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Abstract

One important problem in task-based con-
versations is that of effectively updat-
ing the belief estimates of user-mentioned
slot-value pairs. Given a user utterance,
the intent of a slot-value pair is captured
using dialog acts (DA) expressed in that
utterance. However, in certain cases, DA’s
fail to capture the actual update intent of
the user. In this paper, we describe such
cases and propose a new type of seman-
tic class for user intents. This new type,
Update Intents (UI), is directly related to
the type of update a user intends to per-
form for a slot-value pair. We define five
types of UI’s, which are independent of
the domain of the conversation. We build
a multi-class classification model using
LSTM’s to identify the type of UI in user
utterances in the Restaurant and Shopping
domains. Experimental results show that
our models achieve strong classification
performance in terms of F-1 score.

1 Introduction

An important part of dialog management in dia-
log systems is to detect the type of update to be
performed for a slot after every turn in order to
keep track of the dialog state. (The dialog state re-
flects the user goals specified as slot-value pairs.)
User dialog acts (Young, 2007) express the user’s
intents towards slots mentioned in the conversa-
tion. They are extracted in the spoken language
understanding (SLU) module and are utilized by
the downstream state tracking systems to update
belief estimates (Williams et al., 2013; Lee and
Stent, 2016; Henderson et al., 2014c). However,

∗The work was done when the author was at Yahoo Re-
search, Oath Inc.

currently used dialog acts do not capture the up-
date intended by the user in the following cases:
1. Implicit denials: User denials for slot-values
are expressed using the “deny” and “negate” di-
alog acts. However, these acts only address ex-
plicit negations/denials such as “no”, “I do not
want 〈slot-value〉’. But a user may express denial
for a value implicitly. Consider utterances 8 and
9 in Table 1 where a user adds and removes peo-
ple from a slot, PNAMES, which contains names
of people going to an event. Current SLU systems
would detect the “inform” dialog act in both utter-
ances and, hence, would miss the (implicit denial)
“remove” update.
2. Updates to numeric slots: Numeric slots are
the slots whose values can be increased and de-
creased in addition to getting set/replaced. Since
dialog acts do not capture the “increase” and “de-
crease” intents towards a numeric value, such up-
dates cannot be handled using dialog acts alone.
For example, consider utterances 4, 5 and 6 in Ta-
ble 1 where the value of a numeric slot, NGUEST
(number of guests in an invite), is set, increased
and decreased respectively. The dialog act ex-
pressed in these utterances is “inform” which does
not convey the update type.
3. Preference for slot values: The “inform” dia-
log act specifies values for slots but does not take
into account the preferences for any particular slot
value(s). Consider utterances 1, 2 and 3 in Table 1
where the location slot (LOC) is referred. In utter-
ance 2, the user is equally interested in the three
locations (“Ross”, “Napa” and “San Jose”). How-
ever, in utterance 3 the user prefers “Gilroy” over
other values and intends to replace the old values
with “Gilroy”. Clearly, the SLU output does not
capture this change in the user intent.

We posit that identifying the above intents in
user utterances as a part of SLU would improve es-
timation of user goals in task based dialogs. To ad-
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Id User utterance Expected SLU output SLU output with update intents

Task: Restaurant search

1 Find French restaurants in Ross and
Napa.

inform(LOC=Ross|Napa) inform(append(LOC=Ross|Napa))

2 Show some in San Jose too. inform(LOC=San Jose) inform(append(LOC=San Jose))
3 Show me in Gilroy instead. inform(LOC=Gilroy) inform(replace(LOC=Gilroy))

Task: Restaurant reservation

4 Book a table for 4 at Olive Gardens. inform(NGUEST=4) inform(replace(NGUEST=4))
5 Add 4 more seats. inform(NGUEST=4) inform(increaseby(NGUEST=4))
6 Can you remove 2 seats. inform(NGUEST=2) inform(decreaseby(NGUEST=2))
7 Actually make it for 5. inform(NGUEST=5) inform(replace(NGUEST=5))

Task: Restaurant reservation

8 Invite Joe, Mike and John for drinks at
SoMar today.

inform(PNAMES=[John
&Mike& Joe])

inform(append(PNAMES=Joe&Mike
&John))

9 Take Joe off the list. inform(PNAME=Joe) inform(remove(PNAMES=Joe))

Table 1: Example user-bot conversations with only user utterances. For illustration, only the relevant
slots are shown in the SLU output.

dress the above issues, we propose five generic up-
date intents (UI’s) which are directly related to the
type of update expressed by the user: Append, Re-
move, Replace, IncreaseBy and DecreaseBy, and
build a model to identify them in a user utterance.
Table 2 defines the five UI’s. We model the prob-
lem of identifying UI’s as a multi-class classifi-
cation. For a user utterance, we classify UI’s for
all the slot-values present in the utterance into one
of the five classes. We treat an utterance as a se-
quence of tokens and slot-values, and perform se-
quence labeling using LSTM’s for the classifica-
tion. It should be noted that the focus of this work
is on identifying the UI’s in user utterance and not
on investigating the mechanisms of using them for
belief tracking, which is part of our larger goal.

UI’s are generic in nature and independent of
the dialog domain. Given a slot type (such as nu-
meric), they can be applied to any slot of that type.
This enables transfer learning across similar slots
in different domains. To demonstrate this, we ex-
periment with two domains (shopping and restau-
rants) and define three types of slots: 1. Numeric
slots, 2. Conjunctive multi-value (CMV) slots, and
3. Disjunctive multi-value (DMV) slots (explained
in Section 3.1.1). We then delexicalize slot-values
in user utterances with the corresponding slot type
(not slot name) and conduct cross-domain train-
ing and testing experiments. Experimental results
demonstrate strong classification performance in
individual domains as well as across domains.

Contributions: 1) We propose a new semantic
class of slot-specific user intents (UI’s) which are

directly related to the update a user intends to per-
form for a slot. 2) The proposed UI’s enable effec-
tive updates to slots. 3) Our models predict UI’s
with high accuracy. 4) We present a novel delex-
icalization approach which enables transfer learn-
ing of UI’s across domains.

2 Related Work

Although we are not aware of any prior work on
identifying update intents, our current work is re-
lated to dialog act identification and dialog state
tracking. Here, we review works in these two ar-
eas and contrast them against ours.
Dialog act identification: Dialog acts (DA)
in an utterance express the intention of their
speaker/writer. Identifying DA types has been
found to be useful in many natural language pro-
cessing tasks such as question answering, sum-
marization, and spoken language understanding
(SLU) in dialog systems. A variety of DA’s
have been proposed for specific application tasks
and domains, such as email conversations (Co-
hen et al., 2004), online forum discussions (Bha-
tia et al., 2012; Kim et al., 2010), and dialog sys-
tems (Young, 2007). The latter is relevant to this
work. In dialog systems, DA’s are used to infer
a user’s intention towards either the slots or the
conversation in general. Some of the DA’s used
in dialog systems are inform, confirm, deny, and
negate. Previous works on DA identification in
dialog systems have used a range of approaches
like n-grams based utterance level SVM classi-
fier (Mairesse et al., 2009), SVM classifier built
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on weighted n-grams using word confusion net-
works incorporating ASR uncertainties and dia-
log context (Henderson et al., 2012), log linear
models (Chen et al., 2013), and recurrent neural
networks (Hori et al., 2015, 2016; Ushio et al.,
2016). This work is similar to DA identification
in the sense that both the UI’s and the DA’s ex-
press certain semantics in the utterance and are in-
dependent of the dialog domain. However, there
are important differences: 1) DA’s mainly reflect
the intent towards the conversation; however, UI’s
convey the type of update a user wants to a par-
ticular slot. 2) DA’s can be slot-independent (such
as hello, negate, etc.) whereas UI’s are always de-
fined with respect to a slot.
Dialog State Tracking: Dialog state tracking
(DST) entails updating the conversation state (also
known as belief state) after every dialog turn. A
conversation state is a probability distribution over
competing user goals which are expressed in the
form of slot-value pairs. For a user utterance, DST
relies on SLU to get a list of k-best hypotheses of
DA’s and slot-value pairs expressed in the utter-
ance. To update the belief state, DST approaches
utilize DA’s by using their SLU confidence scores
as features (Ren et al., 2013; Kim and Banchs,
2014), encoding the DA’s using n-gram vectors
weighted by the SLU confidence scores (Hen-
derson et al., 2014c; Mrkšić et al., 2015), and
using rule-based updates (Lee and Stent, 2016).
Recently, efforts have been made to bypass the
SLU output and learn update mechanisms directly
from user utterance (Mrksic et al., 2017). Though
DA’s are important for updating belief state, as ex-
plained in Section 1, certain updates like implicit
denials, numeric updates, and slot preferences are
not handled by the DA’s used in the dialog systems
literature. UI’s, on the other hand, are proposed to
address this problem. The work by Hakkani-Tür
et al. (Hakkani-Tür et al., 2012) on identifying ac-
tion updates in a multi-domain dialog system is
closely related to the current work. Some of their
action updates are similar to UI’s. However, unlike
the current work, they did not deal with numeric
updates and did not distinguish between types of
multi-value slots (explained in Section 3.1.1).

3 Approach

In task-based dialogs, users complete a task by
giving sequences of utterances in which they spec-
ify slot-values with corresponding intents. Dialog

UI Type Definition

Append Append a specified value to the slot.

Remove Remove a specified value from the slot.

IncreaseBy Increase a value of a slot by a specified amount.

DecreaseBy Decrease a value of a slot by a specified amount.

Replace Replace the value of a slot by a specified value.

Table 2: Types of update intents and their defini-
tions.

systems extract this information using dialog act
detection and slot-filling as part of SLU. The most
common and helpful intents for completing a task
are setting a value for a slot and denying a par-
ticular value for a slot. Traditionally, these two
intents are determined by the inform and deny di-
alog acts. However, as explained in Section 1, a
user may not always set and deny a value explic-
itly. While denials can be implicit, relative pref-
erences can also be provided for slot-value(s). In
case of numeric slots, user can set a value by in-
crementing or decrementing the previous values of
slots. All these common scenarios are not handled
by the inform and deny dialog acts.

In this work, we propose a new set of slot-
specific intents which are directly related to the
type of update expressed towards the slot. We call
these intents update intents or UI’s. The UI’s ex-
press five common types of updates:
1. Append: A user specifies a value or multiple
values for a multi-value slot. This is equivalent to
“appending” the specified value(s) to a multi-value
slot. (Refer to Section 3.1.1 for the definition of
multi-value and numeric slots).
2. Remove: A user denies a value or multiple
values for a multi-value slot implicitly or explic-
itly. This is equivalent to “removing” the specified
value(s) from a multi-value slot.
3. Replace: A user specifies a preference for a
slot value in case of multi-value slots. In case of
numeric (single value) slots, this intent expresses
setting and re-setting of a slot value (Utterances
4 and 7 in Table 1). This UI is defined with re-
spect to the slot-value for which the preference is
expressed. For example, in the utterance “I would
prefer San Jose over Gilroy” the UI for San Jose is
replace, whereas for Gilroy it is remove. Note that
in case of multi-value slots, replace cannot be de-
composed into a combination of an “append” and
a “remove” update when the “remove” intent is
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not specified. For example, in “I would prefer San
Jose” there is no “remove” intent and, hence, sim-
ply using the “append” intent for San Jose would
not extract the preference for San Jose.

4. IncreaseBy: A user specifies a value by which
a particular numeric slot’s value is to be increased.

5. DecreaseBy: A user specifies a value by which
a particular numeric slot’s value is to be decreased.

Table 1 shows examples of the above five UI’s.
The third column shows the expected SLU output
with UI’s.

Okay forget Sunnyvale Try Cupertino instead

LSTM LSTM LSTM LSTM LSTM LSTM

sum sum sum sum sum sum

Bi-LSTM
Encoder

Embeddings
Layer

Delexicalization

Input

Softmax
Layer

TOKEN TOKEN REMOVE TOKEN REPLACE TOKENLabels

Okay forget LOCATION Try LOCATION instead

LSTM LSTM LSTM LSTM LSTM LSTM

Figure 1: Model architecture

3.1 Modeling

Given a user utterance, the goal is to determine
UI’s for all the slot-values present in it. We formu-
late this task as a classification problem. Given a
user utterance and the mentioned slot-values, clas-
sify the update intents for all the slot-values in one
of the five classes: Append, Remove, Replace, In-
creaseBy and DecreaseBy.

We model the above problem as a sequence la-
beling task. We treat a user utterance as a se-
quence of words and slot-values. The labels for
slot-values are the corresponding UI’s whereas
for words (which are not slot-values), we de-
fine a generic label “TOKEN”. For model opti-
mization and error computation, we do not con-
sider the “TOKEN” labels. Figure 1 describes
our model architecture. We used Bidirectional
LSTMs (Graves and Schmidhuber, 2005) for se-
quence labeling. For input representation, we
used GloVe word embeddings (Pennington et al.,
2014). For regularization, we used dropout and
early stopping. We give more details about model
parameters in Section 5.

3.1.1 Learning Across Domains

In many cases, it is not possible to list all the val-
ues of a slot in the ontology. Even if the values are
listed, it may not be practical to generate a training
data containing all the values, if there are too many
values for the slot. In such cases, it is beneficial to
unlink the learning from particular slot-values and
link it, instead, to the slot itself. This is because the
word patterns used to refer to values of the same
slot are similar and hence can be shared across
the values. For example, a user would use simi-
lar word patterns to refer to values of slot “LOCA-
TION”. One way to do this is by replacing slot-
values in utterances with the name of the slot. This
is also called delexicalization and has been used
successfully in many previous works (Henderson
et al., 2014c; Mrkšić et al., 2015). In our model,
we also delexicalize slot-values with the name of
the slot as shown in Figure 1.

Delexicalization with slot names is helpful in
generalizing to slot-values not seen in the train-
ing data in one domain. However, it cannot be
used for cross-domain generalization as different
domains may not share the same slots. To address
this problem, we define three generic slot types de-
pending upon the values (numeric/non-numeric) a
slot can take and whether a slot can take multiple
values simultaneously (list-based) or not:
1. Numeric slot: Slots whose values can be in-
creased and decreased. NGUEST in Table 1 is
a numeric slot. A numeric slot is a single value
slot, i.e., “appending” and “removing” (multiple)
values are not allowed for numeric slots. This
slot supports IncreaseBy, DecreaseBy and Replace
UI’s.
2. Disjunctive multi-value (DMV) slot: Slots
which can take multiple values only in disjunction,
i.e., when user specifies those values as options.
In a restaurant search domain, examples of DMV
slots are location and cuisine. LOC slot in Table 1
is a DMV slot.
3. Conjunctive multi-value (CMV) slots: These
are list type slots which can take multiple values in
conjunction. Examples are slots containing names
of people going to an event, items in a shopping
list, etc. Slot PNAMES in Table 1 is a CMV slot.
Both CMV and DMV slots support Append, Re-
move and Replace UI’s.

Different domains may not share same slots but
they often share slots with same types. For exam-
ple, list of groceries in the shopping domain and
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list of people in a dinner invite in the restaurant
domain are of type CMV. Similarly, the number of
guests in a dinner reservation and the number of
items of a particular grocery are of type numeric.
If we delexicalize slot-values with slot types, we
can transfer learning for a slot type in one domain
to the same slot type in another domain.

There can be cases where there are different
ways (word patterns) to specify updates to two
slots even if they are of the same type, because of
differences in the corresponding domains or some
other reason. For example, lets say slots S1 and S2

are in different domains but share the same slot-
type S and we have training data for slot S1. S1

and S2 have similarities owing to their common
slot-type but have certain differences in the ways
users can express update intents for them. In such
a case, to generate training data for S2, we would
need data capturing the differences between the
two slots because the examples with common fea-
tures are already contained in S1’s training data.
Generating this additional data is easier than gen-
erating the full data for S2. The amount of addi-
tional data required will depend upon the degree
by which the slots (S1 and S2) differ. When ap-
plied to a large number of slots and domains, this
strategy would significantly reduce the time and
effort that goes into data generation. To demon-
strate this, we conduct training and testing ex-
periments on two domains, restaurants and online
shopping, and report results in Section 5.2.

4 Data Preparation

To evaluate our approach, we needed dialogs con-
taining numeric, CMV, and DMV slots in the
domain ontology along with the proposed up-
date intents expressed in user utterances. Exist-
ing datasets with annotated dialog acts such as
WOZ 2.0 (Wen et al., 2017), ATIS (Dahl et al.,
1994), Switchboard DA corpus 1, Dialog State
Tracking Challenge (DSTC) datasets (Henderson
et al., 2014a; Williams et al., 2013; Henderson
et al., 2014b) and ICSI meeting recorder DA cor-
pus (Shriberg et al., 2004) did not satisfy these re-
quirements. DSTC 2 and DSTC 3 datasets con-
tained DMV slots but not the CMV (list-based
slots) and numeric slots 2. DSTC 4 (Kim et al.,
2015), DSTC 5 (Kim et al., 2016) and DSTC

1http://compprag.christopherpotts.net/
swda.html

2The pricerange slot in DSTC2 and 3 is a categorical (and
not a numeric) slot with a fixed set of values

6 (Boureau et al., 2017) introduced a new set of
speech acts which contains “HOW MUCH” act
for the numeric price range and time slots. How-
ever, the act only supports the Replace UI and not
the IncreaseBy and DecreaseBy UI’s. Moreover,
the three datasets are not public. Therefore, we
generated our own datasets.

We generated user utterances in two domains:
restaurants and online shopping. In each domain,
eight human editors generated user utterances in-
dependent of each other. The sets of editors were
different across the two domains. Table 3 explains
the slots used in the two domains. For each do-
main, we defined certain tasks which are listed in
Table 4. Editors wrote conversations to complete
those tasks. Since this was not a real dialog sys-
tem, editors were asked to assume appropriate bot
responses based on their requests such as “Okay”,
“Added”, “Removed”, “Done” during the conver-
sation. Also, since the focus was on identifying
update intents and not on the overall SLU, (dialog
act detection, slot-filling, etc.), we did not build
our own custom slot-tagger and, instead, asked the
editors to annotate the slot-values with the corre-
sponding slot name in addition to the update in-
tents. Here is a sample annotation for the task
“restaurant reservation”.

Drop

NGUEST︷ ︸︸ ︷
one︸︷︷︸

DecreaseBy

person,

PNAMES︷ ︸︸ ︷
Joe︸︷︷︸

Remove

can′t make it.

For the shopping domain, 305 conversations
with 1308 user utterances were generated. For the
restaurant domain, 280 conversations with 1323
user utterances were generated. The distribution
of utterances among editors is 96, 110, 212, 79,
176, 258, 211 and 166 for the shopping domain.
For the restaurant domain, the editorial distribu-
tion is 322, 181, 116, 106, 143, 107, 109 and 239.
The distribution of Append, Remove, Replace, In-
creaseBy and DecreaseBy UI’s for restaurant do-
main is 1022, 301, 601, 92, 112 respectively. The
corresponding distribution for the shopping do-
main is 1249, 241, 521, 297, 90. Note that, an
utterance may have more than one UI.

5 Experiments and Results

5.1 Experimental Setting

We implement the proposed architecture in Sec-
tion 3 using Keras (Chollet et al., 2015), a
high-level neural networks API, with the Tensor-
flow (Abadi et al., 2015) backend. Training is

http://compprag.christopherpotts.net/swda.html
http://compprag.christopherpotts.net/swda.html
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Slot Type Definition

Restaurants

PNAMES CMV List of names of people in a reserva-
tion.

NGUEST Numeric Number of people in a reservation.
MENUITEMS CMV List of menu items to be ordered.
CUISINE DMV Type of cuisine.
LOCATION DMV Location (city) of restaurant.

Shopping

GITEMS CMV List of grocery items.
QTY Numeric Quantity of a particular (grocery or

apparel) item.
ASTORE DMV Apparel shopping store.
AITEMS CMV List of apparels.
COLOR DMV Color of apparel.
SIZE DMV Size of apparel.

Table 3: List of slots, their type and definitions in
the restaurant and shopping domains.

done by mini-batch RMSProp (Hinton et al., 2012)
with a fixed learning rate. In all our experiments,
mini-batch size is fixed to 64. Training and infer-
ence are done on a per-utterance level. The em-
bedding layer in the model is initialized with 300-
dimensional Glove word vectors obtained from
common crawl (Pennington et al., 2014). Embed-
dings for missing words are initialized randomly
with values between −0.5 and 0.5.
Evaluation: Using a random split of train and test
sets would have examples from the same editor in
both train and test sets which would bias the es-
timation. Therefore, we split our data into eight
folds corresponding to the eight editors, i.e., each
fold contains examples from only one of the ed-
itors. To evaluate our models, we train and vali-
date on the data from seven folds and test the per-
formance on the held-out (eighth) fold. We run
this experiment for each editor, i.e., eight times,
and average results across the eight folds. For
validation, we use 15% of the training data. We
use precision, recall and F-1 score to report the
performance of our classifiers. Overall classifica-
tion performance metrics are computed by taking
the weighted average of the metrics for individual
classes. A class’s weight is the ratio of the number
of instances in it to the total number of instances.
Parameter tuning: In each experiment, 15% of
the current training set is utilized as a development
set for hyper-parameter tuning and the model with
best setting is applied to the test set to report the
results. We tune learning rate, dropout via grid
search on the development set. In addition, we uti-

lize early stopping to avoid over-fitting. The opti-
mal hyper-parameter settings for our classification
experiments (reported in Table 5) is dropout =
0.3, learningrate = 0.001 for the restaurants
domain and dropout = 0.25, learningrate =
0.001 for the shopping domain.
Baseline: We used n-grams based multinomial lo-
gistic regression as a baseline. N-grams based
models have been extensively used in text classi-
fication (Biyani et al., 2016, 2013, 2012). Such
models have also been found to be effective as
semantic tuple classifiers for dialog act detection
and slot filling tasks (Chen et al., 2013; Hender-
son et al., 2012). Since there can be multiple
slot-values and, hence, multiple UI’s expressed in
a user utterance, the entire utterance cannot be
used to extract n-grams for all the expressed UI’s.
Therefore, we segment user utterances into rele-
vant contexts for the slot-values and classify the
contexts into one of the five UI classes. A context
for a value is an ordered list of words which are
indicative of the update to be performed for the
value. We use two approaches for segmentation
based on the k words window approach: a) hard
segmentation, b) soft segmentation. In the first ap-
proach, we assign the words around the value to
its context based on the following constraints:
1. If an utterance contains only one value, the en-
tire utterance is taken as the context for the value.
2. If there are n words (s.t. n < 2k) between two
slot values then the preference is given to the right
value. That is, k words are assigned to the context
of the right value and n− k words are assigned to
the context of the left value.
3. All the words to the left of the first value (in the
utterance) are added to the value’s context. Simi-
larly, all the words to the right of the last value are
added to its context.

In soft segmentation, we do not perform a hard
assignment of the words, between the two values
to the context of one of the values. Instead, we en-
code the words into one of these categories based
on its position with respect to the value and if it
is in between two values (and let the model learn
weights for words in each category): 1) towards
left of a value and between two values, 2) towards
right of a value and between two values, 3) to-
wards left of a value, 4) towards right of a value.

We extracted unigrams and bigrams from the
context of slot-values. We experimented with dif-
ferent window sizes and k=2 gave the best results.
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Task Informable slots Supported update intents Example user utterances

Restaurants

Search location, cuisine Append, Remove, Replace. Utterances 1 to 3 in Table 1
Reservation pnames, nguest All UI’s Utterance 4 to 7 in Table 1
Order food menuitems Append, Remove, Replace. 1. Order a cheese burger and a coke can. 2. Can

you do a diet coke.

Shopping

Grocery gitems, qty All UI’s 1. One dozen white eggs and one pound of apples.
2. Add two more pounds of apples.

Apparel aitems, astore, color,
size, qty

All UI’s. 1. Show me blue sweaters at Target. 2. I think
black will suit better.

Table 4: Tasks in the two domains with corresponding info slots, supported update intents and example
utterances. Slot-values in the utterances are in italics.

Class Prec. Re. F-1 #Instances

Restaurants

Append 90.64 92.86 91.74 1022
Remove 85.66 81.40 83.48 301
Replace 89.05 93.34 91.15 601
IncreaseBy 95.29 88.04 91.53 92
DecreaseBy 96.88 83.04 89.42 112

Overall 90.02 90.65 90.27 2128

Shopping

Append 92.22 95.26 93.72 1245
Remove 85.71 74.69 79.82 241
Replace 85.63 82.50 84.04 520
IncreaseBy 98.30 97.31 97.80 297
DecreaseBy 91.36 82.22 86.55 90

Overall 90.86 90.18 90.45 2393

Table 5: Classification results on the two domains.

5.2 Results

In this section, we present the results of our clas-
sification and domain-independence experiments.

5.2.1 Classification Results
Table 5 shows the classification results on the
two domains. For both the domains, our model
achieves more than 90% overall F-1 scores. Per-
class results are also strong. The Append, Re-
place, and IncreaseBy classes achieve more than
91% F-1 scores for the restaurant domain. For the
shopping domain, IncreaseBy is the best perform-
ing class (97% F-1) followed by Append and De-
creaseBy. Despite having significantly fewer ex-
amples compared to the other classes, IncreaseBy

Method Prec. Re. F-1

Restaurants

1.Baseline(soft) 84.28 82.84 81.96
2.Baseline(hard) 85.74 84.96 84.32
3.Model-delex 90.661,2 85.141,2 87.741,2

4.Model 90.021,2 90.651,2,3 90.271,2,3

Shopping

1.Baseline(soft) 82.62 81.12 79.86
2.Baseline(hard) 82.81 81.55 80.32
3.Model-delex 86.301,2 82.10 84.051,2

4.Model 90.861,2,3 90.181,2,3 90.451,2,3

Table 6: Comparison of different classification
models on the two domains. Superscripts’ de-
note statistical significance over the corresponding
model with a p-value of 0.05 or less. Model-delex
is the proposed model without delexicalization.

and DecreaseBy perform very well. One of the
reasons for this behavior could be that after delex-
icalization, for these two classes, there is only one
slot (QTY in shopping and NGUEST in restau-
rants) for which the model learns the patterns.
Other than these two classes, this slot is shared
by the Replace class. Hence, given a delexical-
ized numeric slot-value, the model needs to dis-
criminate between these three classes whose rela-
tive distribution is much smoother than the over-
all distribution of the five classes. For the other
delexicalized slot-values, the model discriminates
between Append, Remove and Replace, where the
majority class has a much higher number of exam-
ples than the minority Remove class. Hence, we
see that the Append class performs significantly
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Figure 2: Restaurant as out-domain and shopping
as in-domain.

better than the Remove class.
We also compare our model with the two base-

lines explained in Section 5.1. Table 6 presents
these results. We see that the proposed model
significantly outperforms the two baselines. This
shows that for UI classification, contextual infor-
mation around a slot-value is captured much more
effectively using sequence models than static clas-
sifiers. We also experimented with our model
without delexicalization to verify the gains it
brings. As can be seen, delexicalization does im-
prove the performance in both domains.

5.2.2 Domain Independence Results

We conducted experiments to explore if learning
of UI’s in a domain can be used to predict UI’s in
a different domain. We use one of the domains as
the “in-domain” (where learning is transferred to)
and the other as the “out-domain” (where learning
is transferred from). For this experiment, we set
aside 20% of the in-domain data as the test set. At
each step, we use 15% of the training data as the
validation set. We explored two settings:
1. Combined-training: In this setting, we start by
training our model on the entire out-domain data
and then, incrementally, add a fraction (10%) of
the in-domain data (left after taking out the test
data) to the current training data, retrain the model
(from scratch) on the combined data.
2. Pre-training: Here, we train a model on
the out-domain data and fine-tune it with the in-
domain data. At each step, we add a fraction
(10%) of the in-domain data to the current training
data and refit the pre-trained out-domain model on
it by initializing the model weights to the weights
of the model trained on the out-domain data.
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Figure 3: Shopping as out-domain and restaurant
as in-domain

Figures 2 and 3 report the results of these two
settings. For Figure 2, the model trained only
on the out-domain (restaurant) data achieves F-1
score of more than 80% on the in-domain test set.
As we add more in-domain data, the F-1 score in-
creases. With only 30% of the in-domain data, we
get 89% F-1 score. Also, we see that pre-training
and combined-training have similar performances.

For Figure 3, the out-domain model achieves a
much lower F-1 score on the in-domain data. This
shows that the transfer is not symmetric. This
could be due to the PNAME slot, which has no
similar slots in the shopping domain. There is
also a difference between the performance curve
of pre-training and combined-training. This indi-
cates that fine-tuning a pre-trained model is harder
than combined training when patterns are not cov-
ered by the out-domain data.

6 Conclusions and Future Work

We proposed a new type of slot-specific user in-
tents, update intents (UI’s), that are directly re-
lated to the type of update a user intends for a
slot. The UI’s address user intents containing im-
plicit denials, numeric updates and preferences for
slot-values, which are not handled by the currently
used dialog acts. We presented a sequence label-
ing model for classifying UI’s. We also proposed a
method to transfer learning of UI’s across domains
by delexicalizing slot-values with their slot types.
For that, we defined three generic slot types. Ex-
perimental results showed strong performance for
UI classification and promising results for the do-
main independence experiments. In the future, we
plan to explore mechanisms to utilize the UI’s in
belief tracking.
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