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Abstract

Aiming to expand the current research
paradigm for training conversational Al agents
that can address real-world challenges, we
take a step away from traditional slot-filling
goal-oriented spoken dialogue systems (SDS)
and model the dialogue in a way that al-
lows users to be more expressive in describ-
ing their needs. The goal is to help users
make informed decisions rather than being fed
matching items. To this end, we describe the
Linked-Data SDS (LD-SDS), a system that
exploits semantic knowledge bases that con-
nect to linked data, and supports complex con-
straints and preferences. We describe the re-
quired changes in language understanding and
state tracking, and the need for mined features,
and we report the promising results (in terms
of semantic errors, effort, etc) of a prelimi-
nary evaluation after training two statistical di-
alogue managers in various conditions.

1

There has been an increasing amount of research be-
ing conducted on many aspects of Spoken Dialogue
Systems (SDS) with applications ranging from well-
defined goal-oriented tasks to open-ended dialogue,
e.g., (Amazon, 2017). Deep learning and joint opti-
misations of SDS components are becoming the stan-
dard approach e.g., (Chen et al., 2017; Li et al., 2016;
Williams et al., 2017; Liu et al., 2017; Wen et al.,
2017; Cuayéahuitl et al., 2017; Yang et al., 2017), show-
ing many benefits but also limitations and disadvan-
tages. Due to the complexity of the problem, most
of these approaches focus on limited applications e.g.,
information retrieval on small domains or shallow-
understanding chat-bots.

Moving towards conversational Al, we shift the
paradigm to information navigation and present in this
work a more realistic goal-oriented setup. The pro-
posed paradigm is designed towards complex interac-
tions using semantic knowledge bases and linked data
(Heath and Bizer, 2011), and allows users to be more
expressive in describing their constraints and prefer-
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ences. We aim to enable users to make informed
decisions by understanding their needs and priorities
through conversation with an intelligent agent.

In this work we extend the Linked Data Spoken Di-
alogue System (LD-SDS) system proposed in (Papan-
gelis et al., 2017) in the following directions: a) we
propose features mined over the set and the order of
objects in the current user focus, b) we modify the
language understanding and belief state tracking mod-
ules to support the proposed complex interactions over
rich information spaces, ¢) we apply an agenda-based
user simulator to train two statistical dialogue manager
models, and d) we conduct a preliminary evaluation
with promising results.

2 Challenges and Background

2.1 Challenges and Requirements

As our paradigm moves towards information naviga-
tion, we assume that the users have a vague idea of
what they are looking for and through interaction with
the system they can understand their own needs bet-
ter. The user’s intents, therefore, do not always express
hard restrictions (constraints) but often express prefer-
ences' that users may or may not be willing to relax
as the dialogue progresses. Such preferences may re-
fer to the importance of attributes over other attributes
(e.g., location is much more important than has-free-
wifi when searching for accommodation), or may re-
fer to preferred values of a given attribute (e.g., prefer
central over northern locations but northern may still
be okay under certain circumstances), etc. Moreover,
it is worth highlighting aspects of items that may have
not been mentioned but have high discriminative power
within their cluster (e.g., 5 hotels match the user’s pref-
erences but there’s one with vegan menu).

Towards this objective, we propose the interaction of
SDS with exploratory systems that offer the aforemen-
tioned functionality over semantic knowledge bases.
This requires extensions in language understanding and
state tracking, and the need for mined features.

"Preferences can be considered as soft constraints or
wishes that might or might not be satisfied
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2.2 Background: Preference-Enriched Faceted
Search and Hippalus

Faceted search is currently the de facto standard in
e-commerce (e.g., eBay, booking.com), and its popu-
larity and adoption is increasing. The enrichment of
Faceted Search with preferences, hereafter Preference-
enriched Faceted Search (PFS), was proposed in (Tz-
itzikas and Papadakos, 2013). It has been proven use-
ful for recall-oriented information needs, because such
needs involve decision making that can benefit from
the gradual interaction and expression of not only re-
strictions (hard constraints) but also preferences (soft
constraints). It is worth noting that it allows express-
ing preferences over attributes, whose values can be hi-
erarchically organized and/or multi-valued, it supports
preference inheritance, and it offers scope-based rules
for automatic conflict resolution.

PFS offers various preference actions (e.g., relative,
best, worst, around, etc.) that allow the user to order
facets (i.e. slots), values, and objects. Furthermore,
the user is able to compose object related preference
actions®. Essentially, a user u can express gradually
a set of qualitative (i.e. relative) preferences over the
values of each facet (slot), denoted by Pref,. These
actions define a preference relation (a binary relation)
over the values V;, of each slot s;, denoted by >;,
which are then composed to define a preference rela-
tion over the elements of the information space, i.e.
over V=V, x .. x V,_(in the case of multi-valued
slots V= P(V;,) x ... x P(V;, ). Since the descrip-
tions of the objects in the current user focus F,, are
a subset of V, the actions in Pref, define a prefer-
ence relation over F,, denoted as (Fy, > pref,), from
which a bucket order of F,, i.e. a linear order of sub-
sets of JF,, ranked based on preference and denoted by
B(Fy, Pref,) =< by1,...,b, >, is derived through
topological sorting.

Hippalus (Papadakos and Tzitzikas, 2014) is an
exploratory search system (publicly accessible?) that
materializes PFS over semantic views gathered from
different data sources through SPARQL queries. The
information base that feeds Hippalus is represented
in RDF/S and objects can be described according to di-
mensions with hierarchically organized and set-valued
attributes. Preference actions are validated using the
preference language described in (Tzitzikas and Pa-
padakos, 2013). If valid, the system computes the re-
spective preference bucket* order and returns the cor-
responding ranked list of objects.

In addition, Hippalus implements the scoring
function defined in (Tzitzikas and Dimitrakis, 2016),
that expresses the degree up to which an object in
F, fulfills the preferences in Pref, and is a real

>There are different composition modes like Pareto,
Pareto optimal (i.e. skyline), Priority-based, etc.

3http://www.ics.forth.gr/isl/Hippalus/

* A preference bucket holds incomparable objects with re-
spect to the given soft-constraints

number (in our case its range is the interval [1,100]).
The specific scoring function, exploits all available
composition modes available in Hippalus enrich-
ing the bucket orders with scores respecting the con-
sistency of the qualitative-based bucket order that is
defined as: A scoring function score is consistent
with the qualitative-based bucket order, if for any two
objects 0, o and any set of user actions Pref,, it
holds: if pos(o) < pos(o’) then score(o, Pref,) >
score(o', Pref,) where pos(o) is the position of o in
B(Fy, Prefy).

3 Features

3.1 Motivation

In order to reduce the complexity of the dialogue sys-
tem while at the same time improving its efficiency
and effectiveness, we enriched the response of the
Hippalus system with a number of features, which
provide cues about interesting slots/values (as men-
tioned in §2.1) that can be exploited by the Belief
Tracker, Dialogue Manager, Natural Language Genera-
tor, and other statistical components of the SDS. These
features are extracted from: a) the set of objects of the
current user focus (selectivity and entropy); and b) from
the imposed ordering of the objects according to the ex-
pressed user preferences (avg, min and max preference
score per bucket and pair-wise wins of objects per slot
per bucket).

3.2 Features extracted from object focus

Assume a dataset D that contains |Op| objects, where
Fu. € Op is the current focus of the user u (i.e. the
objects that satisfy the expressed hard-constraints). Let
S|F, = {51,..., 5n } denote the set of available slots in
D under focus Fy, and Vs, . = {vs,,, ..., vs,,, } denote
the set of values for slot s; € S| £, respectively®. We
define the following metrics:

Definition 3.1. The selectivity of a slot s; under focus
F. is defined as:
|V,

Si|Fu

[P

Selectivity(s, r,) = ()

Definition 3.2. The entropy of a slot s; under focus F,,
is defined as:

A
. 1
Entropy(s,z,) = — Z (P(Usi_ﬂfu)*1092(P7
j=1
(@)

where P(vs, ;. ) is the probability of value v, ; in slot
s; under focus F,,.

Both selectivity and entropy metrics provide insights
about the discreteness and the amount of information
contained in the values of a specific slot for the objects

5The set of values can be hierarchically organized through
a subsumption binary relation (V;,, <;)
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under focus F,,. Selectivity is an inexpensive but rough
metric that takes values in [0, 1]. If the value of each
object for a specific slot is unique, then selectivity is
1 (high selectivity), while it is near O for the opposite
(low selectivity). On the other hand entropy is a refined
but more expensive metric, with bigger values when the
probabilities of values in V, . are equal. Hippalus
returns the values of both metrics for each slot of the
current user focus F,, on the fly, along with the pre-
computed values for the whole dataset.

3.2.1 Features extracted from object order

Other interesting features can be extracted from the
imposed ordering of objects based on the user pref-
erences, including min, max, and average preference
score of objects in each bucket, and for each object of
a bucket the sum of pair-wise wins per each slot over
which the user has expressed a preference. The last
feature can be used as an indication about the number
of wins of each object over all different preference cri-
teria (slots), pinpointing criteria that affect only a small
number of objects.

Definition 3.3. The pair-wise wins PWW metric un-
der focus F, of objects contained in a bucket b €
Br, prey, derived by preference actions Pref, of

user u for slot s, is defined as:

=22 Tl 1)

oeb o'eb

2 % win, (0, 0')

PWW (b, Prefys) o = 1)

3)

where Pref,|s denotes the preference actions of
a user u over the slot s and wing(o,0’) = 1 if
poss(0) < poss(o’), where poss (o) is the position of o
in Br, pref,|s» €lse wing(o,0") = 0.

Notice that big PWW values mean that we have a
small number of objects, even a single object, that win
the rest objects of the bucket for the preference actions
of a specific slot. As an example consider a bucket that
contains the cheapest hotel. This hotel wins the rest
objects of the bucket for the slot price and could be
used by the dialogue system to ask if price is consid-
ered more important than the rest slots (i.e. expression
of priority). On the other hand lower values mean that
we have a number of ties for the objects of a bucket,
and that the dialogue system is not able to pin-point
specific slots that could further restrict the top-ranked
objects.

4 The LD-SDS

Figure 1 shows the architecture of our system.
Hippalus is responsible for feeding information re-
garding the current knowledge view to the SLU and
DST components. In addition, it provides the previ-
ously mentioned features and the current ranked list of
results to the multi-domain policy, and Natural Lan-
guage Generation (NLG) and Text to Speech (TTS)
components respectively. Spoken Language Under-
standing (SLU) and dialogue state / belief tracking

231

Domain
Independent
Feature Extraction

Multi-domain
Policy

H

Speech

Knowledge
Knowledge View

Graph

World

Figure 1: The architecture of our prototype.

(DST / BT), have been extended with operations that
correspond to the actions supported by Hippalus.
Since Hippalus supports hierarchical and multi-
valued attributes, the notion of slot has been extended
to allow the definition of relations between slot values.

4.1 Dialogue Management

The objective is to conduct dialogues with as few se-
mantic errors as possible that result in successfully
completed tasks and satisfied users. As baselines for
dialogue management, we created a hand-crafted Dia-
logue Manager (DM) and trained two statistical DMs in
simulation. To this end, we developed an agenda-based
user simulator (Schatzmann et al., 2007) that was de-
signed to handle the complexities and demands of our
SDS, e.g., real values for slots, intervals, hierarchies,
all of our operators, hard constraints and preferences,
etc., as well as to be able to handle multiple items being
suggested by the system (in the sense of an overview of
current results) and tell if these items satisfy the user’s
constraints. In order to handle a wide range of do-
mains, we use the method proposed in (Wang et al.,
2015), which extracts features describing each slot and
action plus some general features pertaining to the di-
alogue so far and the current state of the knowledge
base. Thus, even if new slots are added to the knowl-
edge base, our dialogue manager does not need to be re-
trained. Specifically, we use some of the features pro-
posed in (Wang et al., 2015; Papangelis and Stylianou,
2016) and the features described in the previous sec-
tion, which are necessary to handle the increased com-
plexity of the interaction.

4.2 Understanding and State Tracking

Translating the identified user intentions from SLU into
a belief state is not trivial, even for slot filling models
with one or two operators (e.g., =,#). Moreover, as
we aim to connect our system to live knowledge bases,
it is important for SLU to be able to adapt over time,
as well as handle out-of-domain input gracefully. As
an initial approach to belief tracking, we follow some
simple principles (Papangelis et al., 2017) in conjunc-
tion with an existing belief tracker (Ultes et al., 2017).
While this is straightforward for regular slots, we need
a different kind of belief update for hierarchically val-
ued or multi-valued slots. Specifically, for hierarchical
slots we need to recursively perform the belief update,
while still following the basic principles. As the con-
straints become more complex, traversing the hierar-



Variables E1 E2 E3 E4 ENV El [ E2 ] E3 | E4
Semantic Error 15% | 30% | 45% | 45% Single Domain Per Dialogue
SLU N-Best Size 3 5 7 7 HDC | 83.8+5 | 658+6 | 388+9 | 357+8
Sim. User Patience 5 3 3 2 DONX | 744 +£8 | 60.7+£9 | 52.1+10 | 49.6+9
Max User Constraints 3 5 7 10 GPS 881+4|795+3 | 6686 | 60.3+9
Acceptable Num. Items 7 5 3 2 Multiple Domains Per Dialogue
HDC | 823+7 | 71.6x7 | 40.7+10 | 30.5+9
Table 1: Four environments (parameter settings) under DQNXM | 883+2 | 875+2 | 858+3 | 829+4
which our DMs were evaluated. GPS | 446+£8 | 263£2 | 227+6 | 133+£7

chy of values becomes non-trivial. In our prototype,
we traverse the hierarchy once for each constraint (rel-
evant to a specific hierarchical slot) and then combine
the updates into a single belief update as the average
for each value. When updating multi-valued slots, we
assign the probability mass to each value that was men-
tioned (and not negated); this can be seen as generating
(or removing) a single-valued “sub-slot” for each value
on the fly.

5 Preliminary Evaluation

To assess how well current statistical DMs perform in
this setting, we compare a hand-crafted dialogue policy
(HDC) against a DM trained with GP-SARSA (GPS)
(Gasic¢ et al., 2010) and one trained with Deep Q Net-
works with eligibility traces (DQN-\) - an adapted ver-
sion of (Harb and Precup, 2017). HDC, GPS, and
DQN (without eligibility traces) have been the top per-
forming algorithms in a recent benchmark evaluation
(Casanueva et al., 2017). We test the DMs under var-
ious conditions, presented in Table 1. Semantic Error
refers to simulated errors, where we change either the
type of dialogue act, slot, value, or operator that the
simulated user issues, based on some probability. This
can happen multiple times, to generate multiple SLU
hypotheses. SLU N-Best Size is the maximum size of
the N-best list of SLU hypotheses, after the simulated
error stage. Sim. User Patience is the maximum num-
ber of times the simulated user tolerates the same ac-
tion being issued by the DM. Max User Constraints is
the maximum number of constraints in the simulated
user’s goal (e.g., price < 70). One important obser-
vation is that task success is very hard to define, as we
consider a cluster of ranked items to be a valid sys-
tem response. Some users may want to get exactly one
option while for some it may be acceptable to get no
more than four. Therefore, we add a feature to our user
simulator to indicate the number of items a user will ac-
cept as a final result (provided that all of them meet the
user’s constraints). We sample this uniformly from the
set {1, ..., acceptable}, as defined in Table 1 (Accept-
able Num. Items). While this is a rough approximation
of real world conditions, we expect that it introduces
one more layer of complexity that the statistical DMs
need to model.

The dataset used for the evaluation consists of four
domains (Hotels, Restaurants, Museums, and Shops)
with databases populated with content scrapped from
the internet, containing a total of 84 slots and 714 ob-

Table 2: Dialogue success rates for the DMs under var-
ious semantic error rates =+ std dev.

jects. We evaluated the statistical DMs on a single do-
main and on a multi-domain setting (as described in
section 4.1). Table 2 summarizes the results of our
evaluation in simulation in the four environments we
have defined, where each entry is the average of 5
runs of 1,000 training and 100 evaluation dialogues.
DQN-\ performs better with the rich (dense) domain-
independent feature set in the multi-domain scenario,
likely because it is exposed to more variability in the
data and therefore needs less iterations to learn well-
performing policies. In fact, it is able to cope very well
in deteriorating conditions, by learning to adapt e.g.,
by asking for more confirmations. GPS shows the op-
posite trend, preferring the sparse belief state features
of the single-domain scenario, needing many more di-
alogues (than the 1,000 allowed here) to reach good
performance in the multi-domain case.

6 Conclusion

We have presented LD-SDS, a prototype information
navigation SDS that connects to semantic knowledge
bases to guide users towards making informed deci-
sions. This direction is more challenging compared to
other simpler kinds of interaction. To evaluate the qual-
ity of the approach that we propose, we developed an
agenda-based user simulator and applied it to train two
statistical DMs. While we have proven the feasibility
of our approach, our system still needs to be trained and
evaluated with human users as in some cases statistical
DMs may overfit simulators (or take advantage of cer-
tain aspects of them). We are therefore in the process of
designing studies to collect text-based human-human
data that will be used to train LD-SDS either end-to-
end or by jointly optimising some of the components.
In addition, we plan to evaluate our approach with live
semantic knowledge bases and extend our approach to
also exploit available unstructured information (out of
domain). In the appendix we show an example dia-
logue with our system that highlights the extensions to
the typical slot-filling approach.
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A Supplemental Material

In this section, we provide an example interaction be-
tween a human user and the LD-SDS prototype. Fig-
ure 2 shows the system in operation. Figures 3 and 4
show examples of slots that can take multiple values or
whose values have hierarchical relations, respectivelly.
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Figure 2: The prototype SDS, acting as a hotel
concierge, with live connections to Hippalus.
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System: Hello, welcome to the Japanese Hotels spoken
dialogue system. How may I help you?

User: I'm looking for a hotel in Kyoto but not in Mi-
nami where they offer free Wi-Fi and have non smok-
ing rooms. (ASR confidence: 0.75154209) Minami is
a region in Kyoto.

Constraints: [ type=hotel, location=kyoto,
locationminami, amenities:{free—wiﬁ, non-smoking-
rooms} ]

Preferences: [ |
Hippalus: [ 267 items in 2 buckets; {60, 207} items in buck-
ets |

S: What price range are you looking for?

U: I want something around 70 pounds and with more
than two stars. (0.7065863)

C: [ pricerange ~ 70, stars > 2 ]

P:[]

H: [ 188 items in 45 buckets; {25, 103, 13, ...} items in buck-
ets |

S: What kind of user rating would you prefer the hotel
to have?

U: I'd like excellent ratings. (0.92533112)

C:I1]

P: [ ratings=excellent : best |

H: [ 188 items in 27 buckets; {9, 11, 8, ...} items in buckets;
identified slots that can affect ranking and reduce items in
first bucket: {stars, location, price} ]

S: Which of the following criteria are important for
you? stars, price, or location?

U: I prefer location and price. (0.95948964)

C: 1]
P: [ location >> all, price >> all ]
H: [ 188 items in 152 buckets; 3 items in first bucket |

S: 3 hotels match your preferences. Two are located
in Shimogyo and one in Nakagyo. Ryokan Kyoraku
in Shimogyo is cheaper with 59 pounds per night and
3 stars, and Daiwa Roynet is more expensive at 81
pounds per night but with 4 stars. Royal Park in Nak-
agyo is expensive as well at 79 pounds per night and
4 stars. Both expensive hotels offer more services than
the cheaper one.

U: Thank you, goodbye. (0.97125274)

Table 3: Example interaction between a human user
and our LD-SDS prototype. In the interest of space,
the notes under each dialogue turn briefly show items
that correspond to new information. The belief state is
updated accordingly. ASR: Automatic Speech Recog-
nition.



