Concept Transfer Learning for Adaptive Language Understanding

Su Zhu and Kai Yu *

Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering

SpeechLab, Department of Computer Science and Engineering
Brain Science and Technology Research Center
Shanghai Jiao Tong University, Shanghai, China

{paul2204,kai.yu}@sjtu.edu.cn

Abstract

Concept definition is important in lan-
guage understanding (LU) adaptation
since literal definition difference can eas-
ily lead to data sparsity even if different
data sets are actually semantically corre-
lated. To address this issue, in this paper,
a novel concept transfer learning approach
is proposed. Here, substructures within lit-
eral concept definition are investigated to
reveal the relationship between concepts.
A hierarchical semantic representation for
concepts is proposed, where a semantic
slot is represented as a composition of
atomic concepts. Based on this new hi-
erarchical representation, transfer learning
approaches are developed for adaptive LU.
The approaches are applied to two tasks:
value set mismatch and domain adapta-
tion, and evaluated on two LU bench-
marks: ATIS and DSTC 2&3. Thorough
empirical studies validate both the effi-
ciency and effectiveness of the proposed
method. In particular, we achieve state-of-
the-art performance (F7-score 96.08%) on
ATIS by only using lexicon features.

1 Introduction

The language understanding (LU) module is a
key component of dialogue system (DS), pars-
ing user’s utterances into corresponding seman-
tic concepts (or semantic slots !). For example,
the utterance “Show me flights from Boston to
New York” can be parsed into (from_city=Boston,
to_city=New York) (Pieraccini et al., 1992). Typ-
ically, the LU is seen as a plain slot filling task.

The corresponding author is Kai Yu.
ISlot and concept are equal in LU. They will be mixed in
the rest of this paper to some extent.

391

city_name ... airport_name

P AN

from_loc stop_loc to_loc <null>
S
outbound inbound <null>
x

<
SLOT(transfer airport of the inbound flight) =
[airport_name, stop_loc, inbound]

Figure 1: An example of hierarchical structure
to represent semantic slot with atomic concepts.
There are three levels in this structure. The plain
slot SLOT (transfer airport of the inbound flight)
can be represented as a tuple of atomic concepts
sequentially.

With sufficient in-domain data and deep learning
models (e.g. recurrent neural networks, bidirec-
tional long-short term memory network), statis-
tical methods have achieved satisfactory perfor-
mance in the slot filling task recently (Kurata et al.,
2016; Vu, 2016; Liu and Lane, 2016).

However, retrieving sufficient in-domain data
for training LU model (Tur et al., 2010) is unre-
alistic, especially when the semantic slot extends
or dialogue domain changes. The ability of LU ap-
proaches to cope with changed domains and lim-
ited data is a key to the deployment of commercial
dialogue systems (e.g. Apple Siri, Amazon Alexa,
Google Home, Microsoft Cortana etc).

In this paper, we investigate substructure of
semantic slots to find out slot relations and pro-
mote data reuse. We represent semantic slots with
a hierarchical structure based on atomic concept
tuple, as shown in Figure 1. Each semantic
slot is composed of different atomic concepts,
e.g. slot “from_city” can be defined as a tu-

ple of atoms [“from_location”, “city_name”],

Proceedings of the SIGDIAL 2018 Conference, pages 391-399,
Melbourne, Australia, 12-14 July 2018. (©2018 Association for Computational Linguistics

Train: Show flights from [Boston:FC] to [Atlanta:TC].
I am going to leave [Michigan:FC] to [Indiana:7C].

Test: | am going to leave [Atlanta:FC] to [Boston:TC].

Figure 2: An example of mismatched LU datasets
labelled with [value: slot]. FC refers to
“from_city”. TC refers to “to_city”.

and “date_of birth” can be defined as
[“date”, “birth”].

Unlike the traditional slot definition on a plain
level, modeling on the atomic concepts helps iden-
tify linguistic patterns of related slots by atom
sharing, and even decrease the required amount
of training data. For example, the training and
test sets are unmatched in Figure 2, whereas the
patterns of atomic concepts (e.g. “from”, “to”
“city”) can be shared.

In this paper, we investigate the slot filling task
switching from plain slots to hierarchical struc-
tures by proposing the novel atomic concept tuples
which are constructed manually. For comparison,
we also introduce a competitive method which
automatically learns slot representation from the
word sequence of each slot name. Our meth-
ods are applied to value set mismatch and domain
adaptation problems on ATIS (Hemphill et al.,
1995) and DSTC 2&3 (Henderson et al., 2013) re-
spectively. As shown in the experimental results,
the slot-filling based on concept transfer learning
is effective in solving the value set mismatch and
domain adaptation problems. The concept transfer
learning method especially achieves state-of-the-
art performance (Fi-score 96.08%) on the ATIS
task.

The rest of the paper is organized as follows.
The next section is about the relation to prior work.
The atomic concept tuple is introduced in section
3. The proposed concept transfer learning is then
described in section 4. Section 5 describes a com-
petitive method with slot embedding derived from
the literal descriptions of slot names. In section
6, the proposed approach is evaluated on the value
set mismatch and domain adaptation problems. Fi-

nally, our conclusions are presented in section 7.

bl

2 Related Work

Slot Filling in LU Zettlemoyer and Collins (2007)
proposed a grammar induction method by learn-
ing a Probabilistic Combinatory Categorial Gram-
mar (PCCG) from logical-form annotations. As a

392

grammar-based method, PCCG is close to a hier-
archical concepts structure in grammar generation
and combination. But this grammar-based method
does not possess high generalization capability for
atomic concept sharing, and heavily depends on a
well-defined lexicon set.

Recent research on statistical slot filling in LU
has been focused on the Recurrent Neural Net-
work (RNN) and its extensions. At first, RNN out-
performed CRF (Conditional Random Field) on
the ATIS dataset (Yao et al., 2013; Mesnil et al.,
2013). Long-short term memory network (LSTM)
was introduced to obtain a marginal improvement
over RNN (Yao et al., 2014). After that, many
RNN variations were proposed: encoder-labeler
model (Kurata et al., 2016), attention model (Liu
and Lane, 2016; Zhu and Yu, 2017) etc. However,
these work only predicted the plain semantic slot,
not the structure of atomic concepts.

Domain Adaptation in LU For the domain
adaptation in LU, Zhu et al. (2014) proposed
generating spoken language surface forms by us-
ing patterns of the source domain and the ontol-
ogy of the target domain. With regard to the
unsupervised LU, Heck and Hakkani-Tur (2012)
exploited the structure of semantic knowledge
graphs from the web to create natural language
surface forms of entity-relation-entity portions of
knowledge graphs. For the zero-shot learning of
LU, Ferreira et al. (2015); Yazdani and Hender-
son (2015) proposed a model to calculate similar-
ity scores between an input sentence and semantic
items. In this paper, we focus on the extension of
slots with limited seed data.

3 Atomic Concept Tuples

Although concept definition is one of the most cru-
cial problems of LU, there is no unified surface
form for the domain ontology. Even for the same
semantic slot, names of this slot may be quite dif-
ferent. For example, the city where the flight de-
parts may be called “from_city”, “depart_city” or
“from_loc.city_name”. Ontology definitions from
different groups may be similar but not consistent,
which is not convenient for data reuse. Mean-
while, semantic slots defined in traditional LU sys-
tems are on a plain level, while there is no structure
to indicate their relation.

To solve this problem, we propose to use atomic
concepts to represent the semantic slots. Atomic
concepts are exploited to break down the slots. We

represent the semantic slots as atomic concept tu-
ples (Figure 1 is an example). The semantic slot
composed of these atomic concepts can keep a uni-
fied resource for concept definition and extend the
semantic knowledge flexibly.

We propose a criteria to construct atomic con-
cept manually. For a given vocabulary C' of the
atomic concepts, a semantic slot s can be repre-
sented by a tuple [cq, co, ..., cx|, where ¢; € C'isin
the i-th dimension and k is tuple length. In partic-
ular, a “null” atom is introduced for each dimen-
sion. Table 1 illustrates an example of slot rep-
resentation on the ATIS task. To avoid a scratch
concept branch, we make a constraint:

CiNC;={null},1 <i#j<k

where C; (1 < ¢ < k) denotes all possible atomic
concepts which exist in dimension i (i.e. ¢; € C;).
The concept tuple is ordered.

In general, atomic concepts can be classified
into two categories, one is value-aware and the
other is context-aware. The principle for defin-
ing slot as a concept branch is: lower dimension
less context-aware. For example, “city_name” and
“airport_-name” depend on rare context (value-
aware). They should be located in the first dimen-
sion. “from_location” depends on the context like
a pattern of “a flight leaves [city_name]”, which
should be in the second dimension. The atomic
concept tuple shows the inner relation between
different semantic slots explicitly.

slot atomic concept tuple

city [city_name, null]

from_city [city_name, from_location]
depart_city [city_name, from_location]
arrive_airport | [airport_name, to_location)

Table 1: An example of slot representation by
atomic concepts.

Therefore, the procedure of constructing atomic
concept tuples for slots can be divided into the fol-
lowing steps.

e Firstly, we build a vocabulary C' of the atomic
concepts for all the slots. By analyzing the
conceptual intersection of different slots, we
can split the slots into smaller ones which
are called atomic concepts. After that, each
slot is represented as a set of atomic concepts
which are not ordered.

393

e Secondly, we gather the atoms into differ-
ent groups. Atomic concepts from the same
group should be mutually exclusive. There-
fore we can investigate the inner relation and
outer relation of these groups.

Finally, each group is associated with one
dimension (C;) of the atomic concept tu-
ple. The groups are ordered depending on
whether they are value-aware or context-
aware.

4 Concept Transfer Learning

The slot filling is typically considered as a se-
quence labelling problem. In this paper, we only
consider the sequence-labelling based slot filling
task. The input (word) sequence is denoted by
w = (w1, wy, ..., wy), and the output (slot tag) se-
quence is denoted by s = (s1, s2, ..., Sx). Since a
slot may be mapped to several continuous words,
we follow the popular in/out/begin (IOB) repre-
sentation (e.g. an example in Figure 3).

Words
Slots

York
|-ToCity

New
B-ToCity

from Boston

(o]

show
0

flights
[¢]

to
0

today
B-Date

B-FromCity

Figure 3: An example of annotation for slot filling.

The typical slot filling task predicts a plain slot
sequence given a word sequence, dubbed as plain
slot-filling (PS).

In this paper, the popular bidirectional LSTM-
RNN (BLSTM) is used to model the sequence la-
beling problem (Graves, 2012). It can be ex-
ploited to capture both past and future features
for a specific time frame. The BLSTM reads the
input sentence w and generates [N hidden states

hi= s @ hyyie {1,..,N):
E = b(mvewi% E) = f(fji‘—??ewi)

where E is the hidden vector of the backward pass
in BLSTM and Ez is the hidden vector of the for-
ward pass in BLSTM at time ¢, b and f are LSTM
units of the backward and forward passes respec-
tively, e,, denotes the word embedding for each
word w, and @ denotes the vector concatenation
operation. We write the entire operation as a map-
ping BLSTMgw (O refers to the parameters):

(hth) = BLSTM@w(wl...wN) (1)

Therefore, the plain slot filling defines a distri-
bution over slot tag sequences given an input word

city_name

from_loc

@-0-0 @-0-0

. from Boston to New ...

(a) Atomic concept independent (AC)

from_loc

city_name
]

-

v

city_name

. from Boston to New ...

(b) Atomic concept dependent (ACD)

Figure 4: The proposed method about the atomic-concepts based slot filling. A slot is considered as a
tuple of atomic concepts, e.g. “from_city” is represented as [“city_name”, “from_loc”]. Multiple output
layers are utilized to predict different atoms (including IOB schema). We involve two architectures: a) the
AC assumes that the output layers are independent, b) while the ACD makes a dependence assumption.

sequence:

Hp (silh;)

= H softmax (W, - hi)T(SSi
i=1

p(s|w) =

2)

where the matrix W, (output layer) consists of the
vector representations of each slot tag, the symbol
04 is a Kronecker delta with a dimension for each
slot tag, and the softmax function is used to esti-
mate the probability distribution over all possible
plain slots.

4.1 Atomic-Concepts Based Slot Filling

The slot is indicated as an atomic concept tuple
based on hierarchical concept structure. Slot fill-
ing is considered as a concept-tuple labelling task.

(a) Atomic concept independent

Slot filling can be transferred to a multi-task se-
quence labelling problem, regarding these atomic
concepts independently (i.e. AC). Each task pre-
dicts one atomic concept by a respective output
layer. Thus, the slot filling problem can be for-
mulated as

N

-1

=1

k
p(s|w) (I0B;| h;) H (cijlhi)]

where the semantic slot s; is represented by an
atomic concept branch [¢;1, ¢;o, ..., ¢ix], and 10B;
is the IOB schema tag at time . As illustrated
in Figure 4(a), the semantic slot “from_city” can
be represented as [“city_name”, “from_loc”]. The

394

prediction of IOB is regarded as another task
specifically. All tasks share the same parameters
except for the output layers.

(b) Atomic concept dependent

Atomic concepts can also be regarded depen-
dently (i.e. ACD) so that atomic concept predic-
tion depends on the former predicted results. The
slot filling problem can be formulated as

—

p(s|w)

k
[p(10B;|h)p(ci |hi) H (cijlhi, cipj—1)]

.:12

=1

where ¢; 1.1 = (cm, ..., Cij—1) is the predicted
result of former atomic concepts of slot tag s;,
indicating a structured multi-task learning frame-
work.

In this paper, we make some simplifications on
concept dependence. We predict atomic concept
only based on the last atomic concept, as shown in
Figure 4(b).

4.2 Training and Decoding

Since our approach is a structured multi-task
learning problem, the model loss is summed over
each task during training. For the domain adapta-
tion, we firstly gather training data from the source
domain and seed data from the target domain to
be a union set. Subsequently, the union data is fed
into the slot filling model.

During the decoding stage, we combine pre-
dicted atomic concepts with probability multipli-
cation. The evaluation is made on the top-best hy-
pothesis. Although the atomic-concepts based slot

filling may predict an unseen slot. We didn’t per-
form any post-processing but considered the un-
seen slot as a wrong prediction.

5 Literal Description of Slot Name

In the section, we introduce a competitive system
which uses the literal description of the slot as an
input of the slot filling model. The literal descrip-
tion of slot used in this paper is the word sequence
of each slot name, which can be obtained automat-
ically. As the names of relative slots may include
the same or similar word, the word sequence of
slot name can also help reveal the relation between
different slots. Therefore, it is very meaningful to
compare this method with the atomic concept tu-
ples involving human knowledge.

from_city
1
o @ 0
Slot name Vi
embedding x
BLSTM — from city

I

... from Boston to New ...

Figure 5: The proposed framework of slot filling
based on the literal description of the slot. The
literal description of a slot is the word sequence
of slot name which can be obtained automatically,
e.g. “from_city” is represented as a word sequence
of “from city”. Another BLSTM in the orange dot-
ted circle is exploited to derive softmax embed-
dings from the slot names.

The architecture of this competitive system is il-
lustrated in Figure 5. First, it assumes that each
slot name is a meaningful natural language de-
scription so that the slot filling task is tractable
from the input word sequence and slot name. Sec-
ond, another BLSTM model is applied to derive
softmax embedding from the slot names. In this
method, we also split the slot filling task into IOB
tag prediction and slot name prediction. In other
words, the slot tag s; is broken down into 10B;
and slot name SN;, e.g. the slot tag “B-from_city”
is split into “B” and “from_city”. The details are
indicated below.

With the BLSTM applied on the input sequence,
we have hidden vectors h;,i € {1, .., N} as shown
in Eqn. (1). This model redefines the distribution

395

over slot tag sequences given an input word se-
quence, compared with Eqn. (2):

N

p(s|w) = HP(IOBi’hi)P(SNiW‘)

where p(IOB,|h;) predicts the IOB tag and
p(SN;|h;) makes a prediction for the slot name.
We define

p(SNZ'VLi) = softmax(W . hi)T(SSNi

where W € RA*B is a matrix, h; € RP is a vec-
tor, A is the number of all different slot names.
The matrix W consists of the embedding of each
slot name (i.e. each row vector of W with length
B).

To capture the slot relation within different
slot names, we apply another BLSTM model (as
shown in the orange dotted circle of Figure 5) onto
the word sequence (literal description) of each slot
name. For the j-th slot name (j € {1,.., A}) with

a word sequence X/ = (7, ...,z), we have
J

— — — .
| b, I Y. 0d — J .
vy, = Istm’(vy, g€,); v, = Istm” (v, €,4i)

—
wherE> v}, is the hidden vector of the backward pass
and v?, is the hidden vector of the forward pass at
time n (n € {1,..,N;}), e, denotes the word em-
bedding for each word x. We take the tails of both
backward and forward pass as the slot embedding,
ie. e
Wj = v Doy,

where W is the j-th row vector of matrix .

The relative slots using the same or similar word
in slot naming will be close in the space of slot
embedding inherently. Therefore, this method is
a competitive system to the atomic concept tuples.
We will show the comparison in the following sec-
tion.

6 Experiments

We evaluate our atomic-concept methods on two
tasks: value set mismatch and domain adaptation.

Value set mismatch task evaluates the general-
ization capability of different slot filling models.
In a language understanding (LU) system, each
slot has a value set with all possible values which
can be assigned to it. Since the semantically anno-
tated data is always limited, only a part of values

is seen in the training data. Will the slot filling
model perform well on the unseen values? To an-
swer this question, we synthesize a test set by the
values mismatched with the training set of ATIS
corpus. Our methods may take advantages of the
prior knowledge about slot relations based on the
atomic concepts and the literal descriptions of slot
names.

Domain adaptation task evaluates the adapta-
tion capability of our methods when they meet
new slots in the target domain. In this task, a seed
training set of the target domain is provided. How-
ever, it is very limited: 1) some new slots may
not be covered; 2) not all contexts are covered for
each new slot. The atomic-concepts based method
would alleviate this problem. Each slot is de-
fined as a tuple of atomic concepts in our method.
Therefore, it is possible to learn an unseen slot of
the target domain if its atomic concepts exist in the
data of the source domain and the seed data of the
target domain. It is also possible to see more con-
texts for a new slot if its atomic concepts exist in
the source domain which has much more data.

6.1 Value Set Mismatch

ATIS corpus has been widely used as a benchmark
by the LU community. The training data consists
of 4978 sentences and the test data consists of 8§93
sentences.

In this task, we perform an adaptation for un-
matched training and test sets, in which there are
many unseen slot-value pairs in the test set (Figure
2 is an example). It is a common problem in the
development of commercial dialogue system since
itis impossible to collect data covering all possible
slot-value pairs. We simulate this problem on the
ATIS dataset (Hemphill et al., 1995) by creating
an unmatched test set (ATIS X _test).

ATIS X test is synthesized from the standard
ATIS test set by randomly replacing the value of
each slot with an unseen one. The unseen value
sets are collected from the training set according
to bottom-level concepts (e.g. “city_name”, “air-
port name”). For example, if the value set of
“from_city” is {“New York”, “Boston”} and the
value set of “fo_city” is { “Boston”}, then the un-
seen value for “to_city” is “New York”. The test
sentence “Flights to [xx:to_city]” can be replaced
to “Flights to [New York:to_city]”. Finally, the
ATIS X _test gets the same sentence number to the
standard ATIS test set.

396

6.1.1 Experimental Settings

We randomly selected 80% of the training data for
model training and the remaining 20% for valida-
tion. We deal with unseen words in the test set
by marking any words with only one single occur-
rence in the training set as (unk). We also con-
verted sequences of numbers to the string DIGIT,
e.g. 1990 is converted to DIGIT*4 (Zhang and
Wang, 2016). Regarding BLSTM model, we set
the dimension of word embeddings to 100 and the
number of hidden units to 100. For training, the
network parameters are randomly initialized in ac-
cordance with the uniform distribution (-0.2, 0.2).
Stochastic gradient descent (SGD) is used for up-
dating parameters. The dropout with a probability
of 0.5 is applied to the non-recurrent connections
during the training stage.

We try different learning rates by grid-search in
range of [0.008,0.04]. We keep the learning rate
for 100 epochs and save the parameters that give
the best performance on the validation set. Finally,
we report the F-score of the semantic slots on the
test set with parameters that have achieved the best
F-score on the validation set. The F-score is cal-
culated using CoNLL evaluation script. >

6.1.2 Experimental Results and Analysis

Table 2 summarizes the recently published results
on the ATIS slot filling task and compares them
with the results of our proposed methods on the
standard ATIS test set. We can see that RNN
outperforms CRF because of the ability to cap-
ture long-term dependencies. LSTM beats RNN
by solving the problem of vanishing or explod-
ing gradients. BLSTM further improves the re-
sult by considering both the past and future fea-
tures. Encoder-decoder achieves the state-of-the-
art performance by modeling the label dependen-
cies. Encoder-labeler is a similar method to the
Encoder-decoder. These systems are designed to
predict the plain semantic slots traditionally.
Compared with the published results, our
method outperforms the previously published F1-
score, illustrated in Table 2. AC gets a marginal
improvement (+0.15%) over PS by predicting the
atomic concepts independently instead of the plain
slots. Moreover, ACD predicts the atomic con-
cepts dependently, gains 0.50% (significant level
95%) over the AC. Worth to mention that ACD
achieves a new state-of-the-art performance of the

“http://www.cnts.ua.ac.be/conll2000/chunking/output.html

Model ATIS ATIS_X _test
CRF (Mesnil et al., 2013) 92.94 -
RNN (Mesnil et al., 2013) 94.11 -
LSTM (Yao et al., 2014) 94.85 -
BLSTM (Zhang and 95.14 -
Wang, 2016)

Encoder-decoder (Liu and 95.72 -
Lane, 2016)

Encoder-labeler (Kurata 95.66 -
et al., 2016)

Encoder-decoder-pointer ~ 95.86 -
(Zhai et al., 2017)

Encoder-decoder* 95.79 79.84
BLSTM* (PS) 95.43 79.59
PS + dict-feats 95.57 80.74
AC 95.58 80.90
ACD 96.08 86.16
Slot name embedding 95.52 81.49

Table 2: Comparison with the published results
on the standard ATIS task, and evaluation on
ATIS X test. (x denotes our implementation.)

standard slot-tagging task on the ATIS dataset,

with only the lexicon features >.

Our methods are also tested on the ATIS_X _test
to measure the ability of generalization. For
comparison, we also apply dictionary features (n-
gram indication) of value sets (e.g. some kind of
gazetteers) collected from training data into the PS
model (i.e. PS+dict-feats in Table 2). From Ta-
ble 2, we can see that: 1) The plain slot filling
models (PS, Encoder-decoder) are not on par with
other models. 2) The atomic-concepts based slot
filling gets a slight improvement over the PS with
dict-feats, considering the concepts independently
(AC). 3) The atomic-concepts based slot fillings
(ACD gains a large margin over AC, considering
the concepts dependently. 4) The method based
on slot name embedding (described in Section 5)
achieves a slight improvement than AC, which im-
plies that it is possible to reveal the relationship
between slots automatically.

3There are other published results that achieved better per-
formance by using Name Entity features, e.g. Mesnil et al.
(2013) got 96.24% F1-score. The NE features are manually
annotated and strong information. So it would be more mean-
ingful to use only lexicon features. Meanwhile, several other
works can obtain competitive results by using the intent clas-
sification as another task for joint training, e.g. Liu and Lane
(2016) achieved 95.98% F1-score. In this paper, we consider
the slot filling task only.

Case study: As illustrated in Table 3, the
plain slot filling (PS) predicts the label of “late”
wrongly, whereas the atomic-concepts based slot
fillings (i.e. AC and ACD) get the accurate an-
notation. The word of “late” is never covered by
the slot “period_of-day” in the training set. It is
hard for the plain slot filling (PS) to predict an un-
seen mapping correctly. Luckily, the “late” is cov-
ered by the family of the slot “period_of day” in
the training set, e.g. “arrive_time.period_of_day”.
Therefore, AC and ACD can learn this by model-
ing the atomic concepts separately.

6.2 Domain Adaptation

Our methods are also evaluated on the DSTC 2&3
task (Henderson et al., 2013) which is considered
to be a realistic domain adaptation problem.

DSTC 2 (source domain) comprises of dia-
logues from the restaurant information domain in
Cambridge. We use the dstc2_train set (1612 di-
alogues) for training and the dstc2_dev (506 dia-
logues) for validation.

DSTC 3 (target domain) introduces the tourist
information domain about restaurant, pubs and
coffee shops in Cambridge, which is an extension
of DSTC 2. We use seed data dstc3_seed (only 11
dialogues) as the training set of the target domain.

DSTC3_S _test: In this paper, we focus on three
new semantic slots: “has_tv, has_internet, chil-
dren_allowed”. * They only exist in the DSTC 3
dataset and have few appearances in the seed data.
A test set is chosen for specific evaluation on these
new semantic slots, by gathering all the sentences
(688 sentences) whose annotation contains these
three slots and randomly selecting 1000 sentences
irrelevant to these three slots from the dstc3_test
set. This test set is named as DSTC3_S _test (1688
sentences).

The union of a slot and action is taken as a plain
semantic slot (e.g. “confirm.food=Chinese”),
since each slot is tied with an action (e.g. “in-
form”, “deny” and “confirm”) in DSTC 2&3. The
slot and action are taken as atomic concepts. For
the slot filling task, only the semantic annotation
with aligned information is kept, e.g. the semantic
tuple “request(phone)” is ignored. We use tran-
scripts as input, and make slot-value alignment by

“For each slot of “has_tv, has_internet, chil-
dren_allowed”, the semantic annotation ‘“request(slot)”
is replaced with “confirm(slot=True)”. Then we have
the slot-tagging format, e.g. ”does it have [televi-
sion:confirm.has_tv]”.

397

late:period_of_day] [night:period_of_day]

Reference | ... could get in [boston:city_name
PS .. could get in [boston:city _name
AC .. could get in [boston:city_name
ACD .. could get in [boston:city _name

Il
Il
I
Il

late:airport_name] [night:period_of_day]
late:period_of_day] [night:period_of_day]
late:period_of_day] [night:period_of_day]

Table 3: Examples show how concept transfer learning benefits.

string matching simply.

6.2.1 Experimental Results and Analysis

The experimental settings are similar to the
ATIS’s, whereas the seed data in DSTC 3 is also
used for validation.

Model Training set Fy-score
PS dstc3_seed 83.52
PS dstc2_train + dstc3_seed 89.57
AC dstc3_seed 83.58
AC dstc2_train + dstc3_seed 91.98

ACD dstc2_train + dstc3_seed 92.15

Table 4: The performance of our methods evalu-
ated on the DSTC3_S _test.

The performance of our methods in the DSTC
2&3 task is illustrated in Table 4. We can see that:
1) By incorporating the data of the source domain
(dstc2_train), PS and AC achieve improvements
respectively. 2) AC gains more than PS by mod-
eling the plain semantic slot as atomic concepts.
The atomic concepts promote the associated slots
to share input features for the same atoms. 3) The
atomic-concepts based slot filling considering the
concepts dependently (ACD) gains little (0.17%)
over AC considering the concepts independently.
It may be due to the small size of dstc3_seed.

Case study: Several cases from these mod-
els (trained on the union set of dstc2_train and
dstc3_seed) are also chosen to explain why the
atomic-concepts based slot filling outperforms the
typical plain slot filling, as shown in Table 5. From
the above part of Table 5, we can see PS pre-
dicts a wrong slot. Because the grammar “does it
have [something]” is only for the plain slot “con-
firm.hastv” in the seed data. From the below part
of Table 5, we can see that only ACD which con-
siders the concepts dependently predicts the right
slot. Since “confirm.childrenallowed” never ex-
ists in the seed data, PS can’t learn patterns about
it. Limited by the quantity of the seed data, AC
also doesn’t extract the semantics correctly.

398

We use [value:slot] for annotation.

Reference | does it have [internet:confirm.hasinternet]
PS does it have [internet:confirm.hastv]

AC does it have [internet:confirm.hasinternet]
ACD does it have [internet:confirm.hasinternet]
Reference | do they allow [children:confirm.CA]

PS do they allow [children:CA]

AC do they allow [children:CA]

ACD do they allow [children:confirm.CA]

Table 5: Examples show how concept transfer

learning benefits. CA denotes childrenallowed.

7 Conclusion

To address data sparsity problem of language un-
derstanding (LU) task, we present a novel method
of concept definition based on well-defined atomic
concepts. We present the concept transfer learn-
ing for slot filling on the atomic concept level to
solve the problem of adaptive LU. The experi-
ments on the ATIS and DSTC 2&3 datasets show
our method obtains promising results and outper-
forms the traditional slot filling, due to the knowl-
edge sharing of atomic concepts.

The atomic concepts are constructed manually
in this paper. In future work, we want to explore
more flexible concept definition for concept trans-
fer learning of LU. Moreover, we also propose a
competitive method based on slot name embed-
ding which can be extracted from the literal de-
scription of the slot name automatically. The ex-
perimental result shows that it lays foundation for
finding a more flexible concept definition method
for adaptive LU.

Acknowledgments

This work has been supported by the China NSFC
project (No. 61573241), Shanghai International
Science and Technology Cooperation Fund (No.
16550720300) and the JiangSu NSFC project
(BE2016078). Experiments have been carried out
on the PI supercomputer at Shanghai Jiao Tong
University. We also thank Tianfan Fu for com-
ments that greatly improved the manuscript.

References

Emmanuel Ferreira, Bassam Jabaian, and Fabrice
Lefvre. 2015. Zero-shot semantic parser for spoken
language understanding. In /6th Annual Conference
of the International Speech Communication Associ-
ation (InterSpeech).

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks. Springer Berlin
Heidelberg.

L Heck and D Hakkani-Tur. 2012. Exploiting the se-
mantic web for unsupervised spoken language un-
derstanding. In Spoken Language Technology Work-
shop, pages 228-233.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1995. The atis spoken language sys-
tems pilot corpus. In Proceedings of the Darpa
Speech and Natural Language Workshop, pages 96—
101.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2013. Dialog state tracking challenge 2 &
3. [online] Available: http://camdial.org/
mh521/dstc/.

Gakuto Kurata, Bing Xiang, Bowen Zhou, and Mo Yu.
2016. Leveraging sentence-level information with
encoder Istm for semantic slot filling. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2077-2083,
Austin, Texas. Association for Computational Lin-
guistics.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In 17th Annual Conference of the In-
ternational Speech Communication Association (In-
terSpeech).

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In INTERSPEECH,
pages 3771-3775.

Roberto Pieraccini, Evelyne Tzoukermann, Zakhar
Gorelov, J-L Gauvain, Esther Levin, C-H Lee, and
Jay G Wilpon. 1992. A speech understanding sys-
tem based on statistical representation of semantics.
In Acoustics, Speech, and Signal Processing, 1992.
ICASSP-92., 1992 IEEE International Conference
on, volume 1, pages 193-196. IEEE.

Gokhan Tur, Dilek Hakkani-Tiir, and Larry Heck.
2010. What is left to be understood in atis? In Spo-
ken Language Technology Workshop (SLT), 2010
IEEE, pages 19-24. IEEE.

Ngoc Thang Vu. 2016. Sequential convolutional neu-
ral networks for slot filling in spoken language un-
derstanding. In /7th Annual Conference of the In-
ternational Speech Communication Association (In-
terSpeech).

399

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Ge-
offrey Zweig, and Yangyang Shi. 2014. Spoken lan-
guage understanding using long short-term memory
neural networks. In 2014 IEEE Spoken Language
Technology Workshop (SLT), pages 189-194. IEEE.

Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang,
Yangyang Shi, and Dong Yu. 2013. Recurrent neu-
ral networks for language understanding. In INTER-
SPEECH, pages 2524-2528.

Majid Yazdani and James Henderson. 2015. A model
of zero-shot learning of spoken language under-
standing. In Conference on Empirical Methods in
Natural Language Processing, pages 244-249.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for parsing to
logical form. In EMNLP-CoNLL 2007, Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Compu-
tational Natural Language Learning, June 28-30,
2007, Prague, Czech Republic, pages 678—687.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen
Zhou. 2017. Neural models for sequence chunking.
In AAAI, pages 3365-3371.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. In the Tiventy-Fifth
International Joint Conference on Artificial Intelli-
gence (IJCAI-16).

Su Zhu, Lu Chen, Kai Sun, Da Zheng, and Kai
Yu. 2014. Semantic parser enhancement for dia-
logue domain extension with little data. In Spoken
Language Technology Workshop (SLT), 2014 IEEE,
pages 336-341. IEEE.

Su Zhu and Kai Yu. 2017. Encoder-decoder with
focus-mechanism for sequence labelling based spo-
ken language understanding. In IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing(ICASSP), pages 5675-5679.

http://camdial.org/mh521/dstc/
http://camdial.org/mh521/dstc/

