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Abstract

Multiword expressions have posed a challenge in the past for computational linguistics since
they comprise a heterogeneous family of word clusters and are difficult to detect in natural lan-
guage data. In this paper, we present a fMRI study based on language comprehension to provide
neuroimaging evidence for processing MWEs. We investigate whether different MWEs have
distinct neural bases, e.g. if verbal MWEs involve separate brain areas from non-verbal MWEs
and if MWEs with varying levels of cohesiveness activate dissociable brain regions. Our study
contributes neuroimaging evidence illustrating that different MWEs elicit spatially distinct pat-
terns of activation. We also adapt an association measure, usually used to detect MWEs, as a
cognitively plausible metric for language processing.

1 Introduction

This study focuses on how Multiword Expressions are processed in the brain and provides a functional lo-
calization of different facets of MWEs using neuroimaging data. If MWEs are indeed non-compositional,
then perhaps their comprehension proceeds through a single, unitary retrieval operation, rather than some
kind of multistep compositional process. If we assume a single retrieval operation for these MWEs, how
do the differences in their grammatical category affect their processing? Are they observable on the
neuronal level?

Proceeding from this general hypothesis, this paper investigates the neural substrates of different types
of MWEs and MWEs with different levels of compositionality. Firstly, verbal MWEs are distinguished
from non-verbal MWEs and the neural bases of each are compared. Additionally, to model lexical co-
hesivenss of MWEs we use Pointwise Mututal Information, PMI (Church and Hanks, 1990), which is
an association measure and traditionally used to identify MWEs. This gradient metric of cohesiveness
within MWEs is correlated with brain activity to illustrate whether MWEs with varying degrees of com-
positionality evoke different patterns of activation in the brain. In this way, we provide further insight
about MWE processing during natural language comprehension.

2 Background

2.1 Previous MWE Processing studies
MWE comprehension has been shown to be distinct from other kinds of language processing. For in-
stance, it is well-established at the behavioural level that MWEs are produced and understood faster
than matched control phrases due to their frequency, familiarity, and predictability (Siyanova-Chanturia
and Martinez, 2014), in accordance with incremental processing (Hale, 2006). This would follow if
MWEs were remembered as chunks, in the sense of Miller (1956) that was later formalised by Laird,
Rosenbloom and Newell (1986; 1987).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.



7

Eye-tracking and EEG work further documents this processing advantage across a wide range of
MWE sub-types, e.g.

• Binomials (Siyanova-Chanturia et al., 2011b),

• Phrasal verbs (Yaneva et al., 2017),

• Complex prepositions (Molinaro et al., 2013; Molinaro et al., 2008),

• Nominal compounds (Molinaro and Carreiras, 2010; Molinaro et al., 2012),

• Lexical bundles (Tremblay and Baayen, 2010; Tremblay et al., 2011),

• Idioms (Underwood et al., 2004; Siyanova-Chanturia et al., 2011a; Strandburg et al., 1993; Laurent
et al., 2006; Vespignani et al., 2010; Rommers et al., 2013).

For example, Siyanova-Chanturia et al. (2011b), found their eye-tracking results illustrate that bino-
mial MWEs such as bride and groom are processed faster that the reversed three-word phrase groom and
bride, due to the high-frequency nature of the former expression.

However, previous work has focused on a particular subtype of MWEs and to our knowledge, none of
them have implemented a fMRI study of MWEs within a naturalistic text to either contrast between dif-
ferent categories of MWEs or model the cohesiveness within them. Recent computational work (Savary
et al., 2017; Cholakov and Kordoni, 2016; Gharbieh et al., 2016; Uresova et al., 2016) has focused on
verbal MWEs in order to identify them within a corpus, rather than study how they are processed in a
naturalistic setting.

2.2 MWEs and Compositionality
The name MWE loosely groups a wide variety of linguistic phenomena including idioms, perfunc-
tory greetings, character names, and personal titles. What unifies cases of MWEs is the absence of a
wholly compositional linguistic analysis; they are “expressions for which the syntactic or semantic prop-
erties of the whole expression cannot be derived from its parts” (Sag et al., 2002). The naturalistic story
used as a stimulus in this study includes various types of MWEs and some examples from the stimulus,
The Little Prince are given below. The bold expressions were identified using a MWE analyzer, ex-
plained further in §4.2. Over half of the attestations in the text are headed by a verb and can be labelled
as VPs (see §5.2.1). These encompass verb participle constructions, light verb constructions, and verb
nominal constructions among others. The remaining attestations are a mixture of nominal compounds,
greetings, personal titles, character names, and complex prepositions.

(1) So I thought a lot about the adventures of the jungle and in turn, I managed with a coloured
pencil to make my first drawing.

(2) My little fellow, I don’t know how to draw anything except boa constrictors, closed and open.

(3) When I drew the baobabs, I was spurred on by a sense of urgency.

(4) ‘What are you doing there?’, he said to the drinker who he found sitting in silence in front of a
number of empty bottles and a number of full bottles.

(5) You must see to it that you regularly pull out the baobabs as soon as they can be told apart from
the rose bushes to which they look very similar to when they are young.

(6) “Good morning”, said the little prince politely, who then turned around, but saw nothing.

However, MWEs cannot be strictly binarized as compositional and non-compositional. These expres-
sions fall along a graded spectrum of compositionality. To capture the varying degrees of compositional-
ity within MWEs, we use an association measure, known as Pointwise Mutual Information (PMI). While
PMI scores are commonly used in computational linguistics to identify MWEs as ngrams with higher
scores are likely to be MWEs (Evert, 2008), in this study they are utilized as a gradient predictor to de-
scribe the the lexical cohesiveness of MWEs. Intuitively, its value is high when the word sequence under
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consideration occurs more often together than one would have expected, based on the frequencies of the
individual words (Manning et al., 1999). More formally, PMI is a log-ratio of observed and expected
counts:

PMI = log2
c(w1

n)

E(w1
n)

(1)

MWEs can receive positive or negative PMI scores which indicate cohesion or repulsion respectively
between the words in a sequence (Church and Hanks, 1990). MWEs that receive a higher PMI score
are seen as lexically more cohesive, which is interpreted as more noncompositional (less compositional).
Thus, these scores are repurposed in this study to describe the cohesive and noncompositional aspect
of MWEs and utilized to obtain a quantifiable metric to correlate with the fMRI signal. Krenn (2000)
also suggests that association measures such as PMI and Dice’s coeeficient (Dice, 1945; Sørensen, 1948;
Smadja et al., 1996) are better-suited to identify high-frequency collocations whereas other association
measures such as log-likelihood are better at detecting medium to low frequency collocations. Since
MWEs are inherently high-frequency collocations, we chose PMI as a metric to describe the strength of
association between these word clusters.

3 Research Questions

To summarize, this study investigates the following:

• Are the differences between the grammatical categories of MWEs observable at the cerebral level?
Does processing of verbal MWEs implicate separate brain areas from non-verbal MWEs? Specif-
ically, if the strong relationship between verbs and their arguments are encoded in different brain
areas compared to non-verbal MWEs featuring no argumental structure? (c.f. Analysis 1 in §5.2.1 )

• Do MWEs with varying levels of cohesiveness tap into different cognitive resources? For example,
are MWEs with higher PMI scores processed differently from MWEs with lower scores? Do they
activate dissociable brain regions? (c.f. Analysis 2 in §5.2.2 )

4 fMRI study

4.1 Method

We follow Brennan et al., (2012) in using a spoken narrative as a stimulus. Participants hear the story
over headphones while they are in the scanner. The sequence of neuroimages collected during their
session becomes the dependent variable in a regression against word-by-word predictors, derived from
the text of the story.

4.2 Stimuli & MWE Identification

The audio stimulus was Antoine de Saint-Exupéry’s The Little Prince, translated by David Wilkinson
and read by Nadine Eckert-Boulet. It constitutes a fairly lengthy exposure to naturalistic language,
comprising 15,388 words and lasting over an hour and a half.

Within this text, 742 MWEs were identified using a transition-based MWE analyzer (Al Saied et al.,
2017). Al Saied et al. use unigram and bigram features, word forms, POS tags and lemmas, in addition
to features such as transition history and report an average F-score 0.524 for this analyzer across 18
different languages which reflects robust cross-linguistic performance. For an illustrated example of the
MWE identification process with this analyzer, please see the Appendix. The analyzer was trained on
examples from the Children’s Book Test, CBT (Hill et al., 2015) from the Facebook bAbI project to keep
the genre consistent with our literary stimulus. This corpus consists of text passages that are drawn from
the Children’s section of Project Gutenberg, a free online text repository. External lexicons were used
to supplement the MWEs found with the analyzer. The external lexicons included the Unitex lexicon
(Paumier et al., 2009), the SAID corpus (Kuiper et al., 2003), the Cambridge International Dictionary of
Idioms (White, 1998), and the Dictionary of American Idioms (Makkai et al., 1995). While 742 MWEs
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might seem like a restricted sample, this data was acquired with experimental constraints since our fMRI
study was almost two hours long which is on the longer end for similar neuroimaging studies.

4.3 Participants

Participants were fifty-one volunteers (32 women and 19 men, 18-37 years old) with no history of psy-
chiatric, neurological, or other medical illness or history of drug or alcohol abuse that might compromise
cognitive functions. All strictly qualified as right-handed on the Edinburgh handedness inventory (Old-
field, 1971). They self-identified as native English speakers and gave their written informed consent prior
to participation, in accordance with Cornell University IRB guidelines.

4.4 Presentation

After giving their informed consent, participants were familiarized with the MRI facility and assumed
a supine position on the scanner gurney. The presentation script was written in PsychoPy peirce:2007.
Auditory stimuli were delivered through MRI-safe, high-fidelity headphones (Confon HP-VS01, MR
Confon, Magdeburg, Germany) inside the head coil. The headphones were secured against the plastic
frame of the coil using foam blocks. Using a spoken recitation of the US Constitution, an experimenter
increased the volume until participants reported that they could hear clearly. Participants then listened
passively to the audio storybook for 1 hour 38 minutes. The story had nine chapters and at the end of
each chapter the participants were presented with a multiple-choice questionnaire with four questions
(36 questions in total), concerning events and situations described in the story. These questions served
to confirm participants’ comprehension. They were viewed via a mirror attached to the head coil and
answered through a button box. The entire session lasted around 2.5 hours.

4.5 Data Collection

Imaging was performed using a 3T MRI scanner (Discovery MR750, GE Healthcare, Milwaukee, WI)
with a 32-channel head coil at the Cornell MRI Facility. Blood Oxygen Level Dependent (BOLD) signals
were collected using a T2-weighted echo planar imaging (EPI) sequence (repetition time: 2000 ms, echo
time: 27 ms, flip angle: 77deg, image acceleration: 2X, field of view: 216 x 216 mm, matrix size 72
x 72, and 44 oblique slices, yielding 3 mm isotropic voxels). Anatomical images were collected with a
high resolution T1-weighted (1 x 1 x 1 mm3 voxel) with a Magnetization-Prepared RApid Gradient-Echo
(MP-RAGE) pulse sequence.

5 Data Analysis

5.1 Preprocessing

fMRI data is acquired with physical, biological constraints and preprocessing allows us to make adjust-
ments to improve the signal to noise ratio. Primary preprocessing steps were carried out in AFNI version
16 (Cox, 1996) and include motion correction, coregistration, and normalization to standard MNI space.
After the previous steps were completed, ME-ICA (Kundu et al., 2012) was used to further preprocess
the data. ME-ICA is a denoising method which uses Independent Components Analysis to split the T2*-
signal into BOLD and non-BOLD components. Removing the non-BOLD components mitigates noise
due to motion, physiology, and scanner artifacts (Kundu et al., 2017).

5.2 Statistical Analysis

The General Linear Model (GLM) typically used in fMRI data analysis is a hierarchical model with
two levels (Poldrack et al., 2011). At the first level, the data for each subject is modelled separately
to calculate subject-specific parameter estimates and within-subject variance such that for each subject,
a regression model is estimated for each voxel against the time series. The second-level model takes
subject-specific parameter estimates as input. It uses the between-subject variance to make statistical in-
ferences about the larger population.

The research questions presented above in §3 motivate two statistical analyses. The first analysis
localizes verbal MWEs and non-verbal MWEs to see if they activate spatially different networks in the
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brain. The second analysis investigates MWEs along a quantitative gradient of lexical cohesion. Both
analyses employ the GLM, and were carried out using SPM12 (Friston et al., 2007). The predictors were
convolved using the canonical HRF in SPM. For both of these analyzes, the MWE candidates were taken
to be the expressions from the transition-based analyzer (as described in §4.2).

5.2.1 Analysis 1: Verbal MWEs vs. Non-verbal MWEs
We regressed the word-by-word predictors described below against fMRI timecourses recorded during
passive story-listening in a whole-brain analysis. For each of the 15,388 words in the story, their times-
tamps were estimated using Praat TextGrids (Boersma, 2002). MWEs were identified, as described in
§4.2 and the presence/absence of verbal expression yielded two categories of MWEs (i.e. 56% verbal vs.
44% non-verbal). The Stanford POS tagger and the NLTK POS tagger were used to annotate the words
within the MWEs with their grammatical categories (Bird and Loper, 2004; Manning et al., 2014). Ad-
ditionally, we entered four regressors of non-interest into the GLM analysis (SPM12): word-offset, word
frequency, pitch, intensity which serve to improve the sensitivity, specificity and validity of activation
maps (Bullmore et al., 1999; Lund et al., 2006). To control for sentence-level and phrase-level composi-
tional processes, we included a regressor formalizing syntactic structure building based on a bottom-up
parsing algorithm (Hale, 2014), as determined by the Stanford parser (Klein and Manning, 2003). Con-
trolling for structural composition allows us to isolate and focus our investigation on noncompositional
processing, as in MWEs. These regressors were not orthogonalized.

5.2.2 Analysis 2: Cohesiveness within MWEs
Analysis 2 uses the same predictors as in Analysis 1, except that the categorical indicators for MWEs is
replaced with the gradient predictor, PMI. All the 742 MWEs that were annotated with a 1 in Analysis 1
are in Analysis 2 marked with their PMI score. This score is based on corpus frequency counts from the
Corpus of Contemporary English (Davies, 2008), and were calculated using mwetoolkit (Ramisch et
al., 2010; Ramisch, 2012). These regressors were also not orthogonalized.

5.2.3 Group-level Analysis
In the second-level group analysis, each contrast was analyzed separately at the group-level. An 8 mm
FWHM Gaussian smoothing kernel was applied on the contrast images from the first-level analysis to
counteract inter-subject anatomical variation. All the group-level results reported in the next section
underwent FWE voxel correction for multiple comparisons which resulted in T-scores > 5.3.

6 Results

Behavioural results of the comprehension task showed attentive listening to the auditory story presenta-
tion. Across 51 participants, average accurate responses to the comprehension questions was 90% (SD =
3.7%).

6.1 Group-level results for Verbal MWEs vs Non-verbal MWEs

The main effect for presence of MWEs elicited activation mainly in bilateral Supramarginal Gyrus,
right Angular Gyrus, right MFG, and right Precuneus Cortex (Fig. 1A). Whole-brain contrasts show
that these two types of MWEs activate different brain regions with no overlap. Verbal MWEs appear
right-lateralized compared to non-verbal ones in IPL and in IFG triangularis (Fig.1B). The opposite con-
trast yielded a mostly right-lateralized and wider pattern of activation, including bilateral Supramarginal
Gyrus extending to STG and right SMA together with smaller activation clusters in Pars Opercularis and
MTG (Fig. 1B). Contrasts were inclusively masked with the main effect of all MWEs.

6.2 Group-level results for Lexical Cohension with MWEs

Increasing cohesiveness, as seen through positive activation with PMI (Fig. 2, in purple), elicits the
Precuneus and Supplementary Motor Area, while decreasing cohesiveness, as seen through negative
activation with PMI (Fig. 2, in orange), correlates with activity in well-known nodes of the language
network, such as Broca’s area and the posterior Temporal Gyrus.
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Figure 1: (A): Whole brain main effect for MWEs in blue. (B): Contrast images with significant clusters
for [Verbal MWEs > Non-verbal MWEs] in pink and for [Nonverbal MWEs > Verbal MWEs] in green.

Regions Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

Verbal MWEs >Non-verbal MWEs
R IFG Pars Triangularis 71 46 36 14 0.000 7.38
R Inferior Parietal Lobule 57 50 -40 52 0.002 6.38

Non-verbal MWEs >Verbal MWEs
R Angular Gyrus 585 56 -42 14 0.000 9.43
R Supplementary Motor Area 235 12 20 60 0.000 8.91
L Cerebellum 58 -22 -72 -30 0.002 7.85
L Supramarginal Gyrus 32 -60 -50 34 0.001 6.50
R IFG Pars Triangularis/Opercularis 28 56 22 8 0.001 6.51

Table 1: Significant cluster for contrasts between verbal MWEs and non-verbal MWEs after FWE voxel
correction for multiple comparisons with p < 0.05. Peak activation is given in MNI Coordinates.

7 Discussion & Further Work

The results from Analysis 1 provide evidence that MWEs activate areas consistently reported as the lex-
ical semantic network, such as Supramarginal, Parietal areas, and SMA (Binder et al., 2009). MWEs
mostly implicate a right-lateralized network while contrastively, compositional processes have been es-
sentially linked to left lateralization (Friederici and Gierhan, 2013; Bemis and Pylkkänen, 2013; Bemis
and Pylkkänen, 2011). Previous findings also show that the bilateral Supramarginal Gyrus is sensitive to
co-occurence frequency of word combinations as reported previously for semantically meaningful and
frequent word-pairs (Graves et al., 2010; Price et al., 2015).

Additionally, the significant clusters for verbal and non-verbal MWEs illustrate spatially distinct pat-
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Figure 2: Significant cluster for the increasing and decreasing cohesion measure of MWEs after FWE
voxel correction for multiple comparisons with p < 0.05 and cluster-extent threshold (k > 50) for display
purposes. Peak activation is given in MNI Coordinates.

Regions for PMI Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak-level)

Correlated with increasing MWE cohesion
R Precuneus Cortex 263 10 -50 36 0.000 7.30

R Precuneus Cortex 10 -48 24 0.000 5.84
R Superior Frontal Gyrus/Supplementary Motor Area (BA6) 154 10 22 68 0.000 6.34

Correlated with decreasing MWE cohesion
L IFG Pars Triangularis 448 -46 36 8 0.000 8.01
R IFG Pars Orbitalis/Middle Frontal Gyrus 117 32 38 -12 0.000 7.29
L Posterior Middle Temporal Gyrus 53 -62 -52 2 0.000 6.76
L IFG Pars Orbitalis/Middle Frontal Gyrus 67 -36 38 -16 0.000 6.62

Table 2: Significant cluster for the increasing and decreasing cohesion measure of MWEs after FWE
voxel correction for multiple comparisons with p < 0.05. Peak activation is given in MNI Coordinates.

terns of activation and a dorso-ventral gradient is observed in Brocas area for verbal versus non-verbal
MWEs. Activation patterns for verbal MWEs suggest that verb-argument selectional relations in frequent
verbal expressions exclusively involve right hemisphere activity in Brocas area and IPL.

In the case of non-verbal MWEs, we do not make a strong conclusion since it is a mixed bag of
nominal compounds, complex prepositions, greetings, personal titles among other types. We did not
contrast between verbal and nominal MWEs since our dataset is skewed towards verbal MWEs and we
have very few attestations of nominal MWEs in the text (< 7%).

Our results from Analysis 2 show that highly cohesive MWEs implicate the Precuneus and the SMA,
suggesting that only truly lexicalized linguistic expressions rely on these areas rather than traditional
frontal and temporal nodes of the language network. These areas have been implicated in memory
and naming tasks (Crosson, 2013; Halsband et al., 2002). Less cohesive MWEs activate core areas
of the language network implicated in composition (Fedorenko et al., 2016; Friederici and Gierhan,
2013; Pallier et al., 2011; Snijders et al., 2009) which suggests that less cohesive MWEs are processed
compositionally and are not retrieved as a unit.

Apart from an association measure like PMI, there are alternate approaches to describes MWEs such
as word space models (based on distributional semantics) which could also serve as a metric of compo-
sitionality for these noncompositional word clusters. This type of metric would utilize the distributional
patterns of words collected over large text data to represent semantic similarity between words in terms
of spatial proximity (Sahlgren, 2006). However, in the current study we were not trying to model the
semantic opacity of these expressions but that could be an area to explore in the future to investigate
another aspect of MWEs.

This study only included native speakers of English as participants and is part of a larger project inves-
tigating MWEs cross-linguistically to compare if they are processed similarly. Another future research
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direction would be to replicate the same experiment with non-native speakers to study how early or late
acquisition of English would impact the neural bases recruited in processing these noncompositional
expressions.

Another approach to illustrate this gamut of compositionality would be to compare a compositional
expression like a VP against a noncompositional verbal MWE (e.g. kick the ball vs. kick the bucket.
Morphosyntactically, these would be structurally similar yet they should be processed differently if our
hypothesis about the neurocognitive mechanisms underlying language processing is correct. Based on
our prediction, the neuroimaging data should illustrate a spatial dissociation between compositional VPs
and noncompositional verbal MWEs.

8 Conclusion

Our results point to a spatial differentiation between verbal MWEs and non-verbal MWEs since they
localize to different areas of the brain. Thus, this study provides neuroimaging evidence of different
types of MWEs. Additionally, it also illustrates that the grammatical category of the words inside MWEs
is crucial to how they are processed in the brain. For example, in the verbal MWEs scenario, the word
clusters headed by a verb activate spatially different regions from non-verbal MWEs, plausibly due to
the inherent argument structure present in verbal MWEs. Furthermore, this result illustrates that even
within these noncompositional verbal expression, there is an aspect of argument structure composition
within its subparts.

Furthermore using PMI as a gradient predictor shows that highly cohesive MWEs and less cohesive
MWEs tap into different cognitive resources, as evidenced through their separate neural correlates. This
suggests a difference between processing truly lexicalized MWEs in contrast to MWEs which are possi-
bly analyzed compositionally. Lastly, one of the main contributions of this study is in repurposing PMI,
an association measure to describe MWEs in terms of cohesion and thus showing that they are a cog-
nitively informative metric to model cohesiveness and compositionality within word clusters in natural
language.
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Appendix

Overview of the MWE identification, as per Al Saied et al., (2017):

Figure 1: Identifying the multiword expression see to it. Panel (A) shows the context in which the MWE
occurs. Identification in this case proceeds on the basis of four Decisions, numbered 1 through 4. The
first three Decisions mark see , to and it respectively as candidate words. With the fourth Decision,
the entire MWE is identified. The sorts of text-properties influencing Decisions 1 and 4 are shown in
panels (B) and (C) respectively. These feature templates encourage the probabilistic classifier (panel D)
to either mark or not. Panel (E) offers a closer look at the word to in terms of particular features that
either encourage or discourage marking. Because the coefficient values are higher on the features that
favour marking, the classifier chooses to mark to as a candidate for inclusion in the MWE.


