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Abstract

Dialogue state tracking (DST), when for-
mulated as a supervised learning problem,
relies on labelled data. Since dialogue
state annotation usually requires labelling
all turns of a single dialogue and utilizing
context information, it is very expensive
to annotate all available unlabelled data.
In this paper, a novel cost-sensitive active
learning framework is proposed based on
a set of new dialogue-level query strate-
gies. This is the first attempt to apply ac-
tive learning for dialogue state tracking.
Experiments on DSTC2 show that active
learning with mixed data query strategies
can effectively achieve the same DST per-
formance with significantly less data an-
notation compared to traditional training
approaches.

1 Introduction

The dialogue state tracker, an important compo-
nent of a spoken dialogue system, tracks the in-
ternal belief state of the system based on the
history of the dialogue. For each turn, the
tracker outputs a distribution over possible dia-
logue states, on which the dialogue system relies
to take proper actions to interact with users. Var-
ious approaches have been proposed for dialogue
state tracking, including hand-crafted rules (Wang
and Lemon, 2013; Sun et al., 2014), genera-
tive models (Thomson and Young, 2010; Young
et al., 2010, 2013) and discriminative models (Ren
et al., 2013; Lee and Eskenazi, 2013; Williams,
2014). For discriminative models, recent stud-
ies on data-driven approaches have shown promis-
ing performance, especially on Recurrent Neural
Network (RNN) (Henderson et al., 2013, 2014c¢).
As for datasets, the Dialog State Tracking Chal-
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lenge (DSTC) series (Williams et al., 2016) have
provided common testbeds for this task.

Though data-driven approaches have achieved
promising performance, they require large
amounts of labelled data, which are costly to be
fully annotated. Besides this, it is quite difficult to
label a single dialogue because, for every dialogue
turn, experts need to label all the semantic slots
and typically, to label a single turn accurately, they
need to pay attention to the context rather than the
current turn only. Active learning (AL) (Settles,
2010) can be applied to select valuable samples
to label. Using the AL approach, we need fewer
labelled samples when training the model to reach
the same or even better performance compared to
traditional training approaches.

Although it is often assumed that the labelling
costs are the same for all samples in some
tasks (Gonzalez-Rubio and Casacuberta, 2014,
Sivaraman and Trivedi, 2014), it is appropriate to
consider different labelling costs for the dialogue
state tracking task where different dialogues vary
in the number of turns. In this paper, we define
the labelling cost for each dialogue sample with
respect to its number of dialogue turns. Then we
provide a new AL query criterion called diver-
sity, and finally propose a novel cost-sensitive ac-
tive learning approach based on three dimensions:
cost, uncertainty, and diversity. The results of ex-
periments on the DSTC2 dataset (Henderson et al.,
2014a) demonstrate that our approaches are more
effective compared to traditional training methods.

In the next section, we will present the proposed
cost-sensitive active learning framework for dia-
logue state tracking. Then in Section 3 we will de-
scribe the experimental setup and show the results
of experiments on the DSTC?2 dataset, followed by
our conclusions and future work in Section 4.
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2 Cost-Sensitive Active Learning

A complete work cycle of active learning for dia-
logue state tracking includes 3 steps: (1) train the
tracker with labelled dialogue samples; (2) post
query using the query strategy to select the valu-
able unlabelled dialogue and ask experts for its la-
bel; (3) merge the newly-labelled dialogue with all
previously-labelled dialogue samples and return to
(1). The tracker and query strategy will be intro-
duced in Section 2.1 and 2.2 respectively.

2.1 Dialogue State Tracker

Our proposed active learning workflow is indepen-
dent of the tracker type. Here we use the Lec-
Track model (Zilka and Jurcicek, 2015) as a word-
based tracker. For each turn ¢ in a dialogue, the
tracker takes in a word concatenation of all his-
tory words (together with their confidence scores
from ASR) within this dialogue and finally out-
puts a prediction. The general model structure (at
turn t) is shown in Figure 1. The notation w & u
denotes the concatenation of two vectors, w (the
word) and u (the confidence score). FC refers to
the Fully Connected Layer. The output of FC is
then encoded by the LSTM encoder Enc, whose
output (only the last one) will be sent to a Soft-
max layer to make a prediction p; € R™s over all
N possible values for a given slot s at turn ¢:

o
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Figure 1: LecTrack model stucture. 4 models in
total since s € { food, pricerange,name, area}.

2.2 Cost-Sensitive Active Learning Methods

Given that different dialogues vary in the number
of turns, we assume that the smallest query unit
should be a whole dialogue, and that the cost for
labelling a dialogue is directly proportional to the
number of dialogue turns.

Since all the unlabelled data is possible to be
collected simultaneously, the DST task can be
regarded as pool-based sampling (Settles, 2010).
This assumes that there is a small pool of labelled
data £, and a large pool of unlabelled data ¢/ avail-
able. That allows us to query the samples in a
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greedy fashion according to some measurement
criteria, which are used to evaluate all samples in
the unlabelled pool.

We propose four novel query strategies. The
first three utilize one kind of measurement crite-
rion respectively and the last one is based on the
mixture of the first three. For convenience, a cer-
tain dialogue sample is denoted as x.

Cost Strategy (CS)

This strategy prefers the dialogue samples that
have the minimum number of turns. For each dia-
logue sample, its labelling cost, denoted as C'(x),
can be defined as the number of turns.

Uncertainty Strategy (US)

This strategy prefers the dialogue samples whose
predictions the DST model is most uncertain
about. In this paper, we take advantage of en-
tropy (Shannon, 2001) as the uncertainty measure-
ment criterion. The dialogue uncertainty on slot s,
Us(x), is the average over all the entropy values of
dialogue turns:

1 C(x) N,
Us(z) = —% ; ;me log p;[i],

where pj can be directly obtained from the DST
model described in Section 2.1.

Diversity Strategy (DS)

This strategy prefers the dialogue samples that are
most diverse from the dialogues currently in the
labelled pool £. As the training and querying
process goes on, the diversity of dialogue sam-
ples selected to be labelled will decrease gradu-
ally, which results in a biased training process.
To handle such problem, here we design a novel
Spherical k-Means Clustering (MacQueen et al.,
1967) based method to evaluate the diversity of di-
alogue samples and select the most diverse ones in
unlabelled pool U to label, so that we could main-
tain the diversity of dialogue samples in labelled
pool L.

Different dialogues have varying lengths so an
embedding function to map each dialogue into a
fixed-dimensional continuous space is needed. We
utilize the method of unsupervised dialogue em-
beddings (Su et al., 2016) to extract a dialogue fea-
ture, which is used to calculate the diversity.

We choose the bag-of-words (BOW) rep-
resentation as a turn-level feature f; at turn
t, which will be sent into a Bi-directional



LSTM (BLSTM) (Graves et al., 2013) encoder to
obtain the two directional hidden sequences, h{:T
and h’,. At wn ¢, h/ = LSTM/(f,h! )
and h? = LSTMP"(f;,h, ). Then, the dialogue
feature vector v is calculated as the average over
all hidden sequences, i.e., v = % Z?zl h{ @ ho,
where the notation h{ @ h? denotes the concate-
nation of the two vectors, h{ and h?.

Next, the dialogue feature vector is chosen as
the input of a forward LSTM decoder for each
turn ¢, which ultimately outputs feature sequences
f] ;. The model’s training target is to minimize the
mean-square-error (MSE) between f;.7 and f{:T.

The feature vectors of all dialogues in both £
and U can be obtained with this pre-trained model.
Define V; = {vy,,Vvy,,-- } as the feature vector
set of £ and Vyy = {Vu,, Vu,, - - } as the feature
vector set of .

We fit the set V. into a Spherical k-Means
model with N, clusters, so that we can acquire
a substitutional set of feature vectors denoted as
Ve ={vj, v}, Vi, } which is composed of
N, representative feature vectors (clusters) among
the vectors in the original set V. Then for each
vector vy, in Vy, calculate its cosine similarity
to N, vectors in V). respectively, and regard the
maximum of NV, similarity values as its true sim-
ilarity to the whole labelled set, since the cluster
of maximum similarity has the largest representa-
tiveness of all the original vectors in the labelled
set. Therefore, the diversity measure D(x) can be
defined as the opposite number of similarity:

i=toNe | [V |- VLI [

D(z) =

max

Mixed Strategy

In practice, we usually need different query
strategies at different learning stages (Settles,
2010). Based on the strategies presented above,
we propose a new query strategy called Cost-
Uncertainty-Diversity Strategy (CUDS), which
is originated from the idea of combining multiple
strategies. This strategy takes into consideration
three measurement criteria, i.e. cost, uncertainty
and diversity, so that the unlabelled samples can
be evaluated more comprehensively.

Specifically, what we want is to select samples
with low cost, high uncertainty and high diversity.
Based on this, we propose a new measurement cri-
terion, denoted as M (x). Naturally, the goal of
CUDS is to pick out the dialogue samples which
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have the maximum measurement value M (x):

M(z) = —aC(z) + BUs(x) + yD(x), (D)
where «, 5 and ~ are positive weighting parame-
ters that can be tuned so as to find a good trade-off
among those three measurement criteria.

In order to conduct weighting, C'(x), Us(z) and
D(z) should possess the same scale. C'(x) ranges
from 1 to Cj,qz, the maximum number of a single
dialogue’s turns, and therefore we replace C(x)
in Equation 1 with C,,,(z) = C(x)/Ciaz. The
range of D(x) is (—1,1), so we replace D(z) in
Equation 1 with D,,,(z) = (D(x)+1)/2. Then the
original Equation 1 is transformed into Equation 2:

M(z) = —aCm(z) + BUs(x) + yDm(2). (2)
3 Experiments and Results

3.1 Experimental Setup

Experiments are conducted to assess the per-
formance of different query strategies on single
slot and joint goal respectively. The dataset we
use is the second Dialogue State Tracking Chal-
lenge (DSTC2) dataset (Henderson et al., 2014a),
which focuses on the restaurant information do-
main and contains 7 slots of which 4 are in-
formable and all 7 are requestable. We implement
the dialogue state tracker as described in Section
2.1. The model is trained using Stochastic Gradi-
ent Descent (SGD), collaborating with a gradient
clipping heuristic (Pascanu et al., 2012) to avoid
the exploding gradient problems.

3.2 Results on Single Slot

In this section, five different query strategies are
compared on single slot. Besides the four query
strategies presented in Section 2.2, here we choose
Random Strategy (RS) as our baseline query
strategy. RS means we randomly select dialogues
to annotate. Although it may seem quite simple,
we have to point out that such naive strategy does
perform not bad in practice. We attribute such
phenomenon to the fact that the query process is
dominated by the underlying distribution of the
original dataset. A nature of AL called sampling
bias (Dasgupta and Hsu, 2008) can be considered
as the main cause. The training set may gradually
diverge from the real data distribution as the train-
ing and querying process continues. However, RS
is luckily not influenced by this effect, which al-
lows it to be a powerful baseline to compare with.

According to the current strategy, the model



queries 2 dialogue samples each time. Figure 2
displays the training accuracy curves of the food
slot (the most difficult slot) using different query
strategies. Here we use the number of labelled dia-
logue turns as the x-axis, which can be regarded as
the labelling cost. It is shown that the three query
strategies (CS/US/DS), which are based on sin-
gle measurement criterion respectively, have bet-
ter performance than the baseline strategy (RS).
The reason why DS does not perform very well at
the beginning is that the diverse but greatly scarce
data is not sufficient to train an effective model.
Our proposed mixed strategy CUDS achieves the
best performance among all the query strategies,
which proves the effectiveness of our strategy
mixture methodology. Considering the training
cost, although the DSTC?2 training set is composed
of 11677 turns (1612 dialogues) in total, CUDS
only consumes about 3000 turns (about 520 di-
alogues) for training to convergence. Besides,
while RS consumes 5000 turns (about 700 dia-
logues) when converging, CUDS just consumes
2000 turns (about 360 dialogues) to achieve the
performance equal to the convergence level of RS,
reducing the cost by 60%.
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Figure 2: Curves of food slot.

3.3 Results on Joint Goal

Figure 3 displays the training accuracy curves of
the joint goal using five different query strategies.
At different learning stages, the query strategy
of best performance is different. US rises more
quickly at the beginning while DS diverges earlier.
The reasons include: in order to finally reach con-
vergence, the tracker need to see samples of great
diversity, which allows it to give consideration to
several semantic slots; however, samples of large
entropy can bring tracker more concrete informa-
tion on the most controversial cases, which helps it
to learn from scratch rapidly. Our mixed strategy
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CUDS, combining the advantages of those two
while minimizing the cost at the same time, ob-
tains a performance improvement. Although the
final convergence level is not quite high due to the
limitation of LecTrack model, it does not diminish
the effectiveness of proposed AL query strategies.

Accuracy on the test set

0 1000 2000 3000 4000 5000 6000
# of labelled dialogue turns

Figure 3: Curves of joint goal.

4 Conclusions and Future Work

In this paper, a novel cost-sensitive active learn-
ing technique is presented for dialogue state track-
ing, which assumes that each dialogue sample has
a nonuniform labelling cost related to the number
of dialogue turns. Besides cost, we also provide
another two measurement criteria, uncertainty and
diversity. Our mixed query strategy considers
those three criteria comprehensively in order to
make queries more appropriately. Experiment re-
sults demonstrate that our proposed approaches
can achieve promising tracking performance with
lower cost compared to traditional methods.

Our future work roughly includes two parts.
One is to deploy our proposed AL methods on
some other dialogue tasks such as DSTC3 (Hen-
derson et al., 2014b) to verify the results pre-
sented in this paper. The other is to conduct
our approaches on DST models of better perfor-
mance (Mrksi¢ et al., 2017) because the model’s
tracking ability has an inevitable influence on the
whole active learning process.
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