
Proceedings of the SIGDIAL 2018 Conference, pages 89–98,
Melbourne, Australia, 12-14 July 2018. c©2018 Association for Computational Linguistics

89

A Multimodal Dialogue System for Learning Structural Concepts in
Blocks World

Ian Perera1, James F. Allen1,2, Choh Man Teng1, Lucian Galescu1

1Institute for Human and Machine Cognition, Pensacola, FL 32502 USA
2University of Rochester, Department of Computer Science, Rochester, NY 14627 USA
iperera@ihmc.us, jallen@ihmc.us, cmteng@ihmc.us, lgalescu@ihmc.us

Abstract

We present a modular, end-to-end dia-
logue system for a situated agent to ad-
dress a multimodal, natural language di-
alogue task in which the agent learns
complex representations of block struc-
ture classes through assertions, demon-
strations, and questioning. The concept
to learn is provided to the user through a
set of positive and negative visual exam-
ples, from which the user determines the
underlying constraints to be provided to
the system in natural language. The sys-
tem in turn asks questions about demon-
strated examples and simulates new exam-
ples to check its knowledge and verify the
user’s description is complete. We find
that this task is non-trivial for users and
generates natural language that is varied
yet understandable by our deep language
understanding architecture.

1 Introduction

Current artificial intelligence systems, even dia-
logue agents, tend to play the role of a tool in real-
world or even simulated tasks. Often the human
user must be given an artificial handicap to create
a situation where the system can play a role as a
collaborator rather than a tool with interface com-
mands simply replaced by natural language equiv-
alents (Brooks et al., 2012). We work towards a
natural language dialogue agent that we hope will
eventually become a collaborator rather than a tool
by focusing on knowledge transfer through natural
language and determining areas where a dialogue
agent’s proactive nature is a benefit to learning. To
this end, we apply deep language understanding
techniques in the situated Blocks World environ-
ment, where a user can teach the system physical,

possibly compositional concepts to aid in devel-
opment of natural language understanding without
significant existing domain knowledge needed.

2 The Structure Learning Task

Many natural language dialogue tasks in a Blocks
World environment focus on querying the envi-
ronment (Winograd, 1971), block placement (Bisk
et al., 2016; She et al., 2014), or training visual
classifiers and grounding perception (Matuszek
et al., 2012; Mast et al., 2016; Perera and Allen,
2015). Reference resolution has also been ex-
tensively studied in this environment and statisti-
cal methods show strong performance in quickly
learning referring expressions (Kennington et al.,
2015). However, our focus is exploring collabora-
tive concept transfer with the goal of having situ-
ated agents learn from natural language dialogue
and physical interaction to become better collabo-
rators. With the goal of the system as a collabora-
tor, we find it is important that the task carried out
be non-trivial for the user. However, more diffi-
cult tasks can have drawbacks – they involve larger
amounts of background knowledge and reasoning,
progress can be difficult to evaluate, and often the
language and concepts learned do not extend eas-
ily to other real world applications.

With these constraints in mind, we use a physi-
cal Bongard problem (Bongard et al., 1970; Weit-
nauer and Ritter, 2012) task for evaluating our sys-
tem in a situated Blocks World environment. The
user is provided with a set of visual examples,
some positive and some negative, and must deter-
mine the constraints on the class of structure that
allows the positive examples (and perhaps others)
while avoiding any negative examples (Figure 1).
By providing only visual clues, we leave the gen-
eration of the constraints entirely up to the user.
The user then begins interacting with the system



90

Figure 1: An example of the set of images pro-
vided to a participant for teaching the system a
“U” shape. The user is tasked with explaining
the underlying concept to the system such that the
system correctly identifies the positive examples
while rejecting the negative examples.

to describe the structure. During this time, the sys-
tem is able to ask questions, check its model with
demonstrations, and ask for the user to present ex-
amples. While this problem has been explored in
the context of cognitive architectures (Foundalis,
2006) and reinforcement learning (Ramon et al.,
2007), we are unaware of any prior work in the
context of dialogue systems.

We believe this task addresses a number of is-
sues with previous tasks in evaluating a system
that can learn new concepts and structures. Partic-
ipants typically spent two to three minutes going
over the examples, showing that there was some
thought required to correctly understand the struc-
ture on their part. Furthermore, often the con-
straints users provided were underspecified – they
described what structures would be allowed, but
sometimes failed to provide sufficient restrictions
to avoid the negative examples. The system is then
able to find gaps in the user’s description by pre-
senting examples following the current description
so far – bringing the system’s state in the dialogue
from being solely a student to contributing to the
task in a meaningful way.

In addition, this task can be scaled in diffi-
culty or extended to other domains. Difficulty
scaling can be achieved by using compositional
constraints that build on existing knowledge (e.g.,
“Build a U shape, but make one column taller than
the other”) or by creating more difficult structures
to learn. The task could be adapted to other do-
mains by augmenting the ontology and designing
a new reasoning agent that could integrate asser-

tions into its model, while retaining similar inter-
actions and the domain-generic modules.

2.1 Challenges

One of the primary challenges in this task is the
wide variety of ways in which a user might de-
scribe or teach a class of structures. For ex-
ample, they might describe necessary features or
prohibited features. They may view possibilities
as movement, saying “The columns have a row
between them wherever they move.” They may
present negative examples for the system to avoid.
Some users describe a particular arrangement of
blocks that should or should not appear (e.g.,
“There is never two blocks on top of each other”),
while others describe a more holistic conception
(e.g. “The maximum height is one block”). While
we do not succeed in interpreting all such de-
scription modalities, we believe our current meth-
ods handle a large range of possible explanations
and are amenable to advancements to understand a
greater number of explanation types in the future.

3 Environment and Apparatus

Our system operates in a Blocks World environ-
ment consisting of 6-inch cubes placed on a ta-
ble. Although the cubes have distinct images for
identification and colored sides, we do not use this
information in our current version – blocks can
only be referred to using descriptions of their lo-
cation in the environment. We use two Kinect
2.0’s to detect the blocks, with the separate per-
spective aiding in avoiding issues with occlusion.
On the opposite side of the user is a monitor with a
3D avatar that speaks the system’s generated text
and also has non-verbal communication capabil-
ities such as nodding, pointing, and other more
complex gestures. The environment is calibrated
such that these gestures can point to the location
of a block for communicating about it. The appa-
ratus with the avatar is shown in Figure 2.

The apparatus has no physical means for the
system to move blocks. However, during interac-
tion the system we find it important for the system
to build structures to test its knowledge. To do this,
we generate a 3D image in a virtual representation
of the current environment showing the blocks that
the system wants to place as an example for the
user. This can be sent to a separate tablet such that
an assistant can place the blocks, or displayed on
the screen for the user to evaluate themselves.



91

Figure 2: The apparatus and the environment con-
taining the blocks used, with the screen display-
ing the avatar and 3D visualization of the environ-
ment.

User input is currently carried out by keyboard
entry by the user or dictation by an assistant. We
are currently implementing speech recognition to
enable more natural communication. Towards this
end we focus on finite state machine language
models given the nature of assertions our system
understands, but we may have to consider more
flexible corpus-based models in the future, aided
by transcripts of previous trials.

4 System Architecture

The heart of the dialogue management is the
TRIPS architecture (Allen et al., 2001), which
connects a number of components through KQML
message passing (Finin et al., 1994), with
each component augmented with domain-specific
knowledge to varying extents. This dialogue man-
agement component, including parser, a generic
ontology, and an API for interacting with a
domain-specific module is open-source and avail-
able for download 1. As opposed to other dia-
logue management systems like OpenDial (Lison
and Kennington, 2016) or POMDP dialogue sys-
tems (Williams and Young, 2007), this dialogue
management system is primarily suited for col-
laborative tasks where there is little to no knowl-
edge of what dialogue state typically follows from
the previous one – the user can move from state-
ments about goals to assertions to questions in
any order, determined primarily by the speech
act detected in their utterance. For semantic lan-
guage understanding and speech act interpreta-
tion of the user’s utterances, the domain-generic

1https://github.com/wdebeaum/cogent

Figure 3: The TRIPS collaborative problem solv-
ing architecture adapted to this task. Only the Be-
havioral Agent and apparatus are specifically de-
signed for this task – the other components are
adapted only through additions to the ontology.

TRIPS parser (Allen et al., 2008) generates logi-
cal forms and speech act possibilities backed by a
domain-augmented ontology. The relevant speech
act is then determined by the Interpretation Man-
ager (IM), which also fills in remaining context-
dependent references before sending this informa-
tion to the Collaborative Problem Solving Agent
(CPSA). The CPSA facilitates communication be-
tween the parser/IM, Collaborative State Manager
(CSM) and the Behavioral Agent (BA) as Collab-
orative Problem Solving (CPS) Acts. These acts
include adopting, selecting, proposing, and reject-
ing goals, queries to the user or the system, and re-
porting the current status of a given module. The
overall architecture is shown in Figure 3.

4.1 Collaborative State Manager

The Collaborative State Manager stores and re-
sponds to queries regarding the systems goal state
and facilitates decisions based on goal context.
As opposed to the CPSA, the CSM does not
have a notion of dialogue context, but does re-
spond to speech acts that require the system to
generate a response based on the systems state
and knowledge. It also is responsible for gen-
erating the necessary clarification messages to
continue with dialogue, and for managing initia-
tive in mixed-initiative tasks based on a changing
domain-specific environment.

To make these decisions, the CSM is designed
with a combination of domain-independent behav-
ior and domain-specific knowledge supplied at a
broad level. Such knowledge takes the form of
a specification of which types of goals might be
considered goals in their own right (e.g.,teaching
the system a concept, building a structure), and
which are considered subgoals (e.g., showing an
example, adding a constraint to the system’s struc-



92

ture model). The goal hierarchy consists of one
or more top-level goals, with sub-goals, queries,
and assertions added as child nodes to create a
tree structure. With this structure, the user and the
system can resolve sub-goals and blocking actions
such as goal failures and rejected goals without
losing the overall goal context. The system works
with the user to ensure that there is a top-level goal
when beginning the dialogue to ensure the proper
context is available for the system, offering possi-
ble top-level goals based on the action or assertion
the user provides.

The CSM uses a light, domain-specific knowl-
edgebase of top-level goals, subgoals, and related
speech acts to infer the users intentions and goals
based on the incoming speech acts. For example,
the statement “The top block must be on the left-
most column” would yield a proposed subgoal in
a structure building task, but should be resolved as
an assertion to be added to the BA’s model during
the structure learning task. If there is no top-level
goal, the system would ask the user about the top-
level goal (e.g.“Are you trying to teach me some-
thing?” in response to an assertion) to establish
one. When the CSM is unable to resolve ambigu-
ity given the information it has, it will generate a
response that indicates the system needs more in-
formation from the user, and will provide possible
solutions such that other modules can generate re-
sponses to try to provide efficient communication.

4.2 Behavioral Agent

The BA is the domain-specific aspect of the sys-
tem dealing with interaction with and reasoning
over the environment. In this system, we also
relegate language generation to this component.
To design a BA in this architecture, one creates
a module that accepts a set of incoming messages,
dealing with goal proposals, requests for execution
status (i.e, finished a task, waiting for the user, or
currently acting), queries about the environment or
model, in addition to a “what-next” message that
serves to provide dialogue initiative to the system.
As the BA receives goals, it determines whether
they are achievable and accepts them, and then
proposes the next goal – for example, a teaching
goal will be responded with a subgoal to describe
an aspect of the structure. As assertions are pro-
cessed, they will be added to the model, rejected if
not understood in context, or clarified with a query
in the case of ambiguous statements.

4.3 Goal Management

The base TRIPS architecture provides some
means for the user to respond to errors through
dialogue, and provides flexibility in goal manage-
ment. For example, if the user wants to continue
the dialogue in a different way, they can reject it by
responding “No” to the BA’s goal proposal, or they
can continue to provide assertions or ask ques-
tions even when the system has proposed the goal.
This flexibility is essential to reduce user frustra-
tion when coming up against obstacles and ensure
that the user feels a sense of control even when the
BA is proactive in dialogue.

5 Constraint Processing

Constraints are processed as assertions that are in-
terpreted as holding generally during the structure
learning process, rather than relying on the iden-
tity of any one particular block or group of blocks.
Therefore, the utterance, “The top block has to be
on the left” may or may not currently be true about
a particular example, but nevertheless should hold
in all positive instances of a structure class.

Constraints can be general properties about the
structures, such as the maximum/minimum height
or width, or they can refer to particular blocks or
groups of blocks. All non-general constraints must
contain a referring expression, which consists of a
referred object or arrangement (i.e., blocks, rows,
columns, or spaces) and optionally a location de-
scription to pick out a particular object. The as-
sertion can assert that such a referent exists in the
structure, constrain a particular feature of the ref-
erent, (e.g., width, height, the number of blocks it
contains), or dictate its location relative to the rest
of the blocks or a particular set of blocks denoted
by another referring expression. We also have lim-
ited support for compositional referents in refer-
ring expressions, picking out certain aspects of a
structure (e.g., “the ends of the row”).

A constraint can be designated as exclusive,
which means that only one instance of a particular
object can have that property (e.g. “Only the left-
most column has more than 2 blocks”). Currently
we take an object-type scoping for this restriction.
In addition, we handle negations at certain scopes,
such as disallowing a particular arrangement (e.g.
“There are no columns of height greater than 2”)
or location (e.g. “There is no block next to a col-
umn”). An example of some utterances under-
stood by the system is shown in Figure 4.



93

“The leftmost column’s height is 3 blocks.”
“The height is 3.”
“The height of the leftmost column is less
than the height of the rightmost column.”
“There is a column with at least 3 blocks.”
“There is a space between the top 2 blocks.”
“The bottom row is connected.”
“The top block is always on the left.”
“The top block can be anywhere.”

Figure 4: Examples of understood constraints.

5.1 Constraint Extraction
To extract constraints, we primarily depend upon
the logical form structure of the TRIPS parser,
which allows direct extraction of the types of con-
straints we are interested in due to its argument
structure of concepts. We first determine all re-
ferring expressions by finding mentions of blocks
or arrangements. Then we add any modifiers to
their location. Once the referring expressions are
found, we construct a constraint, which consists
of the subject (the :figure argument in the TRIPS
logical form), the reference object or property (the
:ground argument), and the feature of compari-
son (e.g., height, width, count) or a predicate con-
straining the location of the subject relative to
some reference set. Figure 5 shows an example
of structures extracted from a logical form.

5.2 Constraint Evaluation
When the system is asked to evaluate an exam-
ple or create its own, it evaluates all current con-
straints by finding referents for each referring ex-
pression according to the object type and predi-
cate. Predicates are calculated using predefined
rules, either specifying constraints that apply to
individual blocks or using axis-aligned bounding
boxes. These rules have built-in tolerances of a
half-block width to account for noise or impre-
cise placement. We then calculate the features and
predicates in the constraint for the resolved refer-
ence and return a value for each constraint.

Initial versions of the system primarily built up
constraints from a sequence of user utterances.
When performing Wizard of Oz studies, we found
that an issue with this method is that it can some-
times be difficult for users to formulate and de-
scribe a concise, consistent model without any di-
rection. This can lead to run-on sentences which
are difficult to parse, or, if parsed, difficult to inter-
pret as constraints. We believe one reason for this

is that, while the system provides affirmation at the
end of an utterance entered by keyboard, it does
not give non-verbal or verbal cues of understand-
ing during speech recognition. Therefore, the user
sometimes continues explaining in various ways
looking for a signal that the system understands.

To address this issue, we designed our system to
take a more proactive role in conversation. While
the system still takes a free-form description or
constraint at the beginning of the conversation, it
then begins to ask questions about the structure
class, ask for examples, present examples, and re-
spond to the user’s questions about examples. The
system can choose a feature of the structure that
has not been described (to ensure the user feels
that the system has understood the structure so far)
and generate a query to send to the user. An un-
filled version of the constraint is sent to the CPSA
to aid in resolving the query, and the TRIPS parser
is able to handle user responses fragments to fill
in the constraint. The strategies to generate these
utterances are described in Section 5.3.

The system generates its own examples of struc-
tures given its current knowledge as well. The BA
will generate random arrangements of blocks in
a grid structure until the current constraints have
been satisfied, and then return a new structure as
an example. This allows the user to see the re-
sult of the constraints and refine their constraints,
while also providing more evidence that the sys-
tem is understanding what is being said.

At any time, the user can ask whether a particu-
lar example is correct given the constraints pro-
vided so far. The system enumerates the con-
straints and can then state whether each constraint
is satisfied and why or why not. If there are many
constraints, the system will summarize the posi-
tive constraints (e.g., “The width is right” rather
than “The width is greater than 2”) while focusing
on the negative constraints to avoid long-winded
explanations and provide a more natural response.

5.3 Learning Strategies

We designed the system to follow, with some devi-
ations, a general strategy for learning based on our
initial Wizard of Oz tests (Dahlbäck et al., 1993),
such that the system can build up knowledge in
a way that supports the interactions between dif-
ferent types of knowledge learned throughout an
interaction. The system first asks the user for an
aspect of the structure, discouraging long-winded



94

Figure 5: An example of constraint extraction from the TRIPS logical form for the utterance “The left-
most column is taller than the rightmost column”

descriptions that can overwhelm the parser and
tend to be less structured. With a constraint
learned, the system then asks for an example.
While the system cannot currently learn from the
block positions themselves, it uses the example to
generate a pertinent referring expression (e.g., “the
top block”) that can then be used to ask about a
constraint. This query guides the user to thinking
about the structure in a concrete and specific way
to aid in generating descriptions.

Because the system likely has two or more con-
straints at this point, it will then generate an exam-
ple of its own based on its learned constraints and
check for correctness. This allows the user to fo-
cus on aspects that are explicitly disallowed, since
the system’s random generation process often re-
veals when constraints are underspecified. These
learning strategies then continue until the user is
satisfied that the system understands the structure.
A sample dialogue showing the system’s abilities
is given in Figure 6.

6 Wizard of Oz Experiments

Before developing our system, we carried out sev-
eral Wizard of Oz experiments to aid in develop-
ment of the TRIPS parser, ensure that our system
had capabilities suited to the dialogue of a naı̈ve
user, and determine which interaction strategies of
the system would be most effective for learning
and most natural for the user. So far we have con-
ducted 3 tasks each with 3 participants who were
unaware of the details of the project, yielding 90

user utterances. Two of the participants were fa-
miliar with natural language processing research,
while one was not.

User: I want to teach you a mountain shape.
System: Okay. Can you describe an aspect
of the structure?
U: Yes. The rightmost column has 3 blocks.
S: Ok. What is the greatest the height can be?
U: 3.
S: Ok, got it. Can you show me an example?
U: Yes. This is an example.〈shows example〉
S: Okay.
U: Is this right? 〈shows example〉
S: I think so, because the height is less than
or equal to 3 and the right column’s number
is equal to 3.
U: The left column has 2 blocks.
S: Ok.
U: Is this right? 〈shows example〉
S: I don’t think so, because the height is less
than or equal to 3 but the left column’s num-
ber is not equal to 2 even though the right
column’s number is equal to 3.

Figure 6: An example dialogue showing interac-
tion with the system.

To ensure the closest approximation to the ac-
tual system, we used a tablet for the researcher
standing in for the system. Because of the design
of the apparatus where the system generates 3D
images (and presumably diagnostic data), the par-
ticipants believed it was actually the system per-



95

forming the dialogue and interpreting the user’s
utterances, and the researcher was simply an assis-
tant. In fact, the tablet served as a method for the
researcher to respond with predetermined phrases,
including acceptances, requests for examples, and
questions about the structure. These phrases were
then sent through the speech generation compo-
nent of the system.

We found several advantages of users believ-
ing that the system was actually engaging in di-
alogue. First, the users used simpler language
than they might have with a person, while still
providing sufficient variation for exploring pos-
sible utterances. Second, users sometimes pro-
vided their own thoughts aside to the researcher,
allowing a specific glimpse into users’ responses
to certain utterances or tasks. For example, once
when the system asked, “How tall can the struc-
ture be?”, the participant said as an aside, “It can
be any height,” and then responded to the system
“At least two blocks.” Finally, we could evaluate
how the dialogue might progress without being in-
terrupted by failures of the system at the parsing or
interpretation level. We processed the Wizard of
Oz dialogues with the TRIPS parser and correctly
parsed 89% of the utterances. 90% of these correct
parses also yielded the correct constraint when in-
terpreted by the current state of the system.

6.1 Description Modalities

We recognized several different description
modalities participants used when describing
the structure without responding to a particular
feature query. When the system asked questions,
typically the user responded directly to the ques-
tion, reducing the utterance complexity. However,
these variations on the expected descriptions
reveal interesting insight into how users generate
representations of the concepts they are provided.

Basic Constraints – “The height of the leftmost
column is greater than 2” – These descriptions are
the simplest to interpret and make up the majority
of user utterances, especially when the system is
proactive in dialogue.

Arrangement Constraint – “The column can
be either second in the row or third in the row.”
Here the definite article conveys that there should
be a single instance of a column, and the ordinal
reference to the row constrains its position – even
though in certain cases a row might be considered
to be a line of blocks only a single block high.

We handle such cases by inferring a sequence of
columns left to right, and then processing ordinal
references to enforce constraints.

Movement Modality – “This top block can
move wherever.” – These descriptions, using
movement as a surrogate for possibility, are
slightly more difficult to interpret, but can often
be handled by our loose interpretation of logical
forms that focuses on referring expressions (“the
top block”) and predicates (“wherever”) without
focusing on the event term of “moving”.

Transformation Modality – “The left block is
a column.” – The difficulty in parsing a constraint
described in this way is that a particular type of ob-
ject (“the left block”) is picked from the structure
with the goal of changing it to another arrange-
ment (“a column”, presumably with more than one
block). This can also be viewed as an explicit
bridge between the current and desired state to ful-
fill the constraints. Currently we encourage users
to describe the structure in a general way – how-
ever, this type of utterance demonstrates an exam-
ple where a specific error or instance applies gen-
erally enough to serve as a constraint.

Procedural/Construction Modality – “No,
you’re missing a row. Subtract by one every time
you go up.” – Here the user is describing the struc-
ture by providing the process for creating it. While
our current system does not understand these types
of utterances, we are working on a similar task in
parallel with this environment that can be lever-
aged to understand this modality (Perera et al.,
2018). The key aspect of understanding this type
of utterance is the compositionality of primitive
concepts, namely a row, its length, and the se-
quence of rows that will presumably be placed by
the agent building the structure.

A common property of these more complex
modalities is the awareness of and reliance on the
composition of primitive concepts, such as ele-
ments, order, and placement, when referring to
more complex concepts such as rows and columns,
which can have multiple attributes and purposes
when describing a structure. We believe that a sys-
tem to interpret these types of expressions and ex-
tend to other domains must therefore have a com-
positional model that allows complex concepts to
be built from primitive concepts that are simpler
to detect or identify. This compositional aspect
of concepts used in communication has both in-
formed the design of the system and inspired this



96

task which makes use of such modalities.

6.2 Preliminary Evaluations

Alongside adapting the system to handle our ex-
isting Wizard of Oz dialogues, we have begun pre-
liminary user evaluations, primarily for testing for
robustness and unforeseen methods of communi-
cating constraints to the system. An example dia-
logue with a user is shown in Figure 7.

User: I want to teach you a shape.
System: Okay. Can you tell me something
about the structure?
U: The bottom row must be at least 2.
S: Hmm, I didn’t quite get that.
U: The bottom row has at least 2 blocks.
S: Ok. What is the greatest the width can be?
U: 5.
S: Ok, got it. Can you show me an example?
U: Yes. This is an example. 〈shows example〉
S: Okay. Where can the top block be?
U: The top block is always on the left.
S: Okay.
U: 〈user builds example〉 Is this right?
S: I think so, because the bottom row’s num-
ber is greater than or equal to 2 and the width
is less than or equal to 5 and the top block is
on the left.

Figure 7: A taken from initial runs of the eval-
uation with the autonomous system and a user
unfamiliar with the system.

Failures of the system are handled by the di-
alogue manager, with unparsable user utterances
causing the system to continue with a question
where the response is easy for the system to han-
dle, such as asking for the maximum height or
width, or by asking the user to rephrase. In initial
trials, users were often able to rephrase constraints
in a way the system could understand. Further-
more, users reported that the difficulty of the task
made dialogue setbacks seem like a complemen-
tary challenge of clearly expressing an idea rather
than an obstacle to an otherwise simple task.

To track development of the system, we will
evaluate according to several metrics along with
user surveys. The first measure will be the num-
ber of positive examples successfully recognized
by the trained system and the number of nega-
tive examples successfully rejected. Next, we plan
to track robustness by determining the number of
cancellations, undos, or restarts by user, as well

as the efficacy of extracting constraints from user
assertions. In addition, a final task which ensures
that communication is two-way will be to reverse
roles and have the system explain the concept to
the user based on what it has learned from prior
interactions with a different user.

7 Conclusion

We believe our system shows promise in the task
of teaching a system new concepts in Blocks
World in an manner extendable to multiple types
of descriptions and with applications to multiple
domains. While our first priority is to handle the
most common description modalities of users to
ensure broader coverage, we also begin the pro-
cess of using this system as a stepping stone for
language understanding and dialogue in other do-
mains by mapping our concepts and predicates
into a database to be used by our collaborators
in this and related projects. With multiple defi-
nitions of features and predicates, we plan to use
these concrete physical representations as proxies
for more abstract and metaphorical reasoning ca-
pabilities to be developed in other systems.

Because the rules and interpretation are hand-
crafted, brittleness can be an issue but is partially
mitigated through dialogue repair. Given the pri-
marily symbolic nature of the system and the dif-
ficulty of specifying composition with statistical
models or neural networks, we focus our efforts
on building rules to understand conceptual com-
position rather than processing utterances using
statistical techniques. However, development of a
broader range of understood constraint modalities
can extend this dialogue system to other domains
that involve a direct or indirect spatial or temporal
component – such as scheduling, building graphi-
cal models, or directing scenes of a movie. Finally,
we believe the compositionality inherent in the
type of communication captured requires back-
ground knowledge about the conceptual structures
we inherently use in discussing complex ideas.

8 Acknowledgements

This work is supported by the DARPA CwC pro-
gram and the DARPA Big Mechanism program
under ARO contract W911NF-14-1-0391. Spe-
cial thanks to SRI for their work in developing the
physical apparatus, including block detection and
avatar software.



97

References
J. Allen, Mary Swift, and Will de Beaumont. 2008.

Deep Semantic Analysis of Text. In Symposium on
Semantics in Systems for Text Processing (STEP),
pages 343–354, Morristown, NJ, USA. Association
for Computational Linguistics.

James Allen, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conversa-
tional systems. In Proceedings of the 6th interna-
tional conference on Intelligent user interfaces - IUI
’01, pages 1–8.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016.
Natural Language Communication with Robots.
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751–761.

M. M. (Mikhail Moiseevich) Bongard, Joseph K.
Hawkins, and Theodore Cheron. 1970. Pattern
recognition. Spartan Books.

Daniel J Brooks, Constantine Lignos, Cameron Finu-
cane, Mikhail S Medvedev, Ian Perera, Vasumathi
Raman, Hadas Kress-gazit, Mitch Marcus, and
Holly a Yanco. 2012. Make It So : Continuous ,
Flexible Natural Language Interaction with an Au-
tonomous Robot. In AAAI Workshop on Grounding
Language for Physical Systems.

N. Dahlbäck, A. Jönsson, and L. Ahrenberg. 1993.
Wizard of Oz studies - why and how. Knowledge-
Based Systems, 6(4):258–266.

Tim Finin, Richard Fritzson, Don Mckay, and Robin
Mcentire. 1994. KQML as an Agent Communica-
tion Language. In Proceedings of the Third Inter-
national Conference on Information and Knowledge
Management. ACM Press.

Harry Foundalis. 2006. Phaeaco: A Cognitive Archi-
tecture Inspired By Bongard’s Problems. Ph.D. the-
sis.

Casey Kennington, Livia Dia, and David Schlangen.
2015. A Discriminative Model for Perceptually-
Grounded Incremental Reference Resolution. In
Proceedings of the 11th International Conference
on Computational Semantics, 2002, pages 195–205,
Beijing, China.

Pierre Lison and Casey Kennington. 2016. OpenDial:
A Toolkit for Developing Spoken Dialogue Systems
with Probabilistic Rules. Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 67–72.

V Mast, Z Falomir, and D Wolter. 2016. Probabilis-
tic Reference and Grounding with PRAGR for Di-
alogues with Robots. Journal of Experimental &
Theoretical Artificial Intelligence, 28(in press).

Cynthia Matuszek, N FitzGerald, Luke Zettlemoyer,
Liefeng Bo, and Dieter Fox. 2012. A Joint Model
of Language and Perception for Grounded Attribute
Learning. In Proceedings of the International Con-
ference on Machine Learning (ICML).

Ian Perera and James Allen. 2015. Quantity, Contrast,
and Convention in Cross-Situated Language Com-
prehension. Proceedings of the Nineteenth Confer-
ence on Computational Natural Language Learning,
pages 226–236.

Ian Perera, James F. Allen, Choh Man Teng, and Lu-
cian Galescu. 2018. Building and Learning Struc-
tures in a Situated Blocks World Through Deep Lan-
guage Understanding. In SPLU 2018: Proceedings
of the HLT-NAACL Workshop on Spatial Language
Understanding, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Jan Ramon, Kurt Driessens, and Tom Croonenborghs.
2007. Transfer Learning in Reinforcement Learning
Problems Through Partial Policy Recycling. Lecture
Notes in Computer Science, 4701:699–707.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia,
Joyce Y Chai, and Ning Xi. 2014. Back to the
Blocks World: Learning New Actions through Situ-
ated Human-Robot Dialogue. In Proceedings of the
SIGDIAL 2014 Conference, June, pages 89–97.

Erik Weitnauer and Helge Ritter. 2012. Physical Bon-
gard Problems. In IFIP Advances in Information
and Communication Technology, volume 381 AICT,
pages 157–163.

Jason D. Williams and Steve Young. 2007. Partially
observable Markov decision processes for spoken
dialog systems. Computer Speech and Language,
21(2):393–422.

Terry Winograd. 1971. Procedures as a Representation
for Data in a Computer for Understanding Natural
Language. Technical report, Massachusetts Institute
of Technology Artificial Intelligence.



98

A Supplemental Material
Concept Lemmas
ABOVE above
HIGHER higher
BELOW below, beneath, under,

underneath
LOWER lower
ADJACENT adjacent (to), next to, beside,

by, contiguous (with), flush
CONNECTED abut, adjoin, connect, touch
TOGETHER together
ON on, on top of
LEVEL level with
TOP-LOC... top
MIDDLE-LOC middle
BOTTOM-LOC bottom
BETWEEN (in) between
CENTER center
LEFT-LOC left, lefthand, leftmost
RIGHT-LOC right, righthand, rightmost
ANYWHERE anywhere

Table 1: The list of predicates understood by the
system, with their concept in the ontology, and
matching lemmas that can resolve to that concept.

Ontological Concept Data Type
ONT::WIDTH-SCALE real+, count
ONT::HEIGHT-SCALE real+, count
ONT::LENGTH-SCALE real+, count
ONT::CENTER point
ONT::LOCATION point
ONT::STARTPOINT point
ONT::ENDPOINT point
ONT::TOP-LOC... point
ONT::BOTTOM-LOC... point
ONT::NUMBER count
ONT::COL-FORMATION column
ONT::ROW-FORMATION row
ONT::DIRECTION vector
ONT::HORIZONTAL (real+)
ONT::VERTICAL (real+)
ONT::LINE (real+)

Table 2: Some of the features generated by the
system for blocks, sets of blocks, and sequences,
listed by their concept in the TRIPS ontology and
the resulting data type. A data type in parentheses
indicates the value is not presented to the user but
is used in comparisons against other sets of blocks.


