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Abstract

Previous work has shown that conversants
adapt to many aspects of their partners’ lan-
guage. Other work has shown that while
every person is unique, they often share
general patterns of behavior. Theories of
personality aim to explain these shared pat-
terns, and studies have shown that many lin-
guistic cues are correlated with personality
traits. We propose an adaptation measure
for adaptive natural language generation
for dialogs that integrates the predictions
of both personality theories and adaptation
theories, that can be applied as a dialog un-
folds, on a turn by turn basis. We show
that our measure meets criteria for valid-
ity, and that adaptation varies according to
corpora and task, speaker, and the set of
features used to model it. We also produce
fine-grained models according to the dialog
segmentation or the speaker, and demon-
strate the decaying trend of adaptation.

1 Introduction

Every person is unique, yet they often share general
patterns of behavior. Theories of personality aim
to explain these patterns in terms of personality
traits, e.g. the Big Five traits of extraversion or
agreeableness. Previous work has shown: (1) the
language that people generate includes linguistic
features that express these personality traits; (2) it is
possible to train models to automatically recognize
a person’s personality from his language; and (3) it
is possible to automatically train models for natural
language generation that express personality traits
(Pennebaker and King, 1999; Mairesse et al., 2007;
Mairesse and Walker, 2011; Gill et al., 2012).

A distinct line of work has shown that people
adapt to one another’s conversational behaviors
and that conversants reliably re-use or mimic many
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Speaker (Utterance #): Utterance ]

F97: okay I'm on pacific avenue and plaza

D98: okay so you just take a right once your out of pacific
lane you go wait no to late to your left.

F98: okay

D99: and I think. it’s right ther- alright so I'm walking
down pacific okay so it’s right before the object it’s right
before the mission and pacific avenue intersection okay
it’s like umm almost brown and kinda like tan colored
F99: is it tan

D100: yeah it’s like two different colors its like dark
brown and orangey kinda like gold color its kinda like
um

F100: okay is it kinda like a vase type of a thing

D101: yeah it has yeah like a vase

Figure 1: Dialog excerpt from the ArtWalk Corpus.

different aspects of their partner’s verbal and non-
verbal behaviors, including lexical and syntactical
traits, accent, speech rate, pause length, etc. (Coup-
land et al., 1988; Willemyns et al., 1997; Brennan
and Clark, 1996; Branigan et al., 2010; Coupland
et al., 1988; Parent and Eskenazi, 2010; Reitter
et al., 2006a; Chartrand and Bargh, 1999; Hu et al.,
2014). Previous work primarily focuses on devel-
oping methods on measuring adaptation in dialog,
and studies have shown that adaptation measures
are correlated with task success (Reitter and Moore,
2007), and that social variables such as power affect
adaptation (Danescu-Niculescu-Mizil et al., 2012).

We posit that it is crucial to enable adaptation
in computer agents in order to make them more
human-like. However, we need models to control
the amount of adaptation in natural language gen-
eration. A primary challenge is that dialogs exhibit
many different types of linguistic features, any or
all of which, in principle, could be adapted. Previ-
ous work has often focused on individual features
when measuring adaptation, and referring expres-
sions have often been the focus, but the conversants
in the dialog in Figure 1 from the ArtWalk Corpus
appear to be adapting to the discourse marker okay
in D98 and F98, the hedge kinda like in F100, and
to the adjectival phrase like a vase in D101.
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Therefore we propose a novel adaptation mea-
sure, Dialog Adaptation Score (DAS), which can
model adaptation on any subset of linguistic fea-
tures and can be applied on a turn by turn basis
to any segment of dialog. Consider the example
shown in Table 1, where the context (prime) is
taken from an actual dialog. A response (target)
with no adaptation makes the utterance stiff (DAS
= 0), and too much adaptation (to all four discourse
markers in prime, DAS = 1) makes the utterance un-
natural. Our hypothesis is that we can learn models
to approximate the appropriate amount of adapta-
tion from the actual human response to the context
(to discourse marker “okay”’, DAS = 0.25).

Conversants in dialogs express their own per-
sonality and adapt to their dialog partners simul-
taneously. Our measure of adaptation produces
models for adaptive natural language generation
(NLG) for dialogs that integrates the predictions of
both personality theories and adaptation theories.
NLGs need to operate as a dialog unfolds on a turn-
by-turn basis, thus the requirements for a model
of adaptation for NLG are different than simply
measuring adaptation.

Context: okay alright so yeah Im looking at 123 Locust right
now

Linguistic Features:

Discourse markers: okay, alright, so, yeah

Referring expressions: 123 Locust

Syntactic structures: VP->VBP+VP, VP->VBG+PP+ADVB ...

Adaptation| Response Adapted Fea- | DAS
Amount tures
None it should be some- | None 0

where

Toomuch | okay alright so | okay, alright, | 1
yeah it should be | so, yeah
somewhere

Moderate okay I mean it | okay 0.25

should be some-
where

Table 1: Linguistic adaptation example: no adapta-
tion, too much adaptation, and moderate adaptation
(human response from ArtWalk Corpus).

We apply our method to multiple corpora to in-
vestigate how the dialog situation and speaker roles
affect the level and type of adaptation to the other
speaker. We show that:

e Different feature sets and conversational situ-
ations can have different adaptation models;

e Speakers usually adapt more when they have
the initiative;

e The degree of adaptation may vary over the
course of a dialog, and decreases as the adap-
tation window size increases.
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2 Method and Overview

Our goal is an algorithm for adaptive natural lan-
guage generation (NLG) that controls the system
output at each step of the dialog. Our first aim
therefore is a measure of dialog adaptation that
can be applied on a turn by turn basis as a dialog
unfolds. For this purpose, previous measures of
dialog adaptation (Stenchikova and Stent, 2007;
Danescu-Niculescu-Mizil et al., 2011) have two
limitations: (1) their calculation require the com-
plete dialog, and (2) they focus on single features
and do not provide a model to control the inter-
action of multiple parameters in a single output,
while our method measures adaptation with respect
to any set of features. We further compare our
method to existing measures in Section 6.

Measures of adaptation focus on prime-target
pairs: (p, t), in which the prime contains linguistic
features that the target may adapt to. While lin-
guistic adaptation occur beyond the next turn, we
simplify the calculation by using a window size of
1 for most experiments: for every utterance in the
dialog (prime), we consider the next utterance by
a different speaker as the target, if any. We show
the decay of adaptation with increasing window
size in a separate experiment. When generating
(p, t) pairs, it is possible to consider only speaker
A adapting to speaker B (target=A), only speaker
B adapting to speaker A (target=B), or both at the
same time (target=Both). In the following defi-
nition, FC;(p) is the count of features in prime
p of the i-th (p,t) pair, n is the total number of
prime-target pairs in which FC;(p) # 0, similarly,
FC;(p A t) is the count of features in both prime
p and target {. We define Dialog Adaptation Score
(DAS) as:

1 <= FC;i(pAt)
DAS=—-) .~

Within a feature set, DAS reflects the average
probability that features in prime are adapted in tar-
get across all prime-target pairs in a dialog. Thus
our Dialog Adaptation Score (DAS) models adapta-
tion with respect to feature sets, providing a whole-
dialog adaptation model or a turn-by-turn adapta-
tion model. The strength of DAS is the ability to
model different classes of features related to indi-
vidual differences such as personalities or social
variables of interest such as status.

DAS scores measured using various feature sets
can be used as a vector model to control adaptation
in Natural Language Generation (NLG). Although



we leave the application of DAS to NLG to future
work, here we describe how we expect to use it.
We consider the use of DAS with three NLG ar-
chitectures: Overgeneration and Rank, Statistical
Parameterized NLG, and Neural NLG.

Overgenerate and Rank. In this approach, differ-
ent modules propose a possibly large set of next ut-
terances in parallel, which are then fed to a (trained)
ranker that outputs the top-ranked utterance. Pre-
vious work on adaptation/alignment in NLG has
made use of this architecture (Brockmann, 2009;
Buschmeier et al., 2010). We can rank the gener-
ated responses based on the distances between their
DAS vectors and learned DAS adaptation model.
The response with the smallest distance is the re-
sponse with the best amount of adaptation. We
can also emphasize specific feature sets by giv-
ing weights to different dimensions of the vector
and calculating weighted distance. For instance, in
order to adapt more to personality and avoid too
much lexical mimicry, one could prioritize related
LIWC features, and adapt by using words from the
same LIWC categories.

Statistical Parameterized NLG. Some NLG en-
gines provide a list of parameters that can be con-
trolled at generation time (Paiva and Evans, 2004;
Lin and Walker, 2017). DAS scores can be used as
generation decision probabilities. A DAS score
of 0.48 for the LIWC feature set indicates that
the probability of adapting to LIWC features in
discourse context (prime) is 0.48. By mapping
DAS scores to generation parameters, the generator
could be directly controlled to exhibit the correct
amount of adaptation for any feature set.

Neural NLG. Recent work in Neural NLG
(NNLG) explores controlling stylistic variation in
outputs using a vector to encode style parameters,
possibly in combination with the use of a context
vector to represent the dialog context (Ficler and
Goldberg, 2017; Oraby et al., 2018). The vector
based probabilities that are represented in the DAS
adaptation model could be encoded into the con-
text vector in NNLG. No other known adaptation
measures could be used in this way.

We hypothesize that different conversational con-
texts may lead to more or less adaptive behavior, so
we apply DAS on four human-human dialog cor-
pora: two task-oriented dialog corpora that were
designed to elicit adaptation (ArtWalk and Walk-
ing Around), one topic-centric spontaneous dialog
corpus (Switchboard), and the MapTask Corpus
used in much previous work. We obtain linguistic
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features using fully automatic annotation tools, de-
scribed in Section 4. We learn models of adaptation
from these dialogs on various feature sets. We first
validate the DAS measure by showing that DAS
distinguishes original dialogs from dialogs where
the orders of the turns have been randomized. We
then show how DAS varies as a function of the fea-
ture sets used and the dialog corpora. We also show
how DAS can be used for fine-grained adaptation
by applying DAS to individual dialog segments,
and individual speakers, and illustrating the differ-
ences in adaptation as a function of these variables.
Finally, we show how DAS scores decrease as the
adaptation window size increases.

3 Corpora

We develop models of adaptation using DAS on
the following four corpora.

ArtWalk Corpus (AWC).! Figure 1 provides a
sample of the Artwalk Corpus (Liu et al., 2016),
a collection of mobile-to-Skype conversations be-
tween friend and stranger dyads performing a real
world-situated task that was designed to elicit adap-
tation behaviors. Every dialog involves a station-
ary director on campus, and a follower downtown.
The director provided directions to help the fol-
lower find 10 public art pieces such as sculptures,
mosaics, or murals in downtown Santa Cruz. The
director had access to Google Earth views of the fol-
lower’s route and a map with locations and pictures
of art pieces. The corpus consists of transcripts of
24 friend and 24 stranger dyads (48 dialogs). In
total, it contains approximately 185,000 words and
23,000 turns, from conversations that ranged from
24 to 55 minutes, or 197 to 691 turns. It includes
referent negotiation, direction-giving, and small
talk (non-task talk).?

Walking Around Corpus (WAC).?> The Walking
Around Corpus (Brennan et al., 2013) consists of
spontaneous spoken dialogs produced by 36 pairs
of people, collected in order to elicit adaptation be-
haviors, as illustrated by Figure 2. In each dialog, a
director navigates a follower using a mobile phone
to 18 destinations on a medium-sized campus. Di-
rectors have access to a digital map marked with

"https://nlds.soe.ucsc.edu/artwalk

2For AWC and WAC, we remove annotations such as
speech overlap, noises (laugh, cough) and indicators for short
pauses, leaving only clean text. If more than one consecutive
dialog turn has the same speaker, we merge them into one
dialog turn.

‘https://catalog.ldc.upenn.edu/
1dc2015s08


https://nlds.soe.ucsc.edu/artwalk
https://catalog.ldc.upenn.edu/ldc2015s08
https://catalog.ldc.upenn.edu/ldc2015s08

Speaker (Utterance #): Utterance ]

Speaker (Utterance #): Utterance ]

D137: and. you know on the uh other side of the math
building like theres the uh, theres this weird, little con-
crete, structure that is sticking up out of the bricks, dont
make any sense.

F138: uh.

D139: yeah youll see it when you get over there.

F140: okay.

D141: so just keep going and then uh. when you get
around the building make a left. and you should be.
F142: when I get around the Physics building make a
left?

D143: yeah yeah when you get around to the end here.

Figure 2: Dialog excerpt from the Walking Around
Corpus.

target destinations, labels (e.g. “Ship sculpture”),
photos and followers’ real time location. Followers
carry a cell phone with GPS, and a camera in order
to take pictures of the destinations they visit. Each
dialog ranges from 175 to 885 turns. The major dif-
ferences between AWC and WAC are (1) in order
to elicit novel referring expressions and possible
linguistic adaptation, destinations in AWC do not
have provided labels; (2) AWC happens in a more
open world setting (downtown) compared to WAC
(university campus).

Map Task Corpus (MPT).* The Map Task Cor-
pus (Anderson et al., 1991) is a set of 128 coop-
erative task-oriented dialogs involving two partic-
ipants. Each dialog ranges from 32 to 438 turns.
A director and a follower sit opposite one another.
Each has a paper map which the other cannot see
(the maps are not identical). The director has a
route marked on their map; the follower has no
route. The participants’ goal is to reproduce the
director’s route on the follower’s map. All maps
consist of line drawing landmarks labelled with
their names, such as “parked van”, “east lake”, or
“white mountain”. Figure 3 shows an excerpt from
the Map Task Corpus.

Switchboard Corpus (SWBD).>  Switch-
board (Godfrey et al., 1992) is a collection of
two-speaker telephone conversations from all
areas of the United States. An automatic operator
handled the calls (giving recorded prompts,
selecting and dialing another speaker, introducing
discussion topics and recording the dialog). 70
topics were provided, for example: pets, child
care, music, and buying a car. Each topic has
a corresponding prompt message played to the
first speaker, e.g. “find out what kind of pets the

*nttp://groups.inf.ed.ac.uk/maptask/
Shttps://catalog.ldc.upenn.edu/
1dc97s62
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D7: and below the graveyard below the graveyard but
above the carved wooden pole.

F8: oh hang on i don’t have a graveyard.

D9: okay. so you don’t have a graveyard. do you have a
fast flowing river.

F10: fast running creek.

D11: ehm mm don’t know yeah it could be could be.
F12: is that to the right that’ll be to my right to my right.
D13: to your. right uh-huh.

F14: right. so i continue and go below the fast running
creek.

D15: no. go just until you go go below the diamond mine
until just before the fast fast flowing river.

Figure 3: Dialog excerpt from the Map Task Cor-
pus.
Speaker (Utterance #): [Tag] Utterance ]

B14: [b] Yeah. [sv] Well that’s pretty good if you can do
that. [sd] I know. [sd] I have a daughter who’s ten [sd]
and we haven’t really put much away for her college up to
this point [sd] but, uh, we’re to the point now where our
financial income is enough that we can consider putting
some away

A15: [b] Uh-huh.

B16: [sd] for college [sd] so we are going to be starting a
regular payroll deduction

Al17: [%] Um.

B18: [sd] in the fall [sd] and then the money that I will be
making this summer we’ll be putting away for the college
fund.

A19: [ba] Um. Sounds good. [%] Yeah [sd] I guess we're,
we’re just at the point, uh [sd] my wife worked until we
had a family [sd] and then, you know, now we’re just
going on the one income [sv] so it’s

B20: [b] Uh-huh.

A21: [sv] a lot more interesting trying to, uh [sv] find
some extra payroll deductions is probably the only way
we will be able to, uh, do it. [sd] You know, kind of
enforce the savings.

B22: [b] Uh-huh.

Figure 4: Dialog excerpt from the Switchboard
Dialog Act Corpus.

other caller has.” A subset of 200K utterances of
Switchboard have also been tagged with dialog act
tags (Jurafsky et al., 1997). Each dialog contains
14 to 373 turns. Figure 1 provides an example
of dialog act tags, such as b - Acknowledge
(Backchannel), sv - Statement-opinion, sd -
Statement-non-opinion, and % - Uninterpretable.
We focus on this subset of the corpus.

Dialogs in SWBD have a different style from the
three task-oriented, direction-giving corpora. Fig-
ure 4 illustrates how the SWBD dialogs are often
lopsided: from utterance 14 to 18, speaker B states
his opinion with verbose dialog turns, whereas
speaker A only acknowledges and backchannels;
from utterance 19 to 22, speaker A acts as the
main speaker, whereas speaker B backchannels.
Some theories of discourse define dialog turns as
extending over backchannels, and we posit that this


http://groups.inf.ed.ac.uk/maptask/
https://catalog.ldc.upenn.edu/ldc97s62
https://catalog.ldc.upenn.edu/ldc97s62

would allow us to measure adaptation more faith-
fully, so we utilize the SWBD dialog act tags to
filter turns that only contain backchannels, keep-
ing only dialog turns with tags sd (Statement-non-
opinion), sv (Statement-opinion), and bf (Sum-
marize/reformulate).® We then merge consecutive
dialog turns from the same speaker.

4 Experimental Setup

We consider the following feature sets: unigram,
bigram, referring expressions, hedges/discourse
markers, and Linguistic Inquiry and Word Count
(LIWC) features. Previous computational work on
measuring linguistic adaptation in textual corpora
have largely focused on lexical and syntactical fea-
tures, which are included as baselines. Referring
expressions and discourse markers are key features
that are commonly studied for adaptation behaviors
in task-oriented dialogs, which are often hand anno-
tated. Here we automatically extract these features
by rules. To model adaptation on the personality
level, we draw features that correlate significantly
with personality ratings from LIWC features. We
hypothesize that our feature sets will demonstrate
different adaptation models.

We lemmatize, POS tag and derive constituency
structures using Stanford CoreNLP (Manning et al.,
2014). We then extract the following linguistic fea-
tures from annotations and raw text. The following
example features are based on D137 in Figure 2.
Unigram Lemma/POS. We use lemma com-
bined with POS tags to distinguish word
senses. E.g.,, lemmapos_building/NN and
lemmapos brick/NNS in D137.

Bigram Lemma. E.g, bigram_the-brick
and bigram_side-of in D137.

Syntactic Structure. Following Reitter et al.
(2006b), we take all the subtrees from a
constituency parse tree (excluding the leaf
nodes that contain words) as features. E.g.,
syntax_VP->VBP+PP and syntax_ ADJP->
DT+JJ in D137. The difference is that we use
Stanford Parser rather than hand annotations.
Referring Expression. Referring expressions
are usually noun phrases. We start by tak-
ing all constituency subtrees with root NP,
then map the subtrees to their actual phrases
in the text and remove all articles from the
phrase, e.g., referexp_little-concrete

SThe filtering process removes 48.1% original dialog turns,
but only 12.6% of the words. Filtered dialogs have 3 to 85
dialog turns each.
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and referexp_.math-building in D137.
Hedge/Discourse Marker. Hedges are mitigating
words used to lessen the impact of an utterance,
such as “actually” and “somewhat”. Discourse
markers are words or phrases that manage the flow
and structure of discourse, such as “you know” and
“I mean”. We construct a dictionary of hedges
and discourse markers, and use string matching
to extract features, e.g., hedge_you-know and
hedge_like in D137.

LIWC. Linguistic Inquiry and Word Count (Pen-
nebaker et al., 2001) is a text analysis program
that counts words in over 80 linguistic (e.g., pro-
nouns, conjunctions), psychological (e.g., anger,
positive emotion), and topical (e.g., leisure, money)
categories. E.g., liwc_second-person and
liwc_informal in D137. Because DAS fea-
tures are binary, features such as Word Count and
Number of New Lines are excluded.

Personality LIWC. Previous work reports for
each LIWC feature whether it is significantly cor-
related with each Big Five trait (Mairesse et al.,
2007) on conversational data (Mehl et al., 2006).
For each trait, we create feature sets consisting of
such features. See Table 2.

Personality | # | Example Features

Extraversion 15 | Positive Emotion, Swear
Words

Emotional Stability 14 | Anger, Articles

Agreeable 16 | Assent, Insight

Conscientious 17 | Fillers, Nonfluencies

Open to Experience | 12 | Discrepancy, Tentative

Table 2: Number of LIWC features for each per-
sonality trait and example features.

5 Experiments on Modeling Adaptation

In this section, we apply our DAS measure on the
corpora introduced in Section 3.

5.1 Validity Test: Original vs. Randomized
Dialogs

We first establish that our novel DAS measure is
valid by testing whether it can distinguish dialogs
in their original order vs. dialogs with randomly
scrambled turns (the order of dialog turns are ran-
domized within speakers), inspired by similar ap-
proaches in previous work (Gandhe and Traum,
2008; Ward and Litman, 2007; Barzilay and Lap-
ata, 2005). We calculate DAS scores for original
dialogs and randomized dialogs using target=Both



| # | Feature Sets | Original Random Row | Feature Sets | AWC WAC MPT SWBD
) Unigram + Bigram 0.10 0.07 1 Lemma/POS | 0.14 0.15 029 0.28
= 48 | All but LIWC 0.13 0.10 2 Bigram 0.04 0.04  0.01 0.07
< LIWC 0.48 0.46 3 Syntax 0.17 0.14 0.11 0.28
) Unigram + Bigram 0.22 0.19 4 EeferExp O.(1)3 0'(1)3 O'(l)l 0'31
Z| 36 | AllbutLIWC 0.18  0.16 > | Hedge 017 019 0.8 025
= L IWC 0.55 0.54 6 | LIWC 048 055 053 071
- ] 7 Extra 0.40 0.46  0.30 0.58
= Unigram + Bigram | 0.27 0.24 § [ Emot 043 050 038 072
& 128 | All but LIWC 0.20 0.18
s LIWC 054 054 9 Agree 0.47 0.51 0.44 0.71
: : 10 Consc 0.38 0.44 0.20 0.55
) Unigram + Bigram 0.18 0.17 11 Open 044 044 031 0.73
§ 1126 | All but LIWC 0.20 0.19
Z LIWC 0.67 0.66 Table 4: Average DAS scores for each feature set.

Table 3: Number of dialogs in four corpora, and av-
erage DAS scores of different feature sets for origi-
nal and randomized dialogs. Bold numbers indicate
statistically significant differences (p < 0.0001)
between DAS scores for original and randomized
dialogs in paired ¢-tests .

(Sec. 2) to obtain overall adaptation scores for both
speakers.

We first test on lexical features (unigram and
bigram) as in previous work. Then we add addi-
tional linguistic features (syntactic structure, refer-
ring expression, and discourse marker). These five
features (see Section 4) are referred to as “all but
LIWC”. Finally, we test DAS validity using the
higher level LIWC features.

We perform paired t-tests on DAS scores for
original dialogs and DAS scores for randomized di-
alogs, pairing every original dialog with its random-
ized dialog. Table 3 shows the number of dialogs in
each corpus, the average DAS scores of all dialogs
within the corpus and p-values of corresponding
t-tests. Although the differences between the av-
erage scores are relatively small, the differences
in almost all paired t-tests are extremely statisti-
cally significant (cells in bold, p < 0.0001). The
paired ¢-test on MPT using LIWC features shows a
significant difference between the two test groups
(p < 0.05). The original dialog corpora achieve
higher average DAS scores than the randomized
corpora for all 12 original-random pairs. The re-
sults show that DAS measure is sensitive to dialog
turn order, as it should be if it is measuring dialog
coherence and adaptation.

5.2 Adaptation across corpora and across
features

This experiment aims to broadly examine the dif-
ferences in adaptation across different corpora and
feature sets. We first compute DAS on the whole
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dialog level for each feature set from Section 4,
and then calculate the average across the corpus.
We use target=Both (Sec 2) to obtain an overall
measure of adaptation and leave calculating fine-
grained DAS measures to Section 5.3. Table 4
provides results. We will refer to features in row
1 to 6 as “linguistic features” and row 7 to 11 as
“personality features”.

Comparing columns, we first examine the DAS
scores across different corpora. All p-values re-
ported below are from paired ¢-tests. The two most
similar corpora, the AWC and WAC, show no sig-
nificant difference on linguistic features (p = 0.43).
At the same time, the AWC and WAC do differ
from the other two corpora. This demonstrates
that the DAS reflects real similarities and differ-
ences across corpora. MPT shows lower DAS
scores on all linguistic features except for lemma
(word repetition), where it achieves the highest
DAS score. With respect to personality features,
WAC has significantly higher DAS scores than
AWC (p < 0.05), possibly because of the different
experiment settings: college student participants
are more comfortable around their own campus
than in downtown. MPT shows significantly lower
DAS scores on personality features than AWC and
WAC (p < 0.05). This may be because the MPT
setting is the most constrained of the four corpora:
being fixed in topic and location means dialogs
are less likely to be influenced by environmental
factors or to contain social chit chat. SWBD has
the highest DAS scores in all feature sets except
for referring expression. The higher DAS in non-
referring features could be because the social chit
chat allows more adaptation to occur. In addition,
the dialogs we measure in SWBD are backchannel-
filtered. The lower referring expression (respective
to other SWBD scores) could be because SWBD
does not require the referring expressions necessary



for the other three task-related corpora. We posit
that the DAS adaptation models we present can be
used in existing NLG architectures, described in
Sec. 2. The AWC column in Table 4 shows adap-
tation model in the form of a DAS vector obtained
from the ArtWalk Corpus.

Comparing rows, we then examine DAS scores
among different features sets. LIWC has the high-
est DAS score among linguistic features, ranging
from 0.48 to 0.71. While other linguistic fea-
tures are largely content-specific, LIWC consists of
higher level features that cover broader categories,
thus its high DAS scores are expected. The DAS
scores for the lemma feature range from 0.14 to
0.29, followed by Syntactic Structure (0.11 to 0.28),
Hedge (0.17 to 0.25) and Bigram (0.01 to 0.07).
Referring Expression has the lowest DAS score
(0.01 to 0.03), possibly because our automatic ex-
traction of referring expressions creates numerous
subsets of one referring expression. Among per-
sonality features, Emotion Stability, Agreeableness,
and Openness to Experience traits are adapted more
than Extraversion and Conscientiousness. We leave
to future work the question of why these traits have
higher DAS scores.

5.3 Adaptation by Dialog Segment and
Speaker

Our primary goal is to model adaptation at a fine-
grained level in order to provide fine-grained con-
trol of an NLG engine. To that end, we report re-
sults for adaptation models on a per dialog-segment
and per-speaker basis.

Reliable discourse segmentation is notoriously
difficult (Passonneau and Litman, 1996), thus we
heuristically divide each task-oriented dialog into
segments based on number of destinations on the
map: this effectively divides the dialog into sub-
tasks. Since each dialog in SWBD only has one
topic, we divide SWBD into 5 segments.” We com-
pute DAS for each segment, and take an average
across all dialogs in the corpus for each segment.

We compare all LIWC features vs. extraversion
LIWC features because they provide high DAS
scores across corpora. We also aim to explore the
dynamics between two conversants on the extraver-
sion scale. Figure 5 in Appendix illustrates how
DAS varies as a function of speaker and dialog
segment. In AWC, scores for all LIWC features

"To ensure two way adaptation exists in every segment
(both speaker A adapting to B, and B adapting to A), the
minimum length (number of turns) of each segment is 3. Thus
we only work with dialogs longer than 15 turns in SWBD.
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slightly decrease as dialogs progress (Fig. 5(a)),
while extraversion features show a distinct increas-
ing trend with correlation coefficients ranging from
0.7 to 0.86 (Fig. 5(b)), despite being a subset of all
LIWC features.® Average DAS displays the same
decreasing trend in all and extraversion LIWC fea-
tures for SWBD (Fig. 5(g) and 5(h)). We speculate
that this might be due to the setup of SWBD: as the
dialogs progress, conversants have less to discuss
about the topic and are less interested. We also
calculate per segment adaptation in WAC and MPT,
but their DAS scores do not show overall trends
across the length of the dialog (Fig. 5(c) to 5(f)).

We also explore whether speaker role and ini-
tiative affects adaptation. We use target=Both, tar-
get=D, and target=F to calculate DAS for each
target.” We hypothesize that directors and follow-
ers adapt differently in task-oriented dialogs. In
all task-oriented corpora (AWC, WAC, and MPT),
we observe generally higher DAS scores with tar-
get=D, indicating that in order to drive the dialogs,
directors adapt more to followers. In SWBD, the
speaker initiating the call (who brings up the discus-
sion topic and may therefore drive the conversation)
generally exhibits more adaptation.

5.4 Adaptation on Different Window Sizes

This experiment aims to examine the trend of DAS
scores as the window size increases. We begin
with a window size of 1 and gradually increase it
to 5. For a window size of n, the target utterance
t is paired with the n-th utterance from a differ-
ent speaker preceding ¢, if any. For example, in
Figure 1, when window size is 3, target D100 is
paired with prime F97; target D99 does not have
any prime, thus no pair is formed.

Similar to Sec. 5.1, we compare DAS scores be-
tween dialogs in their original order vs. dialogs
with randomly scrambled turns. We hypothesize
that similar to the results of repetition decay mea-
sures (Reitter et al., 2006a; Ward and Litman, 2007,
Pietsch et al., 2012), the DAS scores of original di-
alogs would decrease as the window size increases.
We use target=both to obtain overall adaptation
scores involving both speakers, and calculate DAS
with all but the Personality LIWC feature sets in-
troduced in Sec. 4. We first compute DAS on the
whole dialog level for each window size, and then
calculate the average DAS for each window size

8Using Simple Linear Regression in Weka 3.8.1.
°In task-oriented dialogs, D stands for Director, F for Fol-
lower. In SWBD, D stands for the speaker initiating the call.



across the corpus.

Results show that DAS scores for the original
dialogs in all corpora decrease as window size in-
creases, while DAS scores for the randomized di-
alogs stay relatively stable. Figure 6 in Appendix
shows plots of average DAS scores on different
window sizes for original and randomized dialogs.
Plots of the AWC and WAC show similar trends.
Experiments with larger window sizes show that
the original and random scores meet at window
size 6 - 7 (with different versions of randomized di-
alogs). In MapTask, the original and random scores
meet at window size 3 - 4. In SWBD, original and
random scores meet at window size 2.

6 Related Work

Recent measures of linguistic adaptation fall into
three categories: probabilistic measures, repeti-
tion decay measures, and document similarity mea-
sures (Xu and Reitter, 2015). Probabilistic mea-
sures compute the probability of a single linguistic
feature appearing in the target after its appearance
in the prime. Some measures in this category focus
more on comparing adaptation amongst features
and do not handle turn by turn adaptation (Church,
2000; Stenchikova and Stent, 2007). Moreover,
these measures produce scores for individual fea-
tures, which need aggregation to reflect overall
adaptivity (Danescu-Niculescu-Mizil et al., 2011,
2012). Document similarity measures calculate the
similarity between prime and target by measuring
the number of features that appear in both prime
and target, normalized by the size of the two text
sets (Wang et al., 2014). Both probabilistic mea-
sures and document similarity measures require the
whole dialog to be complete before calculation.
Repetition decay measures observe the decay
rate of repetition probability of linguistic features.
Previous work has fit the probability of linguistic
feature repetition decrease with the distance be-
tween prime and target in logarithmic decay mod-
els (Reitter et al., 2006a,b; Reitter, 2008), linear
decay models (Ward and Litman, 2007), and expo-
nential decay models (Pietsch et al., 2012).
Previous work on linguistic adaptation in natu-
ral language generation has also attempted to use
adaptation models learned from human conversa-
tions. The alignment-capable microplanner SPUD
prime (Buschmeier et al., 2009, 2010) uses the rep-
etition decay model from Reitter (2008) as part
of the activation functions for linguistic structures.
However, the parameters are not learned from real
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data. Repetition decay models do well in statistical
parameterized NLG, but is hard to apply to over-
generate and rank NLG. Isard et al. (2006) apply
a pre-trained n-grams adaptation model to gener-
ate conversations. Hu et al. (2014) explore the
effects of adaptation to various features by human
evaluations, but their generator is not capable of
deciding which features to adapt based on input
context. DusSek and Jurcicek (2016) use a seq2seq
model to generate responses adapting to previous
context. They utilize an n-gram match ranker that
promotes outputs with phrase overlap with context.
Our learned adaptation models could serve as a
ranker. In addition to n-grams, DAS could pro-
duce models with any combinations of feature sets,
providing more versatile adaptation behavior.

7 Discussion and Future Work

To obtain models of linguistic adaptation, most
measures could only measure an individual fea-
ture at a time, and need the whole dialog to calcu-
late the measure (Church, 2000; Stenchikova and
Stent, 2007; Danescu-Niculescu-Mizil et al., 2012;
Pietsch et al., 2012; Reitter et al., 2006b; Ward and
Litman, 2007). This paper proposes the Dialog
Adaptation Score (DAS) measure, which can be
applied to NLG because it can be calculated on any
segment of a dialog, and for any feature set.

We first validate our measure by showing that
the average DAS of original dialogs is significantly
higher than randomized dialogs, indicating that it
is sensitive to dialog priming as intended. We then
use DAS to show that feature sets such as LIWC,
Syntactic Structure, and Hedge/Discourse Marker
are adapted more than Bigram and Referring Ex-
pressions. We also demonstrate how we can use
DAS to develop fine-grained models of adaptation:
e.g. DAS applied to model adaptation in extraver-
sion displays a distinct trend compared to all LIWC
features in the task-oriented dialog corpus AWC.
Finally, we show that the degree of adaptation de-
creases as the window size increases. We leave to
future work the implementation and evaluation of
DAS adaptation models in natural language gener-
ation systems.
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Figure 5: Plots of average DAS as the dialogs progress, using all LIWC features vs. extraversion LIWC
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