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Abstract

Disambiguation of potentially idiomatic expressions involves determining the sense of a poten-
tially idiomatic expression in a given context, e.g. determining that make hay in ‘Investment
banks made hay while takeovers shone.’ is used in a figurative sense. This enables automatic
interpretation of idiomatic expressions, which is important for applications like machine transla-
tion and sentiment analysis. In this work, we present an unsupervised approach for English that
makes use of literalisations of idiom senses to improve disambiguation, which is based on the
lexical cohesion graph-based method by Sporleder and Li (2009). Experimental results show that,
while literalisation carries novel information, its performance falls short of that of state-of-the-art
unsupervised methods.

1 Introduction

Interpreting potentially idiomatic expressions (PIEs, for short) is the task of determining the meaning of
PIEs in context.1 In its most basic form, it consists of distinguishing between the figurative and literal
usage of a given expression, as illustrated by hit the wall in Examples (1) and (2), respectively.

(1) Melanie hit the wall so familiar to British youth: not successful enough to manage, but too suc-
cessful for help. (British National Corpus (BNC; Burnard, 2007) - doc. ACP - sent. 1209)

(2) There was still a dark blob, where it might have hit the wall. (BNC - doc. B2E - sent. 1531)

Distinguishing literal and figurative uses is a crucial step towards being able to automatically interpret
the meaning of a text containing idiomatic expressions. It has been shown that idiomatic expressions
pose a challenge for various NLP applications (Sag et al., 2002), including sentiment analysis (Williams
et al., 2015) and machine translation (Salton et al., 2014a; Isabelle et al., 2017). For the latter, it has also
been shown that being able to interpret idioms indeed improves performance (Salton et al., 2014b).

In this work, we use a method for unsupervised disambiguation that exploits semantic cohesion
between the PIE and its context, based on the lexical cohesion approach pioneered by Sporleder and
Li (2009). We extend this method and evaluate it on English data in a comprehensive evaluation frame-
work, in order to answer the following research question: Do contexts enriched with literalisations of
idioms provide a useful new signal for disambiguation?

2 Approach

The disambiguation systems presented here2 are based on the original lexical cohesion graph classifier
developed by Sporleder and Li (2009). Their classifier is based on the idea that the words in a PIE will
be more cohesive with the words in the surrounding context when used in a literal sense than when used

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1The task is also known as token-based idiom detection.
2The code and refined definitions used for implementing these systems are available at https://github.com/hslh/

pie-detection.
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in a figurative sense. This classifier builds cohesion graphs, i.e. graphs of content word tokens in the PIE
and its context, where each pair of words is connected by an edge weighted by the semantic similarity
between the two words. If the average similarity of the complete graph is higher than within the context,
the PIE component words add to overall cohesiveness and thus imply a literal sense for the PIE. If it is
lower, the PIE component words decrease cohesiveness and thus imply a figurative sense. An example
of these graphs is shown in Figure 1.

In the original approach, though, it is only tested whether the literal sense fits or not, by comparing
the full and pruned graph. However, this does not measure whether the figurative sense fits. Ideally, we
would like to compare the fit of the literal and figurative senses directly. We do this by introducing and
using idiom literalisations (Section 2.2).

2.1 Basic Lexical Cohesion Graph
We reimplement the original lexical cohesion graph method with one major modification: instead of
Normalized Google Distance we use cosine similarity between 300-dimensional GloVe word embed-
dings (Pennington et al., 2014). Furthermore, we adapt specifics of the classifier to optimise performance
on the development set. We use only nouns to build the contexts, where the part-of-speech of words is
determined automatically using the spaCy PoS-tagger3, instead of both nouns and verbs. As a context
window, we use two sentences of additional context on either side of the sentence containing the PIE. We
also remove edges between two PIE component words, since those are the same for all instances of the
same type and thus uninformative. Finally, PIEs are only classified as literal if average similarity of the
pruned graph is 0.0005 higher than that of the whole graph, in order to compensate for overprediction of
the literal class.

Figure 1: Three lexical cohesion graphs for the sentence ‘That coding exercise was a piece of cake’, with
their average similarity score. The leftmost figure represents the full graph for the original method, the
middle figure the pruned graph, and the right figure the graph containing the idiom literalisation.

2.2 Idiom Literalisation
Idiom literalisations are literal representations of the PIE’s figurative sense, similar to dictionary defini-
tions of an idiom’s meaning. For example, a possible literalisation of a piece of cake is ‘a very easy task’.
This provides the possibility of building two graphs: one with the original PIE component words, and
one with the original PIE replaced with the literalisation of its idiomatic sense. In this way, we can con-
trast lexical cohesion with a representation of the literal sense to lexical cohesion with a representation
of the figurative sense. If the latter is more cohesive, the classifier will label the PIE as idiomatic, and
vice versa. Figure 1 illustrates this process; the rightmost graph containing the literalisation has higher
cohesion than the original graph, leading to the correct classification of idiomatic. Generally, the change
in average similarity will be small, since the context words (which stay the same) greatly outnumber
the changed PIE component words. However, since we compare the original and the literalised graph
directly, only the direction of the similarity change matters and the size of the change is irrelevant.

In this work, we rely on definitions extracted from idiom dictionaries which were manually refined in
order to make them more concise. For example, the definition ‘Permanently fixed or firmly established;

3https://spacy.io
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not subject to any amendment or alteration.’ for the idiom etched in stone is refined to ‘permanently fixed
or established’, in order to represent the figurative meaning of the idiom more concisely.

3 Experiments

Our research question asks whether literalisations of figurative senses are a useful source of information
for improved disambiguation of PIEs. To provide an answer, we test our lexical cohesion graph with and
without literalisation on a collection of existing datasets (Section 3.1), and evaluate performance using
both micro- and macro-accuracy (Section 3.2).

3.1 Data

In order to provide a comprehensive evaluation dataset, we make use of four sizeable corpora containing
sense-annotated PIEs:4 the VNC-Tokens Dataset (Cook et al., 2008), the IDIX Corpus (Sporleder et al.,
2010), the SemEval-2013 Task 5b dataset (Korkontzelos et al., 2013), and the PIE Corpus.5 An overview
of these datasets is provided in Table 1.

# Types # Instances # Sense labels Source Corpus

VNC-Tokens 53 2,984 3 BNC
IDIX 52 4,022 6 BNC
SemEval-2013 Task 5b 65 4,350 4 ukWaC
PIE Corpus 278 1,050 3 BNC

Combined (development) 299 8,235 2 BNC & ukWaC
Combined (test) 146 3,073 2 BNC & ukWaC

Table 1: Overview of existing corpora of sense-annotated PIEs. The source corpus indicates the cor-
pora from which the PIE instances were selected, either the British National Corpus (Burnard, 2007) or
ukWaC (Ferraresi et al., 2008).

Each corpus has slightly different benefits and downsides: VNC-Tokens only contains verb-noun com-
binations (e.g. hit the road) and contains some types which we would not consider idioms (e.g. have a
future); the IDIX corpus covers various syntactic types and has a large number of instances per PIE
type, but is partly singly-annotated; the SemEval dataset is large and varied, but the base corpus, ukWaC
(Ferraresi et al., 2008), is noisy; the PIE Corpus covers a very wide range of PIE types, but has only
few instances per type and is partly singly-annotated. We combine these four datasets in order to create
a more well-rounded dataset. All labels are normalised to a binary sense label. For PIEs with senses
which do not fit the binary split, such as meta-linguistic, no binary sense label is defined, and we discard
those instances. The same goes for false extractions, i.e. sentences included in the corpus not containing
any PIEs at all. The combined dataset is split into development and test sets using existing splits of the
original datasets. We use the test sets of the original corpora to build the combined test set, which thus
consists of: VNC-Test, IDIX-Double, SemEval-*-Test, and PIE-Test. The remaining subsets, including
both training and development sets, make up the development set.

3.2 Evaluation

Performance is judged by three evaluation measures: macro-averaged accuracy (‘macro-accuracy’),
micro-averaged accuracy (‘micro-accuracy’), and the harmonic mean of the two. Micro-accuracy re-
flects how good the disambiguation system is doing overall. Macro-accuracy serves to ensure that we do
not just optimise on the most frequent types, since some PIE types are much more frequent than others.
By using the harmonic mean of the two, we can rely on a single value to indicate balanced performance.

4We do not include the Gigaword-based corpus of Sporleder and Li (2009), since we currently do not have a license for
Gigaword.

5Corpus available at https://github.com/hslh/pie-annotation
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3.3 Results & Discussion

The results on the development set are displayed in Table 2. Note that the optimal settings
for the literalisation method differ somewhat from those for the original method, as the op-
timal context window is 5 words on each side, instead of 2 sentences, and the optimal
threshold value is +0.005, rather than +0.0005. These values were optimised by evaluating a
range of settings: 0–3 sentences and 1–8 words of context and threshold values from the set
{−0.05,−0.01,−0.005,+0.0001,+0.0005,+0.001,+0.005,+0.01,+0.05}. We also compare to a
most frequent sense baseline.

Macro-Accuracy (%) Micro-Accuracy (%) Harmonic Mean (%)

most frequent sense 73.25 57.89 64.67

original 72.74 63.78 67.97
literalisation 71.21 64.94 67.93

Table 2: Results of the original and literalisation-extended cohesion graph classifiers on the combined
development set. Accuracy scores are micro- and macro-averages over PIE types, in addition to the
harmonic mean of the two.

The graph including literalisations achieves an almost identical score to the original method. It has
higher micro-accuracy, but lower macro-accuracy, indicating that it performs better on frequent types
than the original classifier. It underpredicts the idiomatic sense quite strongly, which we compensate for
by using a higher threshold value.

Although both classifiers show similar performance scores, they make the same judgement in only
5,737 (≈ 70%) of 8,235 instances in the dataset. Additionally, in only ≈ 49% of cases both classifiers
are correct, while in ≈ 15% of cases only the original classifier gets it right, and in ≈ 16% of cases,
the literalisation classifier predicts the right label. This indicates that the classifiers have at least some
partially complementary performances, as they use different information sources, yielding potential for
combination; in ≈ 79% of PIE instances, at least one of the classifiers is right.

We combine the classifiers by using the difference in similarity between the two graphs as a confidence
value and selecting the classification with the highest confidence value. Rather than improving over the
scores of the individual classifiers, this yields a macro-accuracy score of 71.88% and a micro-accuracy
of 64.07%, which is squarely in between the scores of the two classifiers. Although the potential for
combination is still there, we can conclude that similarity differences do not make reliable confidence
values, since larger similarity differences do not correlate with more accurate classifications. As such,
the current combination setup yields an average of the two systems, rather than a selection of the best
classifications from each system.

By looking at examples with different classifications, we get additional insight into the differences
between the two classifiers. In some cases, the differences between the average similarity of the pruned
graph, original graph, and the literalised graph are tiny, and any resulting differences are close to random.
In other cases, however, both the advantages and disadvantages of using the literalisations come through
much more clearly and strongly. Example (3) shows a sentence for which the literalisation graph (3-b)
yields the correct classification (idiomatic) and the original graph (3-a) does not. Here, the literalisation
is much more cohesive with the context (feeling-confidence, 0.69; feeling-situation, 0.67) than the idiom
(feeling-feet, 0.37). Conversely, Example (4) is a case for which only the original gets the correct clas-
sification (idiomatic), because of the high similarity between waste and disaster (0.57), which is lost in
the literalisation. The problem here is both related to this specific literalisation, as well as to the more
general issue of idioms which are relatively semantically transparent, since those have higher similarity
between the context and the component words (in this case, waste).

(3) a. In just a couple of days you’ll find your feet and get that special feeling that you belong in
your Club.
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b. In just a couple of days you’ll grow in confidence in a new situation and get that special
feeling that you belong in your Club.

(4) a. These figures move slowly around a terrain apparently laid waste by some great disaster.
b. These figures move slowly around a terrain apparently ravage (sic) by some great disaster.

Splitting out performance by subcorpus shows that the original classifier does better on the VNC-Skewed
dataset with a 13% higher score. Conversely, the classifier using literalisations performs about 10 percent-
age points better on PIE-Train and SemEval-Unknown-Phrases-Dev. The difference on the VNC-Skewed
dataset is likely caused by the fact that it contains several frequent types which we would not consider
PIEs, such as catch (someone’s) attention and have (a) future.6 For these items, there is no clear idiomatic
sense, so adding literalisations hurts, rather than helps, performance.

Since the graph-based classifiers are optimised on the development set and we report results on that
same set, the risk of overfitting exists. Therefore, we evaluate on the unseen combined test set as well.
Results in Table 3 indicate that our models generalise well. In absolute terms, performance is very similar
to that on the development set. Relative to the most frequent sense baseline, the models do better on the
test set than on the development set. In contrast to the identical performance on the development set, the
literalisation classifier does better than the original on the test set.

Macro-Accuracy (%) Micro-Accuracy (%) Harmonic Mean (%)

most frequent sense 70.22 55.47 61.98

original 69.68 65.66 67.61
literalisation 69.80 69.18 69.49

Table 3: Results of the original and literalisation classifiers on the combined test set, compared to a most
frequent sense baseline. Accuracy scores are micro- and macro-averages over PIE types, in addition to
the harmonic mean of the two.

4 Comparison to Related Work

Ideally, we would be able to compare approaches from different papers directly, but this is often im-
possible. The lack of an established evaluation framework means that reported results for PIE disambig-
uation are often on different (splits of) datasets, obtained in different ways (cross-validation, leave-one-
out) using a range of different metrics (micro- and macro-averaged accuracy and F1-score). For example,
Sporleder and Li (2009) report micro-accuracy and micro-F1 scores on the Gigaword corpus, whereas
Fazly et al. (2009) report macro-accuracy scores on the VNC-Tokens dataset. A potential solution to this
problem was provided by SemEval-2013 Task 5b on PIE disambiguation (Korkontzelos et al., 2013), as
results from different participants could be directly compared. However, this dataset does not seem to
have been used by the community since.

Nevertheless, we compare to two other unsupervised approaches, the canonical form classifier
(CForm) by Fazly et al. (2009), and the k-means clustering approach (KMeans) of Gharbieh et al. (2016).
The CForm classifier is based on the assumption that idiomatic PIEs show less variability than literal
ones. It uses a set of canonical forms for each idiom (e.g. make a mark, make one’s mark), and labels
all PIEs occurring in a canonical form as idiomatic, and literal otherwise. The KMeans classifier builds
vector representations of both the PIE and its immediate context based on word embeddings, and clusters
those using the k-means algorithm. It then uses the CForm classifier to label the clusters, and propagates
the majority label for each cluster to all PIEs in that cluster. Both are evaluated on the test set of the VNC
dataset using macro-accuracy by Gharbieh et al. (2016), so we do the same with our system to facilitate
comparison.

6Both items are not in the Oxford Dictionary of English Idioms (Ayto, 2009), nor in Wiktionary (https://en.
wiktionary.org/wiki/Category:English_idioms), which is a lot less stringent.



183

On VNC-Test, the original classifier scores 66.11% macro-accuracy and the literalisation classifier
scores 64.67%, compared to 73.7% for CForm and 78.1% for KMeans. As such, our classifiers are
outperformed by existing systems. One possible explanation is that our classifiers are optimised on a
combination of both macro- and micro-accuracy, whereas previous work focuses only on the macro-
averaged score. In addition, Gharbieh et al. (2016) optimise their classifier on the test set, whereas it was
completely unseen in our case. Nevertheless, even using development set parameter values, their method
achieves a macro-accuracy of 76.5%, which is still clearly higher.

5 Conclusion

In this work, we reimplemented and optimised the original lexical cohesion graph classifier for disam-
biguation of potentially idiomatic expressions and extended it to make use of literalisations of PIE’s
figurative senses. By evaluating the systems in a comprehensive evaluation setup, we aimed to answer
questions about the contribution of literalisations as an information source.

We have found that the current approach comparing the cohesion of PIEs and their literalisations by
itself is not enough to outperform the original lexical cohesion graph classifier. However, both classifiers
do well on different subsets of the data, meaning that literalisations are a complementary novel inform-
ation source and that there is potential for combining the two types of classification to achieve better
performance. Using average similarity differences as confidence values to pick one classifier over the
other for a particular instance proved ineffective, but a more advanced setup combining the features of
the two classifiers could yield a more effective combination.

Moreover, literalisations are cheap to acquire and are available for many PIE types and for any lan-
guage for which an idiom dictionary exists. Although we use manually created definitions, these can also
be acquired and refined automatically, as done by Liu and Hwa (2016). A side benefit of considering
both figurative and literal senses is that separate scores can be assigned for both senses. This could be
used for detecting difficult cases like dual meanings or puns, since those cases would get high scores for
both senses.

In future work, our aim is to further improve these cohesion graph-based classifiers by exploring dif-
ferent similarity measures, such as those tested by Ehren (2017) for German. Another promising avenue
is to use more compositional representations of contexts and literalisations (see also Gharbieh et al.,
2016). This would also allow us to use the information from verbs and modifiers more effectively, as in
its current form our method relies on word-to-word comparisons and only nouns contribute to perform-
ance. Finally, we find that, for evaluation, using both micro- and macro-averaged metrics is an important
way of ensuring balanced performance on both infrequent and frequent PIE types, in addition to using a
wide range of corpora.
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