very competitive compared to the neu-
ral network architectures. In this setting, the best
performing system is Conv1D.

Model Macro-F1 F1-None F1-Supp
Random .447 .625 .269

Peters et al. (2018) .512 .903 .121
Chen et al. (2017) .577 .879 .275

BoW+LR .604 .898 .311
LSTM .606 .877 .336

BiLSTM .624 .867 .381
Conv1D .634 .879 .390
Inner-Att .621 .882 .360

Cost Sensitive Learning
BoW+LR .641 .875 .407

LSTM .616 .822 .410
BiLSTM .634 .835 .434
Conv1D .631 .832 .430
Inner-Att .606 .822 .410

Random Undersampling
BoW+LR .574 .748 .401

LSTM .566 .734 .399
BiLSTM .609 .796 .422
Conv1D .598 .786 .410
Inner-Att .586 .775 .397

Table 3: In-Language Scores - Arg. Essays (EN). Bold
numbers indicate the highest score in the column.

As expected, the skewed nature of the dataset
plays an important role in the reported results:
scores for the “support” relation are very low com-
pared with scores for “none”. We also report ex-
periments conceived to address the unbalanced na-
ture of the dataset, as explained in Section 4.4. We
can observe that using cost-sensitive learning we
obtained better results for BoW+LR, LSTM and
BiLSTM. It is notable that the simple BoW+LR
approach obtains better results than more com-
plex neural network techniques. We believe this
is due to the fact that the number of examples in
the dataset is not sufficient to explore the full capa-
bilities of the neural network techniques proposed
here (and that have been successful in many other
scenarios). Finally, in the cost-sensitive learning
setting we obtain the best performance scores for
the “support” label, in all models. Regarding ran-
dom undersampling, results are consistently below
those reported using the cost-sensitive learning ap-
proach.

The first column in Table 4 summarizes in-
language results on the Portuguese ArgMine cor-
pus. We observe similar results compared to the
English results reported above. The only excep-
tions are: (a) Inner-att model obtains better re-
sults without using balancing techniques, and (b)
random undersampling performs better than cost-
sensitive learning.

Existing state-of-the-art work on the Argumen-
tative Essays corpus for the subtask of argumen-
tative relation identification reports, as macro F1-
scores, 0.751 (Stab and Gurevych, 2017), 0.756
(Nguyen and Litman (2016), in an initial release
of the Argumentative Essays corpus containing 90
essays) and 0.767 (Potash et al., 2017). Finally,
Eger et al. (2017) reported a F1-score of 0.455
(100% token level match) and 0.501 (50% token
level match), but these scores are dependent on
the classification of the components in the previ-
ous steps (the problem was modeled differently).
Therefore, the results reported in Table 3 are worse
than state-of-the-art work. The aim of this work is
to address the task for a less-resourced language
using cross-language learning approaches. Conse-
quently, the main goal is not to propose a novel
approach for argumentative relation identification
in a monolingual setting. It is important to notice
that some of the previous approaches proposed in
a monolingual setting do not comply with the pro-
posed approach in this paper: Stab and Gurevych
(2017) and Nguyen and Litman (2016) employ
different types of features which we argue not
to be suitable for cross-language learning target-
ing less-resourced languages, as extracting these
features requires complex linguistic preprocessing
tools which cannot be reliably employed in less-
resourced languages; and Eger et al. (2017) and
Potash et al. (2017) modeled the problem differ-
ently by jointly modeling different subtasks of the
argumentation mining process.

5.2 Cross-Language Results

Table 4 includes results obtained for cross-
language experiments, exploring unsupervised
language adaptation techniques (English to Por-
tuguese). Comparing direct transfer and projec-
tion approaches, we can observe that projection
performs slightly better in most cases. Comparing
the scores obtained in the in-language and cross-
language settings, we observe that, in general, per-
formance in the cross-language setting improves
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In-Language Direct Transfer Projection
Model Macro None Supp Macro None Supp Macro None Supp

Random .448 .613 .283 - - - - - -
BoW+LR .457 .888 .025 - - - - - -

Peters et al. (2018) .485 .887 .082 - - - - - -
Chen et al. (2017) .522 .856 .188 - - - - - -

LSTM .489 .868 .110 .461 .887 .036 .462 .884 .041
BiLSTM .510 .840 .180 .463 .870 .057 .466 .877 .055
Conv1D .459 .882 .035 .459? .880 .038 .462? .884 .039
Inner-Att .534 .764 .305 .454 .883 .025 .456 .882 .030

Cost Sensitive Learning
BoW+LR .520 .846 .193 - - - - - -

LSTM .496 .680 .312 .489 .870 .109 .493 .849 .137
BiLSTM .523 .786 .259 .485 .861 .109 .503 .845 .162
Conv1D .503 .827 .178 .497 .854 .141 .494 .841 .147
Inner-Att .479 .637 .321 .477 .867 .088 .484? .844 .123

Random Undersampling
BoW+LR .264 .191 .337 - - - - - -

LSTM .494 .668 .321 .494? .870 .118 .495? .859 .131
BiLSTM .464 .581 .348 .500? .856 .145 .512? .865 .158
Conv1D .423 .554 .292 .499? .855 .144 .492? .849 .134
Inner-Att .487 .621 .352 .482 .878 .087 .495? .861 .128

Table 4: In and Cross-Language scores on the Portuguese (PT) corpus. Bold numbers indicate the highest score in
the column. ? = equal or above in-language scores. All metrics correspond to F1-scores.

for the “none” relation and, conversely, drops for
the “support” relation. In general, we can ob-
serve that the macro-f1 scores of in-language and
cross-language approaches are very similar and, in
some settings, cross-language macro F1-scores are
equal or above in-language scores (marked with
the ? symbol in Table 4). Compared to fully-
supervised approaches on the target language,
such cross-language approaches are able to per-
form similarly without any annotated data in the
target language. These results suggest that trans-
fer learning across languages is possible using
the proposed models and that the hypothesis (i.e.
the argumentative relations between ADUs can be
captured in higher-level representations that are
transferable) explored in this work is valid.

Regarding the balancing techniques in a cross-
language settings, results show that random un-
dersampling works generally better than cost-
sensitive learning. Finally, balancing techniques
improved the overall scores for all the models.

Similarly to the findings of Eger et al. (2018),
we observed better results following the projection
approach. As discussed by the authors, it seems
that current neural machine translation models
have reached a level that makes approaches re-
lying on automated translations feasible and very
promising. In this work, the drop in performance
using direct transfer was less severe than that of
Eger et al. (2018) and very close to the results ob-

tained using the projection approach.

5.3 Error Analysis

To better understand the errors, in particular in
cross-lingual scenarios, we selected 5 documents
from the ArgMine Corpus (randomly sampled
from the set of documents but manually selected
to contain false-positive and false-negative exam-
ples), comprising a total of 56 ADU pairs for
each setting (in-language and cross-language ex-
periments were manually compared).

We noticed that the ArgMine Corpus lacks lin-
guistic indicators of argumentative content (e.g.
“therefore”, “thus”, “firstly”) that prevail in the
Argumentative Essays corpus. This constitutes a
consequence of the domain shift between the cor-
pora with potential impact on the performance loss
reported in this work. Furthermore, the ArgMine
Corpus contains opinionated news articles, which
typically require common-sense knowledge and
temporal reasoning to identify relations of sup-
port (e.g. ADUs: “Greece, last year, tested the
tolerance limits of other European taxpayers” and
ADUt: “The European Union of 2016 is no longer
the one of 2011.”. This example was manually
translated from Portuguese to English).

Finally, we also noticed that our deliberative
choice of not distinguishing between linked and
convergent arguments (Peldszus and Stede, 2013)
led to the problem of including in our dataset
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linked arguments with p premises as p ADU pairs.
Linked arguments seem to be more prevalent in
the ArgMine corpus, and treating them simply as
convergent brings us to a problem of partial ar-
gumentative relation detection, for which further
premises are needed.

6 Conclusions and Future Work

We have presented the first attempt to address
the task of argumentative relation identification
in a cross-lingual setting. By performing cross-
language learning experiments for Portuguese us-
ing two popular transfer learning approaches –
projection and direct transfer – we have shown
that competitive results can be obtained using un-
supervised language adaptation, when compared
to a fully-supervised machine learning approach
on the target language. Experimental results have
shown that the cross-lingual transfer loss is rel-
atively small (always below 10%) and, in some
settings, transfer learning approaches achieve bet-
ter scores than fully supervised in-language ap-
proaches. These findings demonstrate that suit-
able higher-level representations of argumenta-
tive relations can be obtained that, combined with
cross-lingual word embeddings, can be transferred
across languages.

In future work, we aim to evaluate the proposed
approaches in other languages and explore feature-
space analysis techniques recently proposed to ad-
dress related NLP tasks. Furthermore, we intend
to explore multi-task learning techniques, to lever-
age the knowledge gathered from related tasks
(e.g. training the models both in argument relation
identification and RTE datasets).
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maria.skeppstedt@lnu.se
2Retresco GmbH, Berlin, Germany

andreas.peldszus@retresco.de
3Applied Computational Linguistics, University of Potsdam, Potsdam, Germany

stede@uni-potsdam.de

Abstract
We present an extension of an annotated cor-
pus of short argumentative texts that had origi-
nally been built in a controlled text production
experiment. Our extension more than doubles
the size of the corpus by means of crowdsourc-
ing. We report on the setup of this experiment
and on the consequences that crowdsourcing
had for assembling the data, and in particular
for annotation. We labeled the argumentative
structure by marking claims, premises, and re-
lations between them, following the scheme
used in the original corpus, but had to make
a few modifications in response to interesting
phenomena in the data. Finally, we report on
an experiment with the automatic prediction
of this argumentation structure: We first repli-
cated the approach of an earlier study on the
original corpus, and compare the performance
to various settings involving the extension.

1 Introduction

As with most areas in NLP, progress on Argumen-
tation Mining hinges on the availability of data,
and in the case of this field, this is generally taken
to be annotated data. Up to now, only few corpora
labelled with full argumentation structure (i.e., ar-
gument components and relations between them)
are available; prominent ones are the persuasive
essay corpus of Stab and Gurevych (2014), the
web text corpus of Habernal and Gurevych (2017),
and the argumentative microtext corpus of Peld-
szus and Stede (2016).1 The latter is interesting
because it has in parallel been annotated with var-
ious other linguistic layers, as will be described in
Section 2. The microtexts are relatively “clean”
text, and the annotation of argumentation struc-
ture was generally easy, leading to reasonable an-
notator agreement, as reported by Peldszus and

1Many other corpora are available with more lean or more
specific annotations; see Section 4 of (Lippi and Torroni,
2016).

Stede (2016). However, a drawback is the rela-
tively small corpus size: 112 texts of about five
argumentative text units on average. While this
data has proven to be useful for various purposes
(see Section 2), for machine learning it is clearly
desirable to have a larger corpus of this kind.

In this paper, we turn to crowdsourcing as a
means to generate more text. We used essen-
tially the same instructions as used by Peldszus
and Stede (2016), and recruited writers via Ama-
zon Mechanical Turk. Naturally, the set of result-
ing texts is not identical in nature to the original
ones, and thus the first contribution of this paper
is an analysis of how the different text elicitation
scenarios influences the outcome, i.e., to evaluate
the pros and cons of crowdsourcing for this type of
task. The second contribution is an evaluation of
the annotation scheme that was used for argumen-
tation: Which modifications are necessary in order
to produce adequate analyses of the text? Finally,
the third contribution is to report on results of
an automatic classification experiment: We repli-
cated the Minimum Spanning Tree approach pro-
posed by Afantenos et al. (2018), and we compare
the results that have already been achieved on the
original corpus to those stemming from the new
sections of the corpus. We regard this as valu-
able information on the influence of corpus size
on classification results.

In the following, as background we briefly de-
scribe the original corpus, and then explain our ap-
proach to crowdsourcing the text production task.
This is followed by a description of the annotation
phase, and the lessons learned. Finally, we report
on the classification experiment, and then sum up.

The new corpus data, with its annotation of ar-
gumentation structure, is available on the website
of the arg-microtext corpus (see below).
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2 Background: The ‘argumentative
microtext corpus’

2.1 Data
We start from the arg-microtext corpus (Peldszus
and Stede, 2016), a freely available2 parallel cor-
pus of 112 short texts with 576 argumentative dis-
course units (henceforth: segments). The texts
are authentic discussions of controversial issues,
which were given to the writers as prompts. They
were originally written in German and have been
professionally translated to English, preserving
the segmentation and if possible the usage of dis-
course markers. The texts have been collected in
a controlled text generation experiment, in a class-
room setting with students, using a short instruc-
tion. This had the result that all of the texts ful-
fill the following criteria: (i) The length of each
text is about 5 segments; (ii) one segment explic-
itly states the central claim; (iii) each segment is
argumentatively relevant; (iv) at least one objec-
tion to the central claim is considered (in order to
produce more interesting argumentation).

Finally, all texts have been checked for spelling
and grammatical problems, which have been cor-
rected by the annotators. The reason underlying
this decision was the intended role of the corpus as
a resource for studying argumentation in connec-
tion with other linguistic phenomena (see Section
2.3), where plain errors can lead to undesired com-
plications for parsers, etc. Hence, “authenticity”
on this level was considered as less important. In
this respect the corpus differs from web-text cor-
pora that have been collected for argumentation
mining purposes, such as the Internet Argument
Corpus (Abbott et al., 2016), the ABCD corpus
(Rosenthal and McKeown, 2015) and others.

2.2 Annotation scheme
The argumentation structure of every text was an-
notated according to a scheme proposed by Peld-
szus and Stede (2013), which in turn had been
based on Freeman’s theory of argumentation struc-
tures (Freeman, 2011). This annotation scheme
has already been proven to yield reliable struc-
tures in annotation and classification experiments,
for instance by (Peldszus and Stede, 2015; Potash
et al., 2017). (Stab and Gurevych, 2017) use a sim-
ilar scheme for their corpus of persuasive essay,
and they also provide classification results for the

2http://angcl.ling.uni-potsdam.de/resources/argmicro.html

microtext corpus.
The argumentation structure of a text is defined

as a tree with the text segments as nodes. Each
node is associated with one argumentative role:
the proponent who presents and defends the cen-
tral claim, or the imaginary opponent who crit-
ically questions the proponent’s claims. Edges
between the nodes represent argumentative rela-
tions: support or attack. The scheme allows to
discriminate between ‘rebutting’ attacks, target-
ing another node and thereby challenging its ac-
ceptability, and ‘undercutting’ attacks, targeting
an edge and thereby challenging the acceptability
of the inference from the source to the target node.
It can also represent linked support, where multi-
ple premises jointly support a claim, i.e., one of
the premises would not be able to play the support
role in isolation. Another category is ‘example
support’, where the supporting material is a con-
crete instance of some abstract proposition, serv-
ing as evidence. Finally, it is possible to identify
two segments as saying essentially the same thing,
hence the second being a restatement of the first.
(This typically occurs with central claims, which
are sometimes being rephrased at the end of the
text.)

For illustration, sample analyses are shown be-
low in Figures 1 and 2.

2.3 Other annotation layers
In contrast to other argumentation corpora, the mi-
crotext corpus is unique in that it is already anno-
tated with further layers of linguistic information,
which makes it usable for systematic correlation
studies. Stede et al. (2016) described the annota-
tion of discourse structure according to RST and
SDRT, and Becker et al. (2016) added information
on situation entity types, which Smith (2003) had
proposed as a linguistic tool for identifying differ-
ent ‘discourse modes’, viz. Narrative, Description,
Report, Information, and Argument. Reisert et al.
(2017) annotated part of the corpus with informa-
tion on argumentation schemes, in the spirit of
Walton et al. (2008). Also, an alternative approach
to schemes, that of Rigotti and Greco Morasso
(2010), was annotated on the microtexts by Musi
et al. (2018).

Given these extra layers, we regard the exten-
sion of the microtext corpus as especially useful,
as the annotations of the other layers may now also
be added, resulting in a much more valuable re-
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[e1] Helicopter
parenting has proven
to be detrimental to

the success of
children.

[e2] Over
involvement in the
work, production,

and affairs of
children impact the

child's ability to
face consequences

and experiences good
and bad decisions.

1

[e3] While one can
argue that this type
of parenting style

benefits a child due
to the active

involvement and
guidance by a parent

2

[e4] there are few
arguments to

support.

3

[e5] Children need
to learn, make their
own choices, and

live with the
consequences of
their actions in

order to grow and
development.

4

5

c1 c4

c3

c2

Figure 1: An example text and its argumentation structure: Text segments, proponent (round) and opponent (box)
nodes, supporting (arrow-head) and attacking (circle-head) relations.

[e1] Social Media
has improved the
lives of teenagers.

[e2] Social media
has allowed

teenagers a constant
way to communicate

with each other

1=7

[e3] as well as an
easy way to find new

potential friends.

2

[e4] Numerous people
meet new people
everyday using

platforms such as
Facebook and Twitter

from the comfort of
their own homes.

3

[e5] Social Media
also allows

teenagers to get a
look at someone's

life before learning
more about them.

4

[e6] Some social
media platforms even

make money for
teenagers if they

have enough
followers.

5

[e7] All in all, I
would definitely say

that social media
has improved the
life of teenagers.

6

c2c1

c4

c3

c5

Figure 2: An example of an argumentation structure for which the main claim is repeated in the text. Each segment
has been annotated as an independent argumentative discourse unit, all of them directly supporting the main claim,
with the exception of one unit which gives support by example.
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source, both in terms of volume and in terms of
phenomena that can be investigated.

3 Crowdsourcing the production of
argumentative texts

3.1 Setting
We recruited authors via Amazon Mechanical
Turk, making sure (as far as possible) that they
were High School Graduates and living in the
U.S. (to increase the chances for language compe-
tence). The authors were given the task of produc-
ing a short text that argued for or against a general
debate topic, the prompt. Everybody was given
one from the set of 36 prompts and wrote no more
than one text for the experiment. Prompts were
gathered from publicly available essay-writing ex-
ercises, making sure that they do not presuppose
local or temporally-restricted knowledge that our
Turkers might not have. For illustration, here are
three of the prompts we used:

• Should car drivers be strictly prohibited from
using their cell phones?

• Does recycling really make a difference?

• Do older people make good or bad parents?

We calculated the time it takes authors on average
by means of a pilot study, and then decided to pay
the authors 1.10$ for their effort. Like in the orig-
inal setting descibed in the previous section, au-
thors were instructed to use about 5 sentences, to
clearly take a stance and make it explicit by means
of a claim statement, and to also include at least
one argument for the opposite view in their text.

3.2 Filtering
As to be expected, not all of the texts that were
produced did, however, fulfill all the criteria. First,
a number of them did not mention the opposing
view; since this does not lead to degenerate data
in any way, we decided to leave those texts in
the corpus. In contrast, texts in which no clear
stance towards the debate topic was taken were
excluded from further annotation. Such texts typ-
ically listed a number of conditions for agreeing
with the topic at hand, gave recommendations for
solving an issue, or simply listed a few arguments
for and against the topic, without indicating a win-
ning side. Also, we removed texts where authors
took a stance, but mainly wrote things unrelated

to the debate. Likewise, texts that were not un-
derstandable (for grammatical and/or content rea-
sons), and texts that were very long or very short
(more than eight or less than four argumentative
discourse units) were excluded. Since the debate
topics given were very general, the authors some-
times voiced a more specific opinion on a topic.
For instance, for the prompt “Do long distance re-
lationships work?”, two of the authors argued for
the more specific stance: “long-distance relation-
ships work in the short run but not in the long run”.
These texts, being otherwise faithful to our crite-
ria, were kept in the corpus for annotation.

3.3 Cleaning
The texts that we kept after the filtering phase were
manually cleaned, i.e., minor misspellings and
grammatical errors were corrected. Furthermore,
some of the authors have taken a clear stance on
the given prompt question by simply starting their
text with “yes” or “no”, before presenting their ar-
guments. This violates the guidelines, which ask
for texts that should be understandable without ac-
tually having the question as headline. For these
cases, the answer was replaced with a statement
that paraphrased the prompt question and indi-
cated the “yes” or “no” polarity. In addition, text-
initial anaphors (referring to parts of the question)
were replaced with their intended antecedents.

We are aware that cleaning and repairing are
potentially controversial moves. Our main moti-
vation was that the data be comparable to that of
the original corpus, and therefore we largely fol-
lowed the ‘cleaning’ procedure described by Peld-
szus and Stede (2016). However, all “raw” ver-
sions of the texts will also be part of the corpus
release, as for certain experiments it might be im-
portant to be confronted with authentic language
containing mistakes of various kinds.

3.4 Statistics
A total of 205 texts had been originally collected,
and from these, 34 were excluded from further
consideration, for the reasons given above (but still
part of the corpus to be distributed). Thus, we
altogether moved 83% of the crowdsourced texts
to the next phase: annotation of argumentation
structure. We see this rate as rather encouraging,
demonstrating that crowdsourcing is a viable ap-
proach for this type of text elicitation task.
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4 Annotating the crowdsourced texts

We applied the annotation guidelines (mentioned
in Section 2) and used the freely available graph
annotation tool GraPAT3 (Sonntag and Stede,
2014) to annotate the 171 texts that passed our fil-
tering step. Two annotators (one of them being
a co-author of this paper) shared the work, and
a third person (another co-author) joined in dis-
cussions of difficult cases. At the present stage,
we did not run an inter-annotator agreement study,
because this had already been done on the origi-
nal corpus and guidelines (see Peldszus and Stede
(2016)), thereby verifying the usability of the
scheme. However, the annotation process was not
entirely straightforward. In the following, we de-
scribe specifically the challenges posed by the dif-
ferent type of text, in comparison to the original
microtexts and the annotation scheme. We regard
most of the phenomena as not just specific to this
project, but to be relevant for empirical work on ar-
gumentation mining, especially for designing an-
notation guidelines, in general.

4.1 Implicit claims
The first observation concerns the presence of an
explicit “central claim”. Authors were encouraged
to state it in their text, but we did not filter texts
that lack it (because, in fact, many “natural” argu-
mentative texts have no explicit claim, as for in-
stance found by Habernal and Gurevych (2017)).
As long as the argumentative structure and content
of the text suggested some segment to be a viable
candidate for main claim, our annotators chose it.
This had the effect that—in contrast to the original
corpus with its rather crisp claims—both specific
refinements of the writing prompt (e.g., “As long
as the kids are provided with a stable home life,
divorce does not have to be an enormous trauma
from which there is no recovering”) and relatively
vague statements (e.g., “There are many benefits
to using LED lights”) can now be central claims.
However, when the text argued clearly, but did not
supply any reasonable candidate for explicit claim,
annotators added this as an extra statement, which
will then serve as the root of the argumentation
tree. A manually added statement serving as the
main claim was added in 34 texts. One example
is the following text, where the last sentence is the
manually added claim:

3http://angcl.ling.uni-potsdam.de/resources/grapat.html

(1) Do we need fracking, depite its risks?
Fracking has uncovered cheap natural gas.
The aggregate savings to the American
household are then passed on to the
economy in the way of spending. Also, the
coal industry has imploded as a consequence
which is more of a pollutant than natural gas.
The potential contamination damage caused
by the fracking process is outweighed by the
reduction of energy costs to the American
household. Yes, we need fracking despite its
risks.

4.2 Restatements
Another phenomenon that did not occur in the pre-
viously published corpus, was that the authors re-
stated a claim, typically the main claim. These re-
statements were annotated through connecting the
text segments that restated the claim to the same
argumentative discourse unit, as shown in Figure
2 (node ‘1 = 7’). In the annotated corpus, 29 ar-
gumentative units are restatements of previously
mentioned ones, and 19 of them restate the main
claim.

4.3 Direct versus indirect support
Another difficulty concerned the attachment point
of support relations. It can be difficult to de-
cide whether a statement supports or opposes di-
rectly the central claim, or a separate statement
(thus affecting the claim only indirectly). This
kind of ambiguity was also reported for the arg-
microtext corpus by Peldszus and Stede (2016).
We noted that it appears quite frequently in the
crowdsourced texts. For instance, in Figure 2, all
segments, except one, are annotated as direct sup-
port of the main claim, as there are no surface
markers (or clear semantic cues involving back-
ground knowledge) in the text which would signal
that any of these arguments support any other ar-
gument. However, the author may have intended
additional supporting relations.

4.4 Argument support versus causal
connection

Another challenge stems from drawing the line
between relations in the texts that are argumen-
tative, and those that describe a (non-pragmatic)
causal connection of events. The example below
may be viewed as one single argumentative dis-
course unit, which includes one long causal con-
nection. Alternatively, it may be segmented into
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three sub-arguments, on the ground that it is pos-
sible to agree on or refute each one of these three
segments separately. E.g., it is possible to agree
that people go to the stores to recycle, but refute
that this leads to more money being spent in the
shop, or that this leads to economic growth.

(2) It is also a benefit as it encourages people to
go to stores to recycle and then spend that
money at the shop increasing the amount
spent at the store and encouraging economic
growth.

4.5 Implicit modality or evaluation
In many cases, annotation decisions turned out to
be dependent on whether a certain modality or a
positive or negative evaluation is added to a seg-
ment by the annotator’s interpretation. In the (par-
tial) text below, segment 2, 3 and 4 are annotated
as supporting the claim 1. In turn, 5 supports 4,
given that the annotator interprets “a heart rate that
gets going” as a positive state of affairs, brought
about by the desire to keep weight.

(3) [Spending time together as a family engaged
in sports together is a good thing.]1 [It
increases a sense of family
togetherness,]2[gets people outside and into
the fresh air and sunshine,]3[and gets the
heart rate going.]4[This in turn helps to keep
weight at a healthy level]5 (...)

4.6 Non-argumentative text units
Finally, there were three cases in which the texts
contained segments that the annotators deemed to
be irrelevant for the argument, for instance be-
cause it provides only background information or
reports some personal experience of the author
that is only vaguely related. In the original corpus
this was not the case and hence lead to tree struc-
tures spanning the entire text. Now in the crowd-
sourced texts, we decided to leave those texts in
the corpus and therefore now have segments that
are not part of the graph. An example is the be-
ginning of a text on the pros and cons of soft drink
can deposits:

(4) I live in Michigan, where we have a deposit.

4.7 Summary
The annotation effort lead to a total of 932 argu-
mentative units (segments). The distribution of re-
lations is: convergent support (467); example sup-

port (23); rebutting attack (137); undercutting at-
tack (77); linked support or attack (57); restate-
ment (29).

5 Experiments on automatic
classification

In the following, we will describe our experi-
ments on automatically identifying the argumen-
tative structures. This has already been done on
the original version of the corpus, e.g., recently by
Afantenos et al. (2018). In our experiments we
replicate their approach, and test it on the texts we
acquired and annotated as described above. Our
aim is to get an understanding of how much the old
and the new data sets differ in terms of achievable
predictions, and to assess possible improvements
by extending the size of the corpus.

Regarding the new phenomena pointed out in
Section 4, we chose to ignore non-argumentative
segments for the purposes of this experiment, sim-
ilar as if they had been filtered out in a prior step
of a pipeline. For one thing, this concerns only
three texts, and, more importantly, if we want to
compare our results to the earlier work, we should
work with the same representations. Second, im-
plicit claims that have been made explicit by the
annotators are included when we predict argumen-
tation structures.

5.1 Experimental Setup
For predicting argumentation structures, we repli-
cated the MST model of Afantenos et al. (2018),
which is an improved version of the model orig-
inally presented by Peldszus and Stede (2015).
This approach learns four local models for var-
ious aspects of the argumentation structure: for
identifying the central claim of the text (cc); for
determining the argumentative role, i.e. propo-
nent or opponent (ro), for classifying the function
of a segment, such as support or attack (fu); and
finally for identifying which units are ‘attached‘
to each other, i.e. are connected by an argumen-
tative relation (at). The predictions of these lo-
cal models are then combined into a single edge
score and decoded to a structure by selecting the
minimum spanning tree (MST). This approach
has been shown to yield competitive results when
compared to ILP decoders; see the original papers
for more details.

Similar to previous work, our experiment uses
the argumentation graphs in a version that is con-
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verted to dependency structures. Also, the set of
relations is reduced to merely ‘support’ and ‘at-
tack’ by conflating the subcategories. This step is
done in order to be compatible with earlier work
(no other corpora use this set of fine-grained dis-
tinctions of support and attack so far) and to alle-
viate a potential sparse-data problem per specific
relation. Restatements (which tend to occur only
for the main claim) exist in the new data set but
not in the original one; for compatibility, we con-
verted them to support relations in order to main-
tain compatibility with the old corpus. Again, this
is a purely technical decision made in order to al-
low a comparison with prior and related work. As
an alternative, experiments with the fine-grained
set of relation have been done (on the original cor-
pus) by Peldszus (2018).

We adopt the evaluation procedure of previous
work, i.e., we use 50 train-test splits, resulting
from 10 randomized repetitions of 5-fold cross
validation. For evaluations on the original cor-
pus we use the published splits, for the new cor-
pus we derive splits analogously. The correct-
ness of predicted structures is measured separately
for the four subtasks, reported as macro aver-
aged F1, and more unified in a labelled attach-
ment score (LAS) as it is commonly used for eval-
uation in dependency parsing (see Kübler et al.,
2009, ch. 6.1). For significance testing, we use the
Wilcoxon signed-rank test (Wilcoxon, 1945).

5.2 Evaluation Scenarios
We compare the results on the original dataset and
those on the new one using three evaluation sce-
narios:

Single Corpus This is the standard scenario for
evaluating the model on one single corpus, from
which both training and test sets are sampled. We
reproduce the results on the original corpus, and
produce new results for the new corpus. Compar-
ing these scores gives a first, but only tentative,
impression whether the structures annotated in the
new corpus are as easy or as hard to recognize as
in the original corpus.

Cross Corpus When we train the model exclu-
sively on one corpus and test it on the other, we
can investigate the degree of generalization of the
model. This is especially interesting, since the
new corpus had different prompts and thus covers
different topics. We expect a decrease in perfor-

mance when compared to in-domain results as in
the single-corpus setting.

Extend Corpus Finally, we use one corpus as
additional training data when evaluating on the
other. This helps us to understand to which degree
new data can help achieve better results for the
four subtasks and overall for the prediction of full
structures. We expect improvements here, when
compared with the single-corpus setting.

5.3 Results
The results are shown in Table 1. In the scenario,
‘old’ refers to the original corpus, and ‘new’ to the
new one described in this paper.

Single Corpus The results reproduced on the
original corpus are equivalent to published results.
On the new corpus, we overall achieve similar
scores. Differences are subtle: central claims are
a bit harder to recognize (an absolute difference of
-2.5 points) on the new corpus. This is to be ex-
pected, as the new corpus features restatements of
the main claim which are competitors to the origi-
nal main claim. The scores for argumentative role,
function and attachment classification are quite
equal. This leads us to assume that the structures
annotated in the new corpus are not more or less
complicated to be recognized than the structures
in the original corpus.

Cross Corpus As expected, the cross-corpus re-
sults are in general lower than single-corpus scores
for both directions. When training on the old cor-
pus and testing on the new one, we observe a rela-
tive decrease of 7% compared to the average level
score achieved when training and testing on the
new corpus. The loss is slightly stronger for ar-
gumentative function and attachment than on the
other levels. In the reverse direction, when train-
ing on new and testing on old, the average loss is
even higher with 11%. Here, central claim and ar-
gumentative function exhibit the highest decrease.
The exception is the attachment level, with only a
minor drop of 3%.

Extend Corpus When using the “other” cor-
pus as additional training data and comparing this
with the ‘single’ scenario without extra training
data, we find on average only mild improvements
(which we again report as relative improvements).
Interestingly, the gains per task differ across the
directions: When evaluating on the old corpus us-
ing the new data for extra training, there is a small
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scenario results

type train test cc ro fu at LAS

single old old .870 .768 .754 .719 .526
cross new old .745 .695 .644 .698 .450
extend both old .859 .779† .757 .724 .532

single new new .845 .766 .750 .714 .527
cross old new .797 .731 .693 .665 .439
extend both new .856† .782† .765‡ .712 .526

Table 1: Evaluation scores for the predicted structures reported as macro avg. F1 for the cc, ro, fu, and at levels,
and as labelled attachment score (LAS). Results marked with a dagger are significant improvements over the
corresponding ‘single’ score, with † for p < 0.05 and ‡ for p < 0.01.

drop (-1.3%) in central claim identification and a
small raise in role classification (+1.4%). The re-
maining levels show minor improvements. In the
other direction, i.e. when evaluating on the new
corpus using the old corpus as additional training
data, we observe improvements in role (+2.1%)
and function classification (+2.0%), as well as a
small raise in central claim identification (+1.3%).
One possible explanation for this is the impact of
the restatements in the new corpus. An improve-
ment that is consistent across both directions is
that in role classification. We presume that more
training data really helped to recognize the less
frequent opponent role.

6 Summary and Outlook

In order to extend an existing corpus of 112 short
argumentative texts (which had been gathered in
a classroom setting with students), we employed
crowdsourcing for collecting a new dataset that
can serve as an extension to the old one. We de-
scribed our steps in assembling the data set in such
a way that is compatible to the original corpus but
at the same time is to some extent faithful to the
“crowdsource complications”. As a result, there
are two changes in the corpus now: Texts may
contain non-argmentative segments, and some “ar-
tificial” segments representing central claims have
been added where authors left the claim implicit.
Still, these are no dramatic steps, and overall,
we claim that (i) crowdsourcing can be a viable
method for collecting this type of data, and that
(ii) the new corpus can be used in tandem with the
old one as a coherent dataset.

Finally, to substantiate (ii), we reproduced an
experiment on automatic prediction of the argu-

mentation structure, which showed that predicting
on the crowdsourced texts is generally not harder
than on the old ones, and that overall, the task can
benefit from the increased corpus size, though not
dramatically. But we expect the increased corpus
size to be useful for other machine learning exper-
iments, especially for neural network approaches,
such as those recently run by Potash et al. (2017)
on the old corpus (albeit using only a small part of
the annotations for a simplified setting).

An interesting question for future work con-
cerns the viability of using crowdsourcing not just
for collecting the texts, but also for annotation. In-
stead of having annotators draw graph structures,
one would translate the process into a sequence of
questions whose answers would imply the struc-
tural description. We plan to explore this path with
suitable pilot experiments.

The corpus and annotations are available from
the arg-microtexts website (see footnote 2 above).
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