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Abstract

To date there has been very little work
on assessing discourse coherence methods
on real-world data. To address this, we
present a new corpus of real-world texts
(GCDC) as well as the first large-scale
evaluation of leading discourse coherence
algorithms. We show that neural mod-
els, including two that we introduce here
(SENTAVG and PARSEQ), tend to perform
best. We analyze these performance dif-
ferences and discuss patterns we observed
in low coherence texts in four domains.

1 Introduction

Discourse coherence is an important aspect of text
quality. It encompasses how sentences are con-
nected as well as how the entire document is orga-
nized to convey information to the reader. Devel-
oping discourse coherence models to distinguish
coherent writing from incoherent writing is useful
to a range of applications. An automated coher-
ence scoring model could provide writing feed-
back, e.g. identifying a missing transition be-
tween topics or highlighting a poorly organized
paragraph. Such a model could also improve the
quality of natural language generation systems.

One approach to modeling coherence is to
model the distribution of entities over sentences.
The entity grid (Barzilay and Lapata, 2005), based
on Centering Theory (Grosz et al., 1995), was the
first of these models. Extensions to the entity
grid include additional features (Elsner and Char-
niak, 2008, 2011; Feng et al., 2014), a graph rep-
resentation (Guinaudeau and Strube, 2013; Mes-
gar and Strube, 2015), and neural convolutions
(Tien Nguyen and Joty, 2017). Other approaches
have used lexical cohesion (Morris and Hirst,

∗Research performed while at Grammarly.

1991; Somasundaran et al., 2014), discourse rela-
tions (Lin et al., 2011; Feng et al., 2014), and syn-
tactic features (Louis and Nenkova, 2012). Neural
networks have also been successfully applied to
coherence (Li and Hovy, 2014; Tien Nguyen and
Joty, 2017; Li and Jurafsky, 2017). However, until
now, these approaches have not been benchmarked
on a common dataset.

Past work has focused on the discourse co-
herence of well-formed texts in domains like
newswire (Barzilay and Lapata, 2005; Elsner and
Charniak, 2008) via tasks like sentence ordering
that use artificially constructed data. It was un-
known how well the best methods would fare on
real-world data that most people generate.

In this work, we seek to address the above de-
ficiencies via four main contributions. First, we
present a new corpus, the Grammarly Corpus of
Discourse Coherence (GCDC), for real-world dis-
course coherence. The corpus contains texts the
average person might write, e.g. emails and online
reviews, each with a coherence rating from expert
annotators (see examples in Table 1 and supple-
mentary material). Second, we introduce two sim-
ple yet effective neural network models to score
coherence. Third, we perform the first large-scale
benchmarking of 7 leading coherence algorithms.
We show that prior models, which performed at
a very high level on well-formed and artificially
generated data, have markedly lower performance
in these new domains. Finally, the data, annotation
guidelines, and code have all been made public.1

2 A Corpus for Discourse Coherence

2.1 Related Work
Most previous work in discourse coherence has
been evaluated on a sentence ordering task that as-
sumes each text is well-formed and perfectly co-

1https://github.com/aylai/GCDC-corpus

https://github.com/aylai/GCDC-corpus
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Score Text

Low Should I be flattered? Even a little bit? And, as for my alibi, well, let’s just say it depends on the snow and the secret
service. So, subject to cross for sure. Do you think there could be copycats? Do you think the guy chose that mask or
just picked up the nearest one? Please keep me informed as the case unfolds–
On another matter, can you believe Dan Burton will be the chair of one of the House subcommittees we’ll have to
deal w? Irony and satire are the only sane responses.
Happy New Year–and here’s hoping for many more stories that make us laugh!

High Cheryl,
I just spoke with Vidal Jorgensen. They expect to be on the ground in about 8 months. They have not yet raised
enough money to get the project started – the total needed is $6M and they need $2M to get started. Vidal said they
process has been delayed because their work in Colombia and China is consuming all their resources at the moment.
Once on the ground, they will target the poorest of the poor and go to the toughest areas of Haiti. They anticipate an
average loan size of $200 and they expect to reach about 10,000 borrowers in five years. They expect to be profitable
in 4-5 years.
Meghann

Table 1: Examples of texts and coherence scores from the Clinton domain.

herent, and any reordering of the same sentences
is less coherent. Presented with a pair of texts
– the original and a random permutation of the
same sentences – a coherence model should be
able to identify the original text. More challeng-
ing versions of this task (sentence insertion (Elsner
and Charniak, 2011) and paragraph reconstruction
(Lapata, 2003; Li and Jurafsky, 2017)) all assume
that the original text is perfectly coherent.

Datasets for the sentence ordering task tend
to use texts that have been professionally writ-
ten and extensively edited. These have included
the Accidents and Earthquakes datasets (Barzilay
and Lapata, 2005), the Wall Street Journal (Elsner
and Charniak, 2008, 2011; Lin et al., 2011; Feng
et al., 2014; Tien Nguyen and Joty, 2017), and
Wikipedia (Li and Jurafsky, 2017).

Another task, summary evaluation (Barzilay
and Lapata, 2005), uses human coherence judg-
ments, but include machine-generated texts. Co-
herence models are only required to identify which
of a pair of texts is more coherent (presumably
identifying human-written texts).

The line of work most closely related to our ap-
proach is the application of coherence modeling
to automated essay scoring. Essays are written
by test-takers, not professional writers, so they are
not assumed to be coherent. Manual annotation
is required to assign the essay an overall quality
score (Feng et al., 2014) or to rate the coherence
of the essay (Somasundaran et al., 2014; Burstein
et al., 2010, 2013). While this line of work goes
beyond sentence ordering to examine the qualities
of a low-coherence text, it has only been applied
to test-taker essays.

In contrast to previous datasets, we collect writ-

ing from non-professional writers in everyday
contexts. Rather than using permuted or machine-
generated texts as examples of low coherence, we
want to investigate the ways in which people try
but fail to write coherently. We present a cor-
pus that contains texts from four domains, cover-
ing a range of coherence, each annotated with a
document-level coherence score. In Sections 2.2-
2.6, we describe our data collection process and
the characteristics of the resulting corpus.

2.2 Domains

For a robust evaluation, we selected domains that
reflect what an average person writes on a reg-
ular basis: forum posts, emails, and product re-
views. For online forum posts, we sampled re-
sponses from the Yahoo Answers L6 corpus2 for
the Yahoo domain. For emails, we used the State
Department’s release of emails from Hillary Clin-
ton’s office3 and emails from the Enron Corpus4

to make up our Clinton and Enron domains. Fi-
nally, we sampled reviews of businesses from the
Yelp Open Dataset5 for our Yelp domain.

2.3 Text Selection

We randomly selected texts from each domain
given a few filters. We want each text to be
long enough to exhibit a range of characteristics
of local and global coherence, but not so long
that the labeling process is tedious for annotators.
Therefore, we considered texts between 100 and

2https://webscope.sandbox.yahoo.com/
catalog.php?datatype=l

3https://foia.state.gov/Search/
Results.aspx?collection=Clinton_Email

4https://www.cs.cmu.edu/˜./enron/
5https://www.yelp.com/dataset

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://foia.state.gov/Search/Results.aspx?collection=Clinton_Email
https://foia.state.gov/Search/Results.aspx?collection=Clinton_Email
https://www.cs.cmu.edu/~./enron/
https://www.yelp.com/dataset
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300 words in length. We ignored texts contain-
ing URLs (as they often quote writing from other
sources) and texts with too many line breaks (usu-
ally lists).

2.4 Annotation
We collected coherence judgments both from ex-
pert raters with prior linguistic annotation expe-
rience, as in Burstein et al. (2010) and from un-
trained raters via Amazon Mechanical Turk. This
allows us to assess the efficacy of using untrained
raters for this task. We asked the raters to rate the
coherence of each text on a 3-point scale from 1
(low coherence) to 3 (high coherence) given the
following instructions, which are based on prior
coherence annotation efforts (Barzilay and Lapata,
2008; Burstein et al., 2013):

A text with high coherence is easy to un-
derstand, well-organized, and contains
only details that support the main point
of the text. A text with low coherence
is difficult to understand, not well orga-
nized, or contains unnecessary details.
Try to ignore the effects of grammar or
spelling errors when assigning a coher-
ence rating.

Expert Rater Annotation We solicited judg-
ments from 13 expert raters with previous anno-
tation experience. We provided a high-level de-
scription of coherence but no detailed rubric, as
we wanted them to use their own judgment. We
also provided examples of low, medium, and high
coherence along with a brief justification for each
label. The raters went through a calibration phase
during which we provided feedback about their
judgments. In the annotation phase, we collected
3 expert rater judgments for each text.

Mechanical Turk Annotation We collected 5
MTurk judgments for each text from a group of
62 Mechanical Turk annotators who passed our
qualification test. We again provided a high-level
description of coherence. However, we only pro-
vided a few examples for each category so as not
to overwhelm the annotators.

We were mindful of how the characteristics of
each domain might affect the resulting coherence
scores. For example, after rating a batch of gen-
erally low coherence forum data, business emails
may appear to be more coherent. However, our
goal is to discover the characteristics of a low co-
herence business email or a low coherence forum

post, not to compare the two domains. Therefore,
we recruited new MTurk raters for each domain
so as not to bias their scores. The same 13 expert
raters worked on all four domains, but we specifi-
cally instructed them to consider whether each text
was a coherent document for its domain.

2.5 Grammarly Corpus of Discourse
Coherence

The resulting four domains each contain 1200
texts (1000 for training, 200 for testing). Each text
has been scored as {low, medium, high} coher-
ence by 5 MTurk raters and 3 expert raters. There
is one consensus label for the expert ratings and
another consensus label for the MTurk ratings. We
computed the consensus label by averaging the in-
teger values of the coherence ratings (low = 1,
medium = 2, high = 3) over the MTurk or expert
ratings and thresholding the mean coherence score
(low≤ 1.8 < medium≤ 2.2 < high) to produce a
3-way classification label (Table 2). We observed
that the MTurk raters tended to label more texts as
“medium” coherence than the expert raters. Since
the MTurk raters did not go through an extensive
training session, they may be less confident in their
ratings, defaulting to medium as the safe option.

Table 3 contains type and token counts for the
full dataset, and Figure 1 shows the number of
paragraphs, sentences, and words per document.

Coherence Class (%)
Domain Raters Low Med High

Yahoo untrained 35.5 39.2 25.3
expert 46.6 17.4 37.0

Clinton untrained 36.7 38.6 24.7
expert 28.2 20.6 51.1

Enron untrained 34.9 44.2 20.9
expert 29.9 19.4 50.7

Yelp untrained 19.9 43.4 36.7
expert 27.1 21.8 51.1

Table 2: Distribution of coherence classes as a per-
centage of the training data.

Yahoo Clinton Enron Yelp
# types 13,235 15,564 13,694 12,201
# tokens 189,444 220,115 223,347 213,852

Table 3: Type and token counts in each domain.

2.6 Annotation Agreement
To quantify agreement among annotators, we fol-
low Pavlick and Tetreault (2016)’s approach to
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Figure 1: Number of paragraphs, sentences, and words per document.

Domain Raters ICC Weighted κ

Yahoo untrained 0.113 ± 0.024 0.060 ± 0.013
expert 0.557 ± 0.010 0.386 ± 0.009

Clinton untrained 0.270 ± 0.020 0.156 ± 0.013
expert 0.398 ± 0.015 0.250 ± 0.011

Enron untrained 0.141 ± 0.021 0.077 ± 0.012
expert 0.428 ± 0.014 0.273 ± 0.011

Yelp untrained 0.120 ± 0.026 0.069 ± 0.014
expert 0.304 ± 0.015 0.181 ± 0.010

Table 4: Interannotator agreement (mean and stan-
dard deviation) on all domains.

simulate two annotators from crowdsourced la-
bels. We repeat the simulation 1000 times and
report the mean agreement values in Table 4 for
both intraclass correlation (ICC) and quadratic
weighted Cohen’s κ for an ordinal scale.

The expert raters have fair agreement (Lan-
dis and Koch, 1977) for three of the domains,
but agreement among MTurk raters is quite low.
These agreement numbers are the result of an ex-
tensive annotation development process and em-
phasize the difficulty of the task. We recommend
that future work in this area leverages raters with a
strong annotation background and the time for in-
depth instructions. For evaluation, we use the con-
sensus label from the expert judgments. For com-
parison, we include an experiment using MTurk
consensus labels in the supplementary material.

3 Models

We evaluate a range of existing discourse coher-
ence models on GCDC: entity-based models, a
word embedding graph model, and neural net-
work models. These models from previous work
have been very effective on the sentence ordering
task, but have not been used to produce coher-
ence scores. We also introduce two new neural
sequence models.

3.1 Baseline

We compute the Flesch-Kincaid grade level (Kin-
caid et al., 1975) of each text and treat it as a co-
herence score. While Flesch-Kincaid is a readabil-
ity measure, previous work has treated readability
and text coherence as overlapping tasks (Barzilay
and Lapata, 2008; Mesgar and Strube, 2015). For
coherence classification, we search over the grade
level scores on the training data and select thresh-
olds that result in the highest accuracy.

3.2 Entity-based Models

Entity-based models track entity mentions
throughout the text. In the majority of our exper-
iments, we applied Barzilay and Lapata (2008)’s
coreference heuristic and consider two nouns to
be coreferent only if they are identical. As Elsner
and Charniak (2011) noted, automatic corefer-
ence resolution often fails to improve coherence
modeling results. However, we also evaluate the
effect of adding an automatic coreference system
in Section 4.1.

Entity grid (EGRID) The entity grid (Barzilay
and Lapata, 2005) is a matrix that tracks entity
mentions over sentences. We reimplemented the
model from Barzilay and Lapata (2008), convert-
ing the entity grid into a feature vector that ex-
presses the probabilities of local entity transitions.
We use scikit-learn (Pedregosa et al., 2011) to train
a random forest classifier over the feature vectors.

Entity graph (EGRAPH) The entity graph
(Guinaudeau and Strube, 2013) interprets the en-
tity grid as a graph whose nodes are sentences.
Two nodes are connected if they share at least one
entity. Graph edges can be weighted according to
the number of entities shared, the syntactic roles
of the entities, or the distance between sentences.
The coherence score of a text is the average out-
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degree of its graph, so for classification we iden-
tify the thresholds that maximize accuracy on the
training data.

Entity grid with convolutions (EGRIDCONV)
Tien Nguyen and Joty (2017) applied a convolu-
tional neural network to the entity grid to capture
long-range transitions. We use the authors’ imple-
mentation.6

3.3 Lexical Coherence Graph (LEXGRAPH)

The lexical coherence graph (Mesgar and Strube,
2016) represents sentences as nodes of a graph,
connecting nodes with an edge if the two sentences
contain a pair of similar words (i.e. the cosine sim-
ilarity of their pre-trained word vectors is greater
than a threshold). From the graph, we can extract
a feature vector that expresses the frequency of all
k-node subgraphs. We use the authors’ implemen-
tation7 and train a random forest classifier over the
feature vectors.

3.4 Neural Network Models

We reimplemented a neural network model of co-
herence, the sentence clique model, to evaluate its
effectiveness on GCDC. We also introduce two
new neural network models that are more straight-
forward to implement than the clique model.

Sentence clique (CLIQUE) Li and Jurafsky
(2017)’s model operates over cliques of adjacent
sentences. For the sentence ordering task, a pos-
itive clique is a sequence of k sentences from the
original document. A negative clique is created by
replacing the middle sentence of a positive clique
with a random sentence from elsewhere in the text.
The model contains a single LSTM (Hochreiter
and Schmidhuber, 1997) that takes a sequence of
GloVe word embeddings and produces a sentence
vector at the final output step. All k sentence vec-
tors are concatenated and passed through a final
layer to produce a probability that the clique is co-
herent. The final coherence score is the average of
the scores of all cliques in the document.

We extend CLIQUE to 3-class classification by
labeling each clique with the document class la-
bel (low, medium, high). To predict the text label,
the model averages the predicted coherence class
distributions over all cliques.

6https://github.com/datienguyen/cnn_
coherence

7https://github.com/MMesgar/lcg

Sentence averaging (SENTAVG) To investigate
the extent to which sentence order is important in
our data, we introduce a neural network model that
ignores sentence order. The model contains a sin-
gle LSTM that produces a sentence vector (the fi-
nal output vector) from a sequence of GloVe em-
beddings for the words in that sentence. The doc-
ument vector is the average over all sentence vec-
tors in that document, and is passed through a hid-
den layer and a softmax to produce a distribution
over coherence labels.

Paragraph sequence (PARSEQ) The role of
paragraph breaks has not been explicitly discussed
in previous work. Models like EGRID assume that
entity transitions have the same weight whether
adjacent sentences A and B occur in the same
paragraph or different paragraphs. We expect
paragraph breaks to be important for assessing co-
herence in longer documents.

Therefore, we introduce a paragraph sequence
model, PARSEQ, that can distinguish between
paragraphs. PARSEQ contains three stacked
LSTMs: the first takes a sequence of GloVe em-
beddings to produce a sentence vector, the second
takes a sequence of sentence vectors to produce a
paragraph vector, and the third takes a sequence of
paragraph vectors to produce a document vector.
The document vector is passed through a hidden
layer and a softmax to produce a distribution over
coherence labels. A diagram of this model is avail-
able in the supplementary material.

4 Evaluation

We evaluate the models on multiple coherence
prediction tasks. The best model parameters, re-
ported in the supplementary material, are the result
of 10-fold cross-validation over the training data.

For all neural models (EGRIDCONV, EGRID-
CONV +coref, CLIQUE, SENTAVG, and PARSEQ),
the reported results are the mean of 10 runs with
different random seeds, as suggested by Reimers
and Gurevych (2017).

We indicate (†) when the best neural model re-
sult is significantly better (p < 0.05) than the
best non-neural result. We use the one-sample
Wilcoxon signed rank test and adjusted the p-
values to account for the false discovery rate.

4.1 Classification
For this task, each text has a consensus label ex-
pressing how coherent it is: {low, medium, high}.

https://github.com/datienguyen/cnn_coherence
https://github.com/datienguyen/cnn_coherence
https://github.com/MMesgar/lcg
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Accuracy
System Yahoo Clinton Enron Yelp

Majority class 41.0 55.5 44.0 54.0
Baseline 43.5 56.0 52.5 55.0

EGRID 38.0 43.0 46.0 45.5
EGRID +coref 41.5 48.0 47.0 49.0
EGRAPH 40.0 56.0 43.5 53.0
EGRAPH +coref 42.5 55.0 44.0 54.0
EGRIDCONV 47.0 56.3 44.8 54.2
EGRIDCONV +coref 51.0 56.6 44.7 54.0

LEXGRAPH 37.0 51.0 45.0 48.0

CLIQUE 53.5 61.0† 54.4† 49.1
SENTAVG 52.6 58.4 53.2 54.3
PARSEQ 54.9† 60.2 53.2 54.4†

Table 5: Three-way classification results on test.

We report overall accuracy for all systems on pre-
dicting the expert rater consensus label (Table 5).
We repeated this evaluation using the MTurk rater
labels and included those results in the supplemen-
tary material.

The neural models outperformed the entity-
based and lexical graph models. Non-neural mod-
els showed mixed results, performing on par with
or worse than our baseline. Most models perform
poorly on Yelp, worse than the baseline, perhaps
because Yelp has the lowest annotator agreement
among expert raters.

We also tried adding coreference information
for the entity-based methods, as it has been shown
to be useful in some prior work (Barzilay and La-
pata, 2008; Elsner and Charniak, 2008). For the
base entity model experiments, we used Barzi-
lay and Lapata (2008)’s heuristic to determine
whether two nouns are coreferent. For the +coref
setting, we used the Stanford coreference annota-
tor (Clark and Manning, 2015) as a preprocessing
step before computing the entity grid. The coref-
erence system yielded consistent performance im-
provements of 1–5% accuracy over the corre-
sponding heuristic results, indicating that auto-
matic coreference resolution can help entity-based
models in these domains.

4.2 Score Prediction
A 3-point coherence score might not reflect the
range of coherence that actually exists in the data.
We can instead present a more fine-grained score
prediction task where the gold score is the mean
of the three expert rater judgments (low coher-
ence = 1, medium = 2, high = 3). In Table 6,
we report Spearman’s rank correlation coefficient

Spearman ρ
System Yahoo Clinton Enron Yelp

Baseline 0.089 0.323 0.244 0.200

EGRID 0.110 0.146 0.168 0.121
EGRAPH 0.198 0.366 0.074 0.103
EGRIDCONV 0.204 0.251 0.258 0.104

LEXGRAPH 0.130 0.049 0.273 −0.008

CLIQUE 0.474 0.474 0.416 0.304
SENTAVG 0.466 0.505† 0.438 0.311
PARSEQ 0.519† 0.448 0.454† 0.329†

Table 6: Score prediction results on test.

between the gold scores and the predicted coher-
ence scores. As in the classification task, the neu-
ral methods convincingly outperformed all other
methods, with PARSEQ the top performer in three
out of four domains.

4.3 Sentence Ordering

The sentence ordering ranking task is a somewhat
artificial evaluation, as a document whose sen-
tences have been randomly shuffled does not re-
semble a human-written text that is not very co-
herent. However, we still want to assess whether
good performance on previous sentence ordering
datasets translates to GCDC. Since the sentence
ordering task assumes well-formed texts, we use
only the high coherence texts. As a result, there
are fewer texts than for the classification task, as
we show below. The number of training examples
is 20 times the number of texts, as we generate 20
random permutations for each text.

Yahoo Clinton Enron Yelp

Train texts 369 511 507 511
Test texts 76 111 88 108

Table 7 shows the accuracy of each system
on identifying the original text in each (original,
permuted) text pair. We leave out the baseline
and SENTAVG because they ignore sentence order.
We also simplify PARSEQ to a sentence sequence
model (SENTSEQ) containing only two LSTMs
because the sentence ordering task ignores para-
graph information. As in the prior two evaluations,
the neural models perform best in most domains,
although EGRAPH is best on Yahoo.

4.4 Minority Class Classification

One application of a coherence classification sys-
tem would be to provide feedback to writers by
flagging text that is not very coherent. Such a sys-
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Accuracy
System Yahoo Clinton Enron Yelp

Random baseline 50.0 50.0 50.0 50.0

EGRID 55.9 78.2 77.4 62.9
EGRAPH 64.0 75.3 75.9 59.5
EGRIDCONV 54.8 75.5 73.1 58.7

LEXGRAPH 62.5 78.3 77.9 60.8

CLIQUE 57.8 89.4† 88.7† 64.6
SENTSEQ 58.3 88.0 87.1 74.2†

Table 7: Sentence ordering results on test data.

System Yahoo Clinton Enron Yelp

Baseline 0.283 0.255 0.341 0.197

EGRID 0.258 0.260 0.294 0.161
EGRAPH 0.308 0.382 0.278 0.117
EGRIDCONV 0.360 0.238 0.279 0.169

LEXGRAPH 0.342 0.094 0.357 0.000

CLIQUE 0.055 0.000 0.077 0.146
SENTAVG 0.481† 0.332 0.393† 0.199
PARSEQ 0.447 0.296 0.373 0.112

Table 8: Minority class predictions, F0.5 score on
test data.

tem should identify only the most incoherent areas
of the text, to ensure that the feedback is not a false
positive. To evaluate this scenario, we present a
minority class classification problem where only
15-20% of the data is low coherence:

Yahoo Clinton Enron Yelp
Low coherence % 30.0 16.6 18.4 14.8

We relabel a text as low coherence if at least two
expert annotators judged the text to be low coher-
ence, and relabel as not low coherence otherwise.

We report the F0.5 score of the low coherence
class in Table 8, where precision is emphasized
twice as much as recall.8 This is in line with eval-
uation standards in other writing feedback appli-
cations (Ng et al., 2014). Again, the neural mod-
els perform best in most domains. However, the
results of this experiment in particular show that
there is still a large gap between the performance
of these models and what might be required for
high-precision real-world applications.

4.5 Cross-Domain Classification

Up to this point, we assumed that the four do-
mains are different enough from one another that
we should train separate models for each. To test

8Precision and recall are in the supplementary material.

Test
Yahoo Clinton Enron Yelp

Tr
ai

n

Yahoo 54.9 56.7 50.6 55.3
Clinton 51.8 60.2 50.7 40.4
Enron 51.5 59.9 53.2 50.8
Yelp 48.3 55.5 44.0 54.4

Table 9: Cross-domain accuracy of PARSEQ on
three-way classification test data.

Test accuracy
Yahoo Clinton Enron Yelp

Train in-domain 54.9 60.2 53.2 54.4
Train all data 58.5 61.0 53.9 56.5

Table 10: Classification accuracy of PARSEQ

when trained on data from all four domains.

this assumption, we train PARSEQ, one of the top
performing neural models, in one domain (e.g. Ya-
hoo) and evaluate it in a different domain (Clinton,
Enron, and Yelp). Table 9 compares the in-domain
results (the diagonal) to the cross-domain results.

While the model’s accuracy generally decreases
when transferred to a different domain, sometimes
this decrease is not too severe: for example, train-
ing on Yahoo/Enron data and testing on Clinton
data, or training on Yahoo data and testing on
Yelp data. It is reasonable that training on one set
of business emails (Clinton or Enron) produces a
model that can accurately score the coherence of
other sets of business emails. Similarly, both Ya-
hoo and Yelp contain online text written for public
consumption which may share coherence charac-
teristics, so it is not surprising that a model trained
on Yahoo data works on Yelp (even outperforming
the Yelp-trained model).

These results indicate that we might be able to
train a better coherence model by combining all
our data across multiple domains. We evaluate this
theory in Table 10, comparing the results of the
PARSEQ model evaluated in-domain (e.g. trained
and tested on Yahoo data) to a model trained on
the combined training data from all four domains.
With four times as much training data, the perfor-
mance of PARSEQ improves in all domains, indi-
cating that better coherence models may be trained
from data outside of a specific, narrow domain.

4.6 Discussion

We observe some trends across our experiments.
The basic entity models (EGRID and EGRAPH)
tend to perform poorly, often barely outperform-
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ing the baseline. The entity grids computed from
GCDC texts are often extremely sparse, so mean-
ingful entity transitions between sentences are in-
frequent. In addition, scoring the coherence of
a text (either classification or score prediction)
is more difficult than the sentence ordering task,
where basic entity models do outperform the ran-
dom baseline by a reasonable margin. Both the
data and the difficulty of the tasks contribute to
poor performance from the basic entity models.

The neural network models almost always out-
perform other models. This supports Li and Ju-
rafsky (2017)’s claim that neural models are bet-
ter able to extend to other domains compared to
previous coherence models. Our PARSEQ and
SENTAVG models are easier to implement than
CLIQUE and outperform CLIQUE on a majority of
experiments. EGRIDCONV usually does not per-
form as well as the other neural models, but it usu-
ally improves over EGRID.

Finally, the relative success of SENTAVG,
which ignores sentence order, is evidence that
identifying a document’s original sentence order
is not the same as distinguishing low and high co-
herence documents. The large number of parame-
ters in PARSEQ may explain why it is sometimes
outperformed by SENTAVG.

5 Analysis

To better understand what distinguishes a low co-
herence text from a high coherence text, we man-
ually analyzed Yahoo and Clinton texts whose
labels were unanimously agreed on by all three
raters. Regardless of the domain, many low coher-
ence texts are not well-organized and appear to be
written almost as stream of consciousness. They
often lack connectives, resembling a list of points
rather than a coherent document.

Incoherent Yahoo texts often contain extremely
long sentences, lack paragraph breaks, and veer
off-topic without a transition or any connection
back to the main point. This is an especially fre-
quent occurrence with personal anecdotes.

Low coherence Clinton emails make better use
of paragraphs, but they too often lack transitions
between topics. In addition, missing information
was a primary reason for low coherence scores.
We provided the raters with individual emails, not
the entire email thread, so raters had less informa-
tion than the original recipient of the email. This
amplifies the detrimental effects on coherence of

jargon, abbreviation, and missing context. How-
ever, overuse of these compression strategies can
result in low coherence even for the intended re-
cipient, so it is worth modeling their effects.

Across domains, coherent texts have a clear
topic that is maintained throughout the text, and
they are well-organized, with sentences, para-
graphs and sub-topics following a logical order-
ing. Connectives, such as however, for example,
in turn, also, in addition are used more frequently
to assist the structure and flow.

Although sentence order is clearly important,
rewriting a disorganized text is not as simple as
reordering sentences. Even if changing the loca-
tion of one sentence increases coherence, a true fix
would still require rewriting that sentence or the
surrounding sentences. Our analysis indicates that
the sentence reordering task is not a good evalua-
tion of whether models can truly be useful to the
task of identifying low coherence texts.

6 Conclusion

In this paper, we examine the evaluation of dis-
course coherence by presenting a new corpus
(GCDC) to benchmark leading methods on real-
world data in four domains. While neural mod-
els outperform others across multiple evaluations,
much work remains before any of these methods
can be used for real-world applications. That said,
our SENTAVG and PARSEQ models serve as sim-
ple and effective methods to use in future work.

We recommend that future evaluations move
away from the sentence ordering task. While it
is an easy evaluation to carry out, the performance
numbers overpredict the success of those systems
in real-world conditions. For example, prior eval-
uations (Tien Nguyen and Joty, 2017; Li and Ju-
rafsky, 2017) report performance numbers around
or above 90% accuracy, which contrasts with the
much lower figures shown in this paper. In addi-
tion, we recommend that future annotation efforts
leverage expert raters, preferably with a back-
ground in annotation, as this task is difficult for
untrained workers on crowdsourcing platforms.

By releasing GCDC, the annotation guidelines,
and our code, we hope to encourage future work
on more realistic coherence tasks.
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