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Abstract

Automated filters are commonly used by on-
line services to stop users from sending age-
inappropriate, bullying messages, or asking
others to expose personal information. Previ-
ous work has focused on rules or classifiers to
detect and filter offensive messages, but these
are vulnerable to cleverly disguised plaintext
and unseen expressions especially in an adver-
sarial setting where the users can repeatedly
try to bypass the filter. In this paper, we model
the disguised messages as if they are produced
by encrypting the original message using an
invented cipher. We apply automatic decipher-
ment techniques to decode the disguised ma-
licious text, which can be then filtered using
rules or classifiers. We provide experimen-
tal results on three different datasets and show
that decipherment is an effective tool for this
task.

1 Introduction

Under-aged social media users and users of
chat rooms associated with software like video
games are routinely exposed to offensive language
including sexting, profanities, age-inappropriate
languages, cyber-bullying, and requests for per-
sonal identifying information. A common ap-
proach is to have a filter to block such messages.
Filters are either rule-based (Razavi et al., 2010)
or machine learning classifiers (Yin et al., 2009;
Warner and Hirschberg, 2012; Williams and Bur-
nap, 2015). However, users wishing to bypass
such filters can subtly transform messages in novel
ways which can be hard to detect.

Since malicious users and spammers can
change their attacks to avoid being filtered, an ap-
proach to offensive text detection that takes into
account this adversarial relationship is what can
deal with real-world abusive language detection
better. Techniques like spelling correction have

been used to correct misspelled words in user gen-
erated content (Kobus et al., 2008), but in an ad-
versarial setting it is easy to defeat a spelling cor-
rection system trained on predictable errors. Con-
text based normalization methods have been pro-
posed to convert erroneous user generated text
from social media to standard text (Choudhury
et al., 2007; Schulz et al., 2016). We, however,
treat this problem as follows: we model malicious
users trying to bypass a filtering system as having
invented a new cipher, and our goal is to decipher
their encrypted messages back to plaintext. We
use a large space of possible ciphers that could be
invented by those seeking to bypass a filter.

This paper addresses the problem of finding and
filtering offensive messages as a special case of de-
cipherment. In decipherment, a message in plain-
text (original text) is converted into ciphertext (en-
crypted text). Encryption disguises the content of
the original plaintext to a ciphertext so that it can-
not be filtered out or blocked. Decryption or deci-
pherment is the process of recovering the plaintext
from the ciphertext. We treat disguised inappropri-
ate content as ciphertext, and the actual intended
content as the plaintext. Then we apply decipher-
ment to recover more recognizable plaintext from
the ciphertext and apply filters on the plaintext.
Conceivably these users may create very complex
unbreakable ciphers which cannot be deciphered
by our system, but in such cases the ciphers are
likely to also be unreadable by other humans who
are the intended audience. We do not see many
examples of this in our real-world chat messages.

We use Expectation Maximization (Dempster
et al., 1977) and Hidden Markov Models (HMM,
Rabiner (1989)) for our unsupervised decipher-
ment method (Knight et al., 2006). We use an effi-
cient beam search decoding algorithm to decipher
ciphertext into the most likely plaintext. We also
compare against supervised noisy channel models
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and a state-of-art spelling correction system (As-
pell). We discover that our method is immune
to many previously unobserved types of changes
made by users to disguise the original message.

2 Decipherment for Offensive Language
Detection

The goal of decipherment is to uncover the hidden
plaintext sequence p1...pn, given a disguised ci-
phertext sequence c1...cn. We assume that all cor-
rupted forms of offensive language are originally
explicit plaintext encrypted using letter substitu-
tion, insertion, or deletion.

2.1 NULL Insertion

A user can hide plaintext by inserting additional
letters, or making substitutions and deletions in the
plaintext:

Offensive text :you are a B*n@n@ee

Intended Plaintext :you are a bunny

we lowercase the texts and substitute the special
symbols and punctuation marks inside the words
with NULL, and then map NULL to any letter or
NULL. Thus, the corrupted word B*n@n@ee is
changed to

b<NULL>n<NULL>n<NULL>ee

When dealing with insertion of symbols, we
treat it as an injective decipherment problem and
solve it by adding NULL symbols in the ciphertext
so that the decipherment model could map candi-
date letters. We compare two methods: 1) Insert-
ing the NULL in a random position of the corrupted
offensive key words; 2) Using a character-level
n-gram model to segment the ciphertext adapt-
ing the technique for unsupervised word segmen-
tation Ando and Lee (2003) in order to find where
to insert NULL symbols.

The character-level n-gram model is trained on
an unsegmented corpus (spaces removed between
words). At each position k, we determine whether
to insert a NULL symbol or not by calculating an
n-gram score using Eqns (1) and (2).
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where n is the n-gram order, and s are n-grams
that straddle the potential NULL position k to the
left L and right R and t are n-grams that are on ei-
ther side of position k also on the left L and right
R and c() is the n-gram frequency. For a sequence
A B C D W X Y Z, for n = 4 and position
k = 4 between D and W, Eqn (1) for a particular n
compares the frequency of the s type n-grams that
straddle position k = 4 (so, in this case frequency
of B C D W, C D W X, D W X Y against the
frequency of the t type n-grams on either side: A
B C D and W X Y Z. Eqn (2) then takes the av-
erage for each n-gram order (for n=1,2,3,4). The
position k that has a score from Eqn (2) higher
than a threshold value is chosen as the position for
NULL insertion.

2.2 Decipherment Model

A decipherment model maximizes the probability
of a substitution map that converts the ciphertext
sequence c to plaintext sequence p (Eqn 3).

P (c) =
∑
e

P (p) · P (c | p) (3)

where P (.) is a character-level language model of
the plaintext source trained using a monolingual
corpus. We model P (c | p) as the emission prob-
ability of a Hidden Markov Model (Knight et al.,
2006) with cipher characters c as observations and
plaintext characters p as the hidden states of the
HMM. We train this using unsupervised learning
using the Forward-Backward algorithm (Rabiner,
1989).

We propose our own initialization algorithm
(Algorithm 1), based on the assumption that the
previous trained table can help us to reach bet-
ter local optima with fewer iterations compared to
uniform initialization with random perturbations.

With the learned posterior distribution and lan-
guage model score we use beam search to obtain
the best plaintext (Forney Jr, 1973; Nuhn et al.,
2013). Beam search combines breadth-first search
and child pruning reducing the search space for
each partial hypothesis of the decipherment.
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Algorithm 1 Initialization with previous trained
table

1: Given a set of cipher text sentences with size
of d, a plain text with vocabulary size v and
plain text trigram model b

2: Randomly initialize the s(c | e) substitution
table and normalize

3: for i = 1 . . . d do
4: preprocess the i-th cipher text sequence by

removing repeated characters and lower case
the text

5: insert NULL based on techniques in
Sec. 2.1

6: if i 6= 1 then
7: initialize s(c | e) using the (i − 1)th

trained table s(c | e)
8: apply Forward-Backward algorithm to

learn parameters s(c | e)

3 Data

3.1 Wiktionary

We created an offensive language dataset from
English Wiktionary data. We use Wiktionary la-
bels for vulgar, derogatory, etc. and selected ex-
ample sentences for words tagged with such la-
bels. From the entire English Wiktionary data , us-
ing this method, we extracted 2298 offensive sen-
tences and 152,770 non-offensive sentences. This
data is organized as {key word : example
sentence} as in a dictionary. With the dupli-
cates removed, for each key word, the corre-
sponding sentences were split into a 3:1 ratio as
training and testing data.

We used 1,532 sentences offensive training set
data and sampled 1,532 non-offensive sentences
as a balanced dataset for training an offensive sen-
tence classifier. We split 716 offensive testing sen-
tences into 4 parts in sequence. The first three
parts we set as test sets A,B and C and the lat-
ter part as development set. Every set has 179
sentences. The three test sets are taken from the
same larger corpus to measure the variance in per-
formance of the decipherment powered classifica-
tion technique.

The Wiktionary dataset is used to train our lan-
guage model. The offensive sentences had fewer
instances than the non-offensive counterparts. To
offset any loss in information, the offensive sen-
tences were duplicated until they were as many in
number as the non-offensive sentences, resulting

in a balanced training set of 155,251 tokens.

3.2 Other data

Language Model: For the character models we
used a combination of Wiktionary and the Eu-
ropean Parliament Proceedings Parallel Corpus
1996-2011 (Koehn, 2005). 100K English sen-
tences were sampled from the German-English
EuroParl Corpus to give us a 2.7M token English
plaintext corpus.

Spelling Correction: We use the English Giga-
word corpus (Graff et al., 2003) to train the lan-
guage model for the noisy channel spelling correc-
tion module. The preprocessed corpus has 7.4M
lowercase English word tokens. For spelling cor-
rection, the Linux system dictionary with 479,829
English words in lower case is used. We used
3,393,741 pairs of human disguised words and
original plain text words from the rule-based fil-
tering system to train the error model.

3.3 Real World Chat Messages

We obtained 4,713,970 unfiltered, unlabelled chat
messages from a provider of filtering services for
chat rooms aimed at under-aged users. The data
was provided by Two Hat Security which provides
human powered chat room monitoring and filter-
ing. Two Hat combines artificial intelligence with
human expertise to classify chat room discussions
and images on a scale of risk, taking user profiles
and context into account. We pre-processed the
chat messages to produce a cleaner version of the
original message using tokenization rules.

We used 4,700,000 chat messages provided to
us by Two Hat Security as a training set to train a
letter based language model. To build a more com-
prehensive language model, this language model
was interpolated with the ones trained on Wik-
tionary and Europarl datasets.

We also collect a separate set of 500 plaintext
chat messages flagged as offensive by the filtering
system to use as a development set. For the test
set, we sampled 500 chat messages from 265,626
chat messages which were identified as offensive
using a rule-based filtering system that uses lists
of offensive words. These messages were marked
inoffensive and cleared for posting in an older ver-
sion of the same rule-based filtering system (two
years older). We use this data to evaluate our deci-
pherment system: can we match the performance
improvement of two years of rule development?
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Over two years new rules were added to account
for user behaviour of trying to bypass the rule-
based filtering system. Can decipherment discover
these patterns automatically?

4 Experimental Setup

4.1 Language Model
Character Language Model: We used the
SRILM toolkit (Stolcke et al., 2002) to train a
character language model (LM) from Wiktionary
and Europarl data. We trained two LMs and in-
terpolated them using a mixture model. The in-
terpolation weights were tuned on the develop-
ment set. We used py-srilm-interpolator
(Kiso, 2012) for the mixture model.

Word Language Model: We trained a word tri-
gram language model on English Gigaword data.

4.2 Encipherment
The sentences in the test set are encrypted using
different techniques: the Caesar 1:1 substitution
cipher, the Leet simple substitution cipher1 and re-
placing the offensive keywords with real human-
disguised versions of curse words obtained from
the rule-based filtering system. This was done to
mimic the way people disguise their messages on-
line.

4.3 Decipherment
HMM: For the HMM based decipherment, we
run 100 random restarts (Berg-Kirkpatrick and
Klein, 2013), running the EM algorithm to con-
vergence 100 times, to find the initialization that
leads to the local optima with highest likelihood.

Spelling Correction: We use settings for the
noisy channel model based spelling correction as
stated in Norvig (2009): pspell error = 0.05, and
λ =1. The maximum edit distance limit is set to
3, and the error model is trained on the real chat
messages we collected. The error model trained on
pairs of misspelled words and the correctly spelled
English words from the Linux system dictionary.

4.4 Evaluation
We evaluate our approach in terms of the classifier
accuracy and the risk level from the rule-based fil-
tering system for the real chat messages. We are
using a simple logistic regression classifer from
the LibShortText toolkit (Yu et al., 2013) to train

1https://en.wikipedia.org/wiki/Leet

a classifier to classifies offensive and normal sen-
tences. After training the classifier, we classify the
original test sentences without any encryption.

We do not use a very sophisticated classifier be-
cause the goal of classification here is not to cor-
rectly classify offensive messages, but rather, to
measure how well the decipherment method can
recover the original messages containing offensive
text back from the encrypted messages. We com-
pare the classification accuracy between the origi-
nal and deciphered messages. If the classification
accuracy gap between the original and deciphered
messages is small, the decipherment approach can
recover the original user-intended messages from
encrypted messages.

Tuning: We have a set of 179 sentences as the
development set which is used for tuning the clas-
sifier and other hyper-parameters. After tuning,
we were able to achieve the highest classification
accuracy of 86%.

5 Experiments and Results

On the test sets A,B and C (see Sec. 3.1), in both
our experiments on Caesar ciphers and Leet code,
we first measure the number of offensive instances
that were correctly classified by our logistic re-
gression classifier. Then, the same classifier is run
on the encrypted versions of these messages. The
first two columns in the Table 1 and Table ?? show
the classification accuracy obtained in those set-
tings.

In our experiments, we apply Spelling Correc-
tion and our Decipherment techniques on the en-
crypted messages separately and finally use our
classifier to determine the number of offensive in-
stances that were correctly classified in decrypted
text. The objective here is to measure how well
either of the techniques is able to recover the orig-
inally intended message from the encrypted ver-
sion of the message, simulating a real online user’s
behaviour of disguising an offensive text to beat a
rule-based filter. In other words, we aim at de-
creasing the gap between the classification accu-
racies on a test set and its encrypted form.

5.1 Decipherment of Caesar Ciphers
Caesar cipher is a simple substitution cipher in
which each plaintext token is ‘shifted’ a certain
number of places down the alphabet. We en-
crypted three test sets A, B, C with Caesar cipher
encryption by shifting 3 letters to the right.
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Test Set Original text Caesar cipher
encrypted text

Noisy Channel
Spelling Correction

Deciphering
per line

Deciphering
whole set

A 86%
(154/179)

4%
(8/179)

28%
(51/179)

55%
(99/179)

86%
(154/179)

B 86%
(154/179)

3%
(7/179)

22%
(41/179)

51%
(92/179)

86%
(154/179)

C 84%
(152/179)

5%
(10/179)

22%
(41/179)

58%
(104/179)

84%
(152/179)

Table 1: Classification Accuracy of Spelling Correction and Decipherment Results in Caesar Cipher Encrypted Text

After being encrypted with a Caesar cipher, all
the letters in the original messages are replaced,
making the text unreadable. Applying spelling
correction on such text sequences is almost fu-
tile as the text does not contain lexically correct
words. HMM based decipherment approach, how-
ever, is capable of handling such obfuscated text
sequences by design. We apply both the meth-
ods on three separate test sets A,B and C that built
from the Wiktionary dataset (see Sec. 3.1).

Te
st
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et

A

B

C

Classification Accuracy (%)
0 22.5 45 67.5 90

Spelling Correction Decipherment

Original Text: im going to hit 
the clubs and see if I can get me 
some cunt 
Encryption: lp jrlqj wr klw wkh 
foxev dqg vhh li l fdq jhr ph 
vrph fxqw 
Decipherment: im going to hit 
the clubs and see if I can get me 
some cunt 
Spelling Correction: lp rj wr kl 
with foxe dq hh li l dq jew ph ph 
few

Figure 1: Decipherment vs. Spelling Correction ap-
proaches on Caesar cipher encrypted offensive mes-
sages. (Example from Test set A.)

The classification accuracies in Table 1 show
that the HMM decipherment approach outper-
forms our other baselines.

With 100 random restarts on EM during the de-
cipherment of the Caesar cipher encrypted dataset
A, our system reports a mean loglikelihood of -
27923 and a standard deviation of 23. The Figure
2 shows every loglikelihood value in 100 random
restarts. As the Caesar cipher is relatively easy to
decipher, the loglikelihood does not vary greatly.
The highest loglikelihood yields a classification
accuracy of 86% (154/179), which is the same as
the original plain text classification accuracy. The
decipherment process seems to recover the whole
message that was encrypted by the Caesar cipher.

5.2 Decipherment of Leet Substitution

Leet is a quasi-encryption method which makes
use of modified spellings and verbiage primarily
used by the Internet community for many pho-

Figure 2: 100 Random Restarts Loglikelihood in Caesar Ci-
pher Decipherment

netic languages. For the Leet substitution cipher,
we referred to the KoreLogic’s Leet rules (Kore
Logic Security, 2012) which tagged as “#KoreL-
ogicRulesL33t” . We used John the Ripper pass-
word cracker (Solar Designer and Community,
2013) to apply the KoreLogic Leet rules encrypt-
ing our test sets.

Encrypting a text with a Leet substitution does
not change all the letters in the original messages.
A spelling correction, therefore, performs better
on such text sequences compared to the ones enci-
phered with a Caesar cipher. So the noisy channel
spelling correction is able to recover the original
form of some of the corrupted messages. HMM
based decipherment approach, however, still man-
ages to outperform spelling correction. For deci-
pherment of Leet ciphers, we employ beam search
to decode the final results having obtained the pos-
terior probabilities from EM training. We apply
both the methods on the test sets A,B and C.

Table 1 shows that the noisy channel spelling
correction method is able to obtain an average
classification accuracy of 65 out of the 179 en-
crypted messages. For HMM based decipherment
techniques, however, we record higher accuracy,
as before. With a beam width of 5, when applied
to the whole set instead of a per-sentence basis,
the resulting messages are flagged at an average
of 82% across the three test sets. The deciphered
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Test Set Original
Text

Leet
Encryption Set

Noisy Channel
Spelling Correction

Deciphering
per line

Deciphering
whole set

A 86%
(154/179)

59%
(107/179)

68%
(122/179)

56%
(102/179)

82%
(147/179)

B 86%
(154/179)

64%
(115/179)

60%
(108/179)

62%
(112/179)

82%
(148/179)

C 84%
(152/179)

62%
(112/179)

65%
(117/179)

67%
(121/179)

81%
(146/179)

Table 2: Classification Accuracy of Spelling Correction and Decipherment Results in Leet Substitution Cipher with Beam
Search Width of 5
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Classification Accuracy (%)
0 22.5 45 67.5 90

Spelling Correction Decipherment

Original Text: whats fucker 

Encryption: wha+$ Fuck3r 

Decipherment: whats fucker 

Spelling Correction: what a 
fucker

Figure 3: Decipherment vs. Spelling Correction ap-
proaches on Leet cipher encrypted offensive messages.
(Example from Test set A.)

messages appear quite close to being as accurate
as the original raw test set.

Figure 4: 100 Random Restarts Loglikelihood in Leet Sub-
stitution Cipher Decipherment

On performing 100 random restarts on EM dur-
ing the decipherment of the Caesar cipher en-
crypted test dataset A, our system records an aver-
age loglikelihood of -30183 and a standard devi-
ation of 390. Figure 4 shows every loglikelihood
value in 100 random restarts. The high deviation
in the loglikelihood shows that a Leet substitution
is harder to solve than a Caesar cipher.

5.3 Decipherment of Real Chat Offensive
Words Substitution Dataset

In each of the offensive test sets A,B and C, the
offensive keywords in the messages are substi-
tuted with real human corrupted words obtained

from real-word chat messages. These chats are
transformed versions of these offensive words that
are matched using a hand-written rule-based sys-
tem. We used enciphered offensive words col-
lected from real chat messages and the corre-
sponding plain text for this task.

Original Text: hes really bitchy in the morning 
Encryption: hes really bitchyou in the morning 
Decipherment: hes really bitchy in the morning 
Spelling Correction: hes really bitchy in the morning

Since this quasi-encryption is based on real chat
messages, it closely mimics the inventive ways
users employ to disguise their messages to bypass
the filter system, which can involve both insertion
and deletion.

It is then imperative that we handle insertion,
deletion and substitution in the disguised words
to recover the original plain text words. In the
insertion case, for example, if the original word
hello is disguised as helo, a NULL symbol is
inserted inside the disguised word helo to deci-
pher. The ideal position to insert the NULL symbol
is he<NULL>lo but it is not known during train-
ing. To circumvent this, we experiment with two
techniques: (1) to insert NULL at random before
the beginning of the EM training, and (2) to insert
the NULL using the method in Sec. 2.1.
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Random NULL Insertion n-gram based NULL insertion

Figure 5: Random vs. n-gram count based NULL insertions.

This insertion techniques uses the word-
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Test Set Wiktionary
Encrypted Set

Noisy Channel
Spelling

Correction

Aspell Spelling
Correction NULL Insertion Decipherment

A 64%
(116/179)

72%
(130/179)

77%
(138/179) Random 69%

(124/179)

n-gram Count Based 72%
(129/179)

B 72%
(129/179)

76%
(137/179)

73%
(131/179) Random 72%

(130/179)

n-gram Count Based 75%
(136/179)

C 75%
(136/179)

77%
(138/179)

77%
(138/179) Random 76%

(137/179)

n-gram Count Based 78%
(140/179)

Table 3: Classification Accuracy of Spelling Correction and Decipherment Results in Real Chat Offensive Words Substitution
Wiktionary Dataset

level language model 4.1 to learn the n-gram
counts.From Table 3 and Figure 7, the n-gram
count based insertion decipherment has a higher
classification accuracy than the random insertion
NULL decipherment. An advantage of this type
of HMM decipherment method is that it tends
to not change the words that are already correct
since these words have the highest language model
score. Rather, it changes the words that are cor-
rupted or misspelled. Irrespective of the type of
encryption, the HMM decipherment approach al-
ways deciphers the messages which fit with the
language model we trained.

We conducted an additional experiment to test
with the Aspell program. Table 3 shows that de-
ciphered messages obtain better accuracies than
Aspell on test sets B and C while on test set A,
it is about 5% less accurate. Note that the noisy
channel model was trained on data obtained from
a hand-tuned filtering system that was domain spe-
cific and created specifically for these chat mes-
sages. What we find in our results is that the deci-
pherment system can match this domain expertise
using unsupervised learning without any domain
specific knowledge.

Figure 6 shows every loglikelihood value in
100 random restarts on test-set B. The mean of
loglikelihood is -41444.7 and the standard devia-
tion was 115.53. The greater diversity among the
real chat offensive words renders the decipherment
much harder than controlled synthetic-scenarios.

5.4 Decipherment of Real Offensive Chat
Messages

We use two versions of a rule-based offensive lan-
guage filtering system to evaluate our decipher-
ment approach. The first version of the filter sys-

Figure 6: 100 Random Restarts Loglikelihood in De-
cipherment of Real Chat Offensive Words Substitution
on Test Set B

tem was two years old and the second version of
the filter system has benefited from daily updates
from humans monitoring the chat room. The ques-
tion we want to ask in this evaluation is if our de-
cipherment system can replicate the human effort
of two years of rule development in this filtering
system.

We use a test set of 500 offensive messages sam-
pled from the set of chat room messages which
were not flagged as offensive by the first (older)
version of the filter system but which were flagged
as offensive by the second version of the filter sys-
tem. This allows us to evaluate how many of those
offensive messages can be identified using deci-
pherment.

User corrupted text: fvk u 
User corrupted text: f2ck u 
Deciphered text: fuck you

Before deciphering these messages, we prepro-
cessed the text to remove repeated characters such
that only two sequential repeated characters re-



156

main. For example, the text heeeellllooo is
preprocessed to heelloo. Further, all the special
symbols were replaced with <NULL>.

The preprocessed test-set is then deciphered
with the HMM based decipherment technique.
The deciphered messages are then passed back
into the first version of the filtering system. This
lets us check if deciphering the user-disguised
message into a simpler plaintext message allows
the two year old filter to catch it as offensive. The
above example shows that decipherment can han-
dle substitutions and insertions.

The two year old rule-based filter was able to
successfully flag 51.6% of the deciphered mes-
sages as offensive text. Thus, the decipherment
approach is able to transform about half of the cor-
rupted messages into a readable form so that the
filter system without the benefit of two years of de-
velopment can recognize them as offensive. This
shows that decipherment can lead to much faster
development of filtering systems for offensive lan-
guage.

6 Discussion

We observe that HMM decipherment trained on
the whole set is particularly able to recover most
encrypted letters (cipher text) into their original
letters (plain text). When we decipher each line
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Classification Accuracy (%)
0 22.5 45 67.5 90

Random Initialization Previous Table based Initialization

Figure 7: Decipherment per line vs on whole set.

of messages individually, the EM training does not
observe enough data to learn the posterior proba-
bilities. In contrast, the substitution table trained
by previous messages being passed into next mes-
sage initialization table will not lose the informa-
tion learned from the previous messages. There-
fore, the results of whole set decipherment are bet-
ter than per line decipherment.

As Tables (1 2, 3) show, HMM decipherment
training can recover most of the words in our test

sets compared to the original message classifica-
tion accuracy of each set. From the results shown
in Table 1 and Table 2, no matter what encryp-
tion of substitution cipher was used, be it Caesar
cipher or Leet substitution cipher, the HMM de-
cipherment with language model could always re-
cover the original messages.

7 Related Work

For detecting offensive languages, rule-based fil-
tering systems and machine learning techniques
are widely used. Razavi et al. (2010) lever-
aged a variety of statistical models and rule-based
patterns and applied multi-level classification for
flame detection. Chen et al. (2012) introduced
a Lexical Syntactic Feature (LSF) architecture
to detect offensive content and identify poten-
tial offensive users in social media. Kansara and
Shekokar (2015) proposed a framework that de-
tects bullying texts and images in using feature ex-
traction and classifiers. Djuric et al. (2015) lever-
aged word embedding representations (Mikolov
et al., 2013) to improve machine learning based
classifiers. Nobata et al. (2016) unified predefined
linguistic elements and word embeddings to train
a regression model. Su et al. (2017) presented a
system to detect and rephrase profane words writ-
ten in Chinese. samghabadi2017detecting

Recently, deep learning methods have been em-
ployed for abusive language detection. Zhang
et al. (2018) presented an algorithm for detect-
ing hate speech using a combination of Convo-
lutional Neural Networks (CNN) and Gated Re-
current Unit (GRU). Gambäck and Sikdar (2017)
used four CNNs to classify tweets to one of four
predefined categories. Park and Fung (2017)
adopted a two-step approach with two classifiers.
The first step performs classification on abusive
language and the second step classifies a text into
types of sexist and racist abusive language given
that the language is abusive. Three CNN-based
models have been used for classification: Char-
CNN, WordCNN and HybridCNN. Badjatiya et al.
(2017) used an LSTM model with features ex-
tracted by character n-grams for hate speech de-
tection. As malicious users can change their ways
of transforming text to avoid being filtered, an
approach such as ours which takes into account
the adversarial relationship between the chat room
user and the offensive language filter is likely to
perform better at filtering.
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Previous work on decipherment are often based
on noisy-channel frameworks. Knight and Ya-
mada (1999) proposed to use EM algorithm to
estimate the mapping distribution over the sound
to characters, then generated the plaintext using
Viterbi algorithm (Forney Jr, 1973). The learn-
ing objective is to maximize the probability of the
mapping ciphertext phoneme-tokens to plaintext
characters. Further, Knight et al. (2006) studied
using EM for unsupervised learning of the sub-
stitution maps for 1:1 letter substitution ciphers.
Ravi and Knight (2011) proposed to regard for-
eign language as ciphertext and English as plain-
text, converting a translation problem into one of
word substitution decipherment. They employed
iterative EM approach and a Bayesian learning ap-
proach to build the translation mechanism using
monolingual data.

We use the EM based decipherment technique
to convert user-disguised offensive text into a
filter-recognizable plaintext.

8 Conclusion

The HMM decipherment can decipher disguised
text based on the language model regardless of
the encryption type. The decipherment approach
we proposed can cover more disguised cases than
spelling correction methods. However, due to the
limitation of edit distance and lack of traning data,
the noisy channel spelling correction has its limi-
tations and cannot handle high edit distance case.
Large edit distances are common in real chat mes-
sages, and thus the decipherment approach has its
advantages. The difference between the decipher-
ment with traditional spelling correction meth-
ods like Aspell is that decipherment method only
needs a language model to decipher cipher text,
and does not need a dictionary to refer to. The lan-
guage model has the advantage that we can train a
domain specific language model to decipher spe-
cific topic messages as real chat messages usually
have some sort of topics or domain, such as sports,
news and so on. The future work is that we can try
different language messages to decipher, as long
as we can have the corresponding language model.
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