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Abstract

Morphological analysis of morphologically rich and low-resource languages is important to both
descriptive linguistics and natural language processing. Field efforts usually procure analyzed
data in cooperation with native speakers who are capable of providing some level of linguis-
tic information. Manually annotating such data is very expensive and the traditional process is
arguably too slow in the face of language endangerment and loss. We report on a case study
of learning to automatically gloss a Nakh-Daghestanian language, Lezgi, from a very small
amount of seed data. We compare a conditional random field based sequence labeler and a
neural encoder-decoder model and show that a nearly 0.9 F1-score on labeled accuracy of mor-
phemes can be achieved with 3,000 words of transcribed oral text. Errors are mostly limited to
morphemes with high allomorphy. These results are potentially useful for developing rapid an-
notation and fieldwork tools to support documentation of other morphologically rich, endangered
languages.

1 Introduction

Thousands of languages lack documented data necessary to describe them accurately. In the early 1990s
it was suggested that linguistics might be the first academic discipline to preside over the its own demise,
since numbers indicated that as much as 90% of the world’s languages would be extinct by the end
of the 21st century (Krauss, 1992). Linguists quickly responded by developing methodology to record
previously under- or undocumented languages (Himmelmann, 1998). Almost as quickly, they realized
that unannotated data of a language that is no longer spoken is almost as inaccessible as an undocumented
language. Language documentation and the initial descriptive work that often accompanies it is time- and
labor-intensive work, but it is foundational to the study of new languages. It also benefits the community
of speakers by supporting efforts to revitalize or maintain the language. Although the estimated number
of languages in imminent danger of extinction has been reduced (Simons and Lewis, 2013), the task
remains urgent.

Computational linguistics generally considers human annotation prohibitively expensive because it
relies on linguistic expertise (Buys and Botha, 2016). However, employing this expertise has long been
accepted practice in documentary and descriptive linguistics. Documentation data is not produced by a
linguist alone; rather, it is created in close cooperation with native speakers who receive minimal training
in general linguistics and software. The documentation work includes transcription of oral recordings,
translation, then ends with, as descriptive work begins with, interlinearization (i.e. POS-tagging, mor-
pheme segmentation, and glossing). The first task alone may takes an average of 39 times longer than
the original recording, according to a recent survey of field linguists (CoEDL, 2017). No matter how
many oral texts are recorded during a field project, time constraints often mean that only the annotations
required to support a particular short-term goal are completed. For example, the data used in the current
paper was collected by a linguist for his MA thesis. Since his topic was verbs, only the verbs were thor-
oughly annotated. More funds had to be found to hire another native speaker who could simultaneously
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Figure 1: Flowchart of language data production. Descriptive linguists (a) collaborate with native speak-
ers of a language (b) to produce documentary data for all subfields of linguistics, language development
efforts by the community of speakers, and the extension of NLP tools to low-resource languages. A bot-
tleneck of time-consuming annotation (c) keeps much of the data inaccessible to all but the community
of speakers. The models described in this paper (d) attempt to employ semi-automated interlinearization
to increase the trickle of data by .

learn and do basic linguistic analysis. Such manual work is slow and inevitably produces inconsistent
annotations. It is noteworthy that many mistakes are not due to the difficulty of the task but because of its
repetitive nature. In case marking languages, for example, morphemes marking subjects will be found in
practically every clause and those marking objects, dative, or genitive arguments may be nearly as fre-
quent. Only a small percentage of tokens contain unusual and interesting morphological forms. Thus, a
large chunk of this highly time-consuming work is as monotonous to the annotator as it is uninformative
to language science—in short, we are faced with a bottleneck (Holton et al., 2017; Simons, 2013).

After nearly 30 years of emphasis on increasing accessible documentation data, very few computa-
tional tools have been applied to this bottleneck. The most popular software packages designed for
linguistic analysis, ELAN (Auer et al., 2010) and FLEx (Rogers, 2010), provide almost no automated
aid for common, repetitive tasks, although FLEx does copy the annotator’s work onto subsequent tokens
if they are identical to previously analyzed tokens.

To address this problem, we apply machine learning models to two common tasks applied to docu-
mentation data: morpheme segmentation and glossing. The models use about 3,000 words of manually-
annotated data that train sequence models to predict morpheme labels (and glosses). The goal is to
achieve accurate results on more data in less time. A case study on Lezgi [lez] explores three issues as a
first step toward integrating the models into linguistic analysis software. First, can the linguist and native
speaker expect machine learning techniques to successfully widen the data bottleneck after they have
manually annotated a few transcribed texts? Second, could a sequence labeler achieve reasonable accu-
racy using features that are generalizable to most languages? If a feature-based tool could be applied to
several languages without tweaking features in a language-specific fashion, it would be accessible even
to native speakers without linguistic skills who wish to create structured language data. At the same time,
if high accuracy is achieved an agglutinative language like Lezgi, then minimal feature-tweaking could
make the model equally successful on more fusional languages. Lastly, what might the errors in the case
study indicate for typologically different languages?

Section 2 reviews related work. Section 3 introduces the case study and Section 4 describes the models
used. The results are compared and analyzed in Section 5. Implications and future work are discussed in
Section 6, before the conclusion in Section 7.

2 Related Work

Computational linguistics boasts a long history of successful unsupervised morphology learning (Gold-
smith, 2001; Creutz and Lagus, 2005; Monson et al., 2007). One feature that unsupervised models share
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is the requirement for large amounts of data. Ironically, languages with large amounts of data available
likely already have published morphological descriptions and some interlinearized text, even though
they may be considered low-resource languages. Under-documented languages rarely have sufficient
data for a thorough morphological description. If unsupervised approaches were better known among
documentary linguists, it might encourage them to archive more minimally-annotated data, which is a
high-priority but rarely-met goal in language documentation.

For language documentation methods, more interesting approaches are those that augment small
amounts of supervised data with unsupervised data. Supervised and semi-supervised learning gener-
ally requires less data to train and yields better results than unsupervised methods (Ahlberg et al., 2014;
Ruokolainen et al., 2013; Cotterell et al., 2015; Kann et al., 2017). Several recent CoNLL papers (Cot-
terell et al., 2017) showed that very small amounts of annotated data could be augmented by exploiting
either structured, labeled data, raw texts, or even artificial data. This assumes, however, that the data has
already been processed in some way and made accessible. This paper looks at ongoing annotation and
not generally accessible data.

This paper is most closely related to experiments on whether active learning could speed the time-
consuming analysis of documentation data (Baldridge and Palmer, 2009; Palmer, 2009; Palmer et al.,
2010). The experiments used field data processed with linguistic analysis software that are no longer
supported. Our paper uses data from FLEx, currently one of the two most popular software modules
for linguistic analysis. Earlier work has encountered complications because the analysis of certain mor-
phemes has changed the middle of the project. This is normal—linguistic analysis, especially when a
language has not been well-described before, is a dynamic, continually evolving process. Palmer et al.
(2010) performed unsupervised morphological processing and semi-automatic POS tagging, combined
with active learning. This seems to assume that the data is transcribed but not annotated in any way and
would be most appropriate near the beginning of a documentation project. By contrast, we use super-
vised learning methods on data already tagged for parts of speech and assume that the annotation process
is well underway. We also assume a fixed morpheme analysis applied consistently to the data which
makes the methods more appropriate for later stages of a documentation project, or for a project that
is willing to start with an less-than-accurate analysis and make bulk changes in FLEx. Most generally,
previous work in the field has examined several factors affecting speed and accuracy of the annotators
and the results seem to demonstrate that machine-supported annotation holds great promise for speeding
language documentation. That promise lays the foundation for our case study.

3 Case Study: Lezgi

Three sequence labelers were tested on transcribed oral data from the Qusar dialect of Lezgi [lez]. Lezgi
belongs to the Nakh-Daghestanian (Northeast Caucasian) family. It is spoken by over 600,000 speakers
in Russia and Azerbaijan (Simons and Fennig, 2017). The endangered Qusar dialect in Azerbaijan differs
from the standard written dialect in several ways, including a locative case morpheme borrowed from
Azerbaijani that is used alongside the native inessive (locative) case morpheme with the same mean-
ing. The dialect also has freer word order. Lezgi is an highly agglutinative language with overwhelm-
ingly suffixing morphology. Fourteen noun cases are built by case-stacking, a characteristic of Nakh-
Daghestanian languages. Case-stacking is characterized by composing a case inflection by a sequence of
morphemes instead of a unique morpheme for each case. A simplified example of Lezgi case-stacking is
shown in Table 1. Case-stacking morpheme sequences can be de-constructed into individual agglutinat-
ing morphemes, or, since the semantics of the morphemes are not entirely compositional, the sequence
can be viewed as a single, fusional morpheme. Verbal inflectional morphology is no less complicated,
with 22 base affirmative forms, corresponding negative forms, and an often suppletive imperative stem.
From these finite forms, affirmative and negative participles are formed, as well as secondary verb forms
that communicate adverbial meanings or non-indicative moods.

The aim of this case study is to assist and speed human annotation of the documentation data. Our
original goal was to perform segmentation and glossing with at least 80% accuracy. This goal is in-
spired by the Pareto Principle—the idea that 20% of one’s effort produces 80% of one’s results, and vice
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itim-di SG.ERG ’the man’ itim-ar ABS-PL ’men’
itim-di-q SG.POSTESSIVE ’behind the man’ itim-di-q-di SG.POSTDIRECTIVE ’to behind the man’
itim-ar-di-k PL-ADESSIVE ’at the men’ itim-ar-di-k-ay PL-ADELATIVE ’from the men’

Table 1: An example of case-stacking on the Lezgi noun itim ’man’. Absolutive (ABS) case and singular
number (SG) are unmarked. The plural suffix (PL) attaches directly to the noun stem. The ergative suffix
(ERG) attaches in the second slot after the stem. Other cases add suffixes to the ergative morpheme
(oblique stem (OBL) cf. Haspelmath (1993, p.74). The elative and directive meanings are added to
the fourth slot after the stem. The semantics are only partially compositional. In the largest possible
sequence (postdirective and adelative), the final (directive) -di and (elative) ay suffixes add directed-
motion meaning to the penultimate locative (-essive) morphemes k or q, but the previous (ergative)
morpheme seems to serve a purely grammatical purpose.

Figure 2: Interlinearization in FLEx. Lezgi uses the Cyrillic alphabet. Segmentations are on the second
line; glosses on the third. POS tags are below the glosses. The work is almost completely manual in
FLEx. The goal is to complete the 2nd and 3rd lines automatically.

versa. A baseline that segmented correctly but assigned morphemes the majority label would perform at
approximately 65% accuracy.

Data Ten texts amounting to a little over 3,000 words were excerpted from a small corpus of tran-
scribed oral narratives. Of the 3,000 words, only nominals, pronouns, and verbs were morphologically
analyzed. Every word had been tagged for part of speech. A linguist had provided morpheme glosses
for all verbs. Other parts of speech were only partially glossed or segmented, if at all. A native speaker
of the dialect finished segmenting the morphemes and glossed all affixes. The annotator often skipped
core arguments with simple morphology, such as subjects or the extremely common aorist verbs, perhaps
because the forms were so repetitive. She was more likely to annotate morphologically complex, but less
common, tokens. Her initial annotations varied a great deal in quality, but once she identified morpheme
boundaries, it was possible to refer to the descriptive grammar (Haspelmath, 1993) and make the annota-
tions consistent. It seemed reasonable to expect that a native speaker educated in another language could
quickly learn to recognize basic parts of speech in her own language, so the models assume that POS
tags will exist in documentation data. The Lezgi data included two exceptions that are not basic parts of
speech. Participles and demonstrative pronouns are more abstract than the general category of pronouns
and verbs but these distinctions were kept simply because they had already been consistently annotated.
After the linguist, native speaker, and author(s) each reviewed the gold standard annotations, all but three
inflectional affixes had been accurately identified. These three were labeled UNK.

In our work, all but the neural model assume that (1) the data has been analyzed in FLEx, as shown in
Figure 2, and exported as a FlexText XML format, (2) words have been tagged for part of speech, (for
the case study - verb, participle, adjective, adverb, noun/proper noun, particle, pronoun, demonstrative
pronoun, and postposition), (3) morpheme segmentation and glosses are consistent, and (4) all affixes,
but not stems, are glossed. Inflectional morphemes are a closed class so the models could be easily
trained to gloss them (e.g. ERG = ergative case, PST = past tense, etc.). Stems, however, are an open
class, so the models were trained merely to recognize them as “stems”. All characters that are not part
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Figure 3: Excerpt from FLExText XML format. It shows the morpheme breaks of one word consisting
of a root morpheme followed by a plural suffix. The POS tag is attached at the word level.

of a word (e.g. digits and punctuation) were eliminated in pre-processing.
Pre-processing the data showed that even the most careful annotation team will make mistakes, even

on a corpus as small as 3,000 words. A few POS tags and affix glosses were still missing, and others were
incorrectly labeled. Non-linguist annotators may use slightly different labels for the same morpheme.
As long as the computational linguist has expert knowledge of the language, missing glosses can be
corrected as a debugging step. For incorrect labels, printing out tags allowed a linguist to spot check
annotations and check if, for example, the distribution of POS tags appeared unusual.

Features Most of the extracted features generalize to all languages. Certain features, such as the
number of surrounding letters viewed, are specific to Lezgi. Affixes in the language are rarely more than
3 letters long, so the models viewed only the surrounding 1–4 letters to ensure that at least one letter in
the immediately surrounding morphemes was seen. However, the average length of a morpheme can be
automatically calculated from the training data for any language. The features include an assumption
that a unit labeled as “phrase” in FLEx is equivalent to a complete clause in the language. In reality,
some “phrases” contain more than one sentence, some contain only a sentence fragment. This makes the
word position feature inaccurate. The word position feature is the only feature customized to Lezgi. It is
measured from the end of the phrase to take into account the language’s strong tendency for verb-final
word order. Other features, included position of the letter in the word, and, of course, POS tags taken
from the data.

4 Model Description

This section describes three models that perform supervised morphological segmentation and labeling
on limited data. All three models expect 2,000–3,000 words of cleanly annotated data. The first two
expect the data to be annotated with POS tags.

4.1 Conditional Random Field
We use a linear-chain Conditional Random Field (CRF) (Lafferty et al., 2001) to train a sequence model
where the input consists of individual characters and the output of a BIO-labeling (Ramshaw and Marcus,
1999) of the sequence, i.e. we treat this as a labeling problem of converting an input sequence of letters
x = (x1, . . . , xn) to an output sequence of BIO-labels y = (y1, . . . , yn).

BIO-labeling In the training data, each letter is associated with a Beginning-Inside-Outside (BIO)
tag—a type of tagging where each position is declared either the beginning (B) of a chunk or morpheme,
inside (I) or outside (O). The BIO tags are specific to each type of morpheme. BIO tags include (1) the
morpheme type for stem morphemes (e.g. B-stem) or (2) affix glosses (e.g. I-DAT for a non-initial letter
of a morpheme marking dative case). This combination of BIO tags and specific labels allows the system
to perform segmentation and labeling/glossing simultaneously. For example, in tagging the word ава,
with the morphemes й (PTP), and ди (SBST) the representation would be as follows:

а в а й д и input
B-stem I-stem I-stem B-PTP B-SBST I-SBST output
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CRF model We model the conditional distribution of the output BIO-sequence y, given the input x in
the usual way as

p(y|x) = 1

Z
exp
( n∑

i=1

φ(yi−1, yi,x, i)
)

(1)

where φ is our feature extraction function which can be expressed through a sum of k individual compo-
nent functions

φ(yi−1, yi,x, i) =
∑
k

wkfk(yi−1, yi,x, i) (2)

Here, Z is the “partition function” which normalizes the expression to a proper distribution over all
possible taggings given an input. We use the CRFsuite (Okazaki, 2007) implementation together with a
Python API.1

The training parameters used L-BFGS optimization (Liu and Nocedal, 1989) and Elastic Net regular-
ization, i.e. a linear combination of L1 and L2 penalties. Maximum iterations for early stopping were set
at 50.

4.2 Segmentation and Labeling Pipeline: CRF+SVM
Since the subtask of morpheme segmentation is presumably much easier than joint segmentation and
labeling, we also experimented with a pipeline model that would first segment and then label, where
we could use a richer set of contextual features for the subsequent labeling process. Here, the CRF is
employed only for segmentation and is used as described above but without the morpheme specific la-
bels. After predicting BIO tags at the character-level, characters are combined into predicted morpheme
strings. We then train a multi-class linear Support Vector Machine (SVM)2 which classifies the seg-
mented morphemes with the specific labels (“stem” or individual affix glosses). This allows the SVM to
use surrounding morphemes as features (though not future labels). The SVM is trained on the concate-
nated features of every letter in each predicted morpheme but only the morpheme labels of the predicted
initial letter.

4.3 Neural Model
As the currently strongest performing models for the related task of morphological inflection (Cotterell et
al., 2017; Kann et al., 2017; Makarov et al., 2017) use an LSTM-based sequence-to-sequence (seq2seq)
models (Sutskever et al., 2014) with an additional attention mechanism (Bahdanau et al., 2015), we also
experiment with such a model for our task. In other words, we treat this as a translation task of input
character sequences directly to output BIO-labels, as in the CRF model, but without POS-tags in the
input. After initial experiments, we set the hidden layer size at 128, the batch size as 32, the teacher
forcing (Williams and Zipser, 1989) ratio at 0.5. Similar to the CRF-model, it jointly predicts morpheme
boundaries and specific BIO-labels.

5 Results

Once the features are extracted and the training complete, the models predict morpheme segmentation
and morpheme type for stems, or glosses for affixes. This section discusses the results, compared in
Table 2, of all three models. The goal was for a model to complete at least 80% of the segmentation
and glossing correctly, leaving the most difficult, rare, and hopefully informative forms for a human to
annotate. Originally, a 90/10 split was tried but the test data was encountering a dozen or less labels.
With an 80/20 split, the test encountered nearly twice as many labels and the variance of F1-score was
less between each test run. All three models performed near or above the target.

Joint segmentation and glossing/labeling produced the best results. The data is read letter by letter and
each letter is associated with a BIO tag and specific morpheme type/gloss label. This identifies the letters

1https://python-crfsuite.readthedocs.io/en/latest/
2Using the LIBLINEAR implementation (Fan et al., 2008).
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CRF pipeline seq2seq

0.895 0.861 0.763

Table 2: Labeled position results (F1-score) compared across CRF-only, CRF+SVM pipeline, and
seq2seq models. The first two are averages across multiple runs on random data splits.

in the morphemes as well as the morpheme boundaries. The letters were grouped into predicted mor-
phemes for labeled position evaluation. Table 3 demonstrates the model’s ability to produce reasonable
results with limited training data. It appears that for Lezgi 3,000 words is a sufficient number of training
examples.

Label Precision Recall F1 Instances

stem 0.98 0.97 0.97 127
AOR 0.93 1.00 0.97 14
FOC 1.00 1.00 1.00 10
OBL 0.75 0.67 0.71 9
GEN 0.67 0.40 0.50 5
ERG 0.67 0.40 0.50 5
DAT 1.00 1.00 1.00 4
NEG 1.00 0.75 0.86 4
PTP 0.80 1.00 0.89 4
SBST 1.00 1.00 1.00 3
IMPF 1.00 1.00 1.00 2
PERF 1.00 1.00 1.00 2
ELAT 1.00 1.00 1.00 1
SUPER 1.00 1.00 1.00 1

total/avg all 0.92 0.87 0.90 191

total/avg affixes 0.84 0.80 0.82 64

Table 3: CRF-only model labeled position results from one run over a randomized test set with 80/20
split. Averages are macroaverages.

The most acute issue is the reduction of accuracy when predicting stems compared to predicting af-
fixes. The last line of Table 3 shows that the precision, recall, and F1-scores of affixes have lower per-
formance compared with the overall scores. The pipeline model results discussed in below results in a
similar pattern but slightly worse results. Since training was done at character-level and affixes tend to be
1–3 letters long while stem length varies greatly, transitions between morphemes become less accurate.
Also, single-letter affixes may coincide with any first or last letter of possible surrounding morphemes.
The classifier is, however, adept at splitting affixes from stems, and this in itself would be helpful to
human annotators. The good results on the much larger number of stems suggests that the performance
on affixes will keep improving as training examples increase.

The model was provided with no information about the language’s morphophonology. Its accuracy
strongly correlates with the extent of isomorphism between affixes or the amount of allomorphy that
a particular affix exhibits. Most affixes are unique from other morphemes and have few or no variant
forms. On the other hand, the oblique affix and the ergative case morpheme are identical, but the ergative
morpheme is always the last morpheme on a word while the oblique is always followed by other case
morphemes. Letter position features should have caught this difference. However, the oblique and erga-
tive case also have more allomorphs (over 10 different forms) than any other morpheme. The genitive
case and the aorist tense morphemes are identical to some other morphemes, which also causes diffi-
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culty. All but a handful of affixes are identified with very high accuracy. These exceptions—aorist tense
(AOR) - identical to the aorist converb, genitive case (GEN) - identical to the nominalized verb marker
(masdar), ergative case (ERG) and the oblique affix (OBL) which are identical to each other and highly
allomorphic—indicate that limited data may not be sufficient for languages with extensive allomorphy.

When the CRF is placed in a pipeline with a SVM classifier, the CRF only identified morpheme
boundaries. Overall accuracy of the pipeline was worse than the CRF-only model, achieving an average
0.86 F1-score. This echoes the findings of Cohen and Smith (2007) and Lee et al. (2011) that joint
training of syntax and morphology produce better results than separate training. The pipeline model had
slightly higher accuracy on morphemes with multiple allomorphs but tended to perform worse on less
frequent morphemes.

Lastly, the data was run on a bidirectional sequence-to-sequence deep neural network. The best result
on the test set was over 0.76 F1, reached at 500 epochs with early stopping.

6 Discussion and Future Work

It is crucial to test the models on other languages, especially polysynthetic languages which may not have
many more morphemes per word but have more fusion and may have more complicated morphophonol-
ogy. Requests were sent to field linguists working in a variety of languages, but time constraints did
not allow them to achieve consistent annotation on a sufficient number of words. Yet, most features
described in Section 3 are basic for all languages. It seems reasonable that extracting features specific to
polysynthetic languages could produce just as high results.

The feature-based models surpassed the 80% accuracy goal using features informed by general linguis-
tic knowledge or features that can be extracted directly from data. These features proved sufficient for
Lezgi, though expanding to other languages might uncover other general linguistic features that would
maintain high accuracy for more languages. If generic features prove insufficient, questions could be
presented to linguists who provide the data and language-specific features could be extracted based on
their input. The questionnaire of the LinGO Grammar Matrix (Bender et al., 2002) is a possible initial
model for an interface.

The poorer results caused by the language’s allomorphy do not bode well for languages with more
complex series of allomorphs. An interactive interface could request human annotators for infrequent
or problematic inflected forms, or such cases where the model has little confidence in the labeling. For
example, noun stems harvested from FLEx’s automatic lexicon builder could be presented for a Lezgi
annotator to provide the various ergative and oblique morphemes. These single forms would augment
annotated text.

Predicted morphemes and glosses need to be checked and corrected by trained annotators. Previous
experiments (Baldridge and Palmer, 2009; Palmer, 2009; Palmer et al., 2010) strongly imply that vetting
a portion of the data and correcting a smaller portion of machine-generated annotations is faster than
manually annotating every single token. The next step is to bring the human back into the training
loop by having the native speaker check and correct the model’s performance on unlabeled data. The
corrections would serve as additional supervised data. As more texts are annotated with the help of the
model, more data could be fed into the training, increasing accuracy. In addition, although currently only
affixes are glossed, the model could leverage its high success at identifying stems and present them to be
glossed so that they could be added to future training data. Each iteration of prediction and correction
will incrementally speed the task. In the future, it is hoped that automated support for annotation could
be integrated with software such as FLEx, or another interface familiar to documentary and descriptive
linguists.

7 Conclusion

We have explored a case study on Lezgi to examine whether machine learning techniques could break
the bottleneck of documentation data production by achieving reasonable accuracy using a few interlin-
earized texts and general linguistic features. The results demonstrate that current NLP tools and human
and data resources commonly found in documentary linguistic field projects can be combined in order
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to speed annotation of valuable documentary data. A CRF classifier, a CRF+SVM pipeline, and a neural
seq2seq model were tested and compared to show that machine learning could remove up to 90% of
that labor from human annotators and place it upon a potential field assistant tool. Models such as these
could be integrated into the workflow of language documentation and force open the annotation bottle-
neck. Further training should improve the accuracy of the model which, in turn, will further speed the
availability of new language data. This will increase the amount of natural language data available to the
language communities, linguists, and computational experiments. It achieves high accuracy with basic
cross-linguistic features. A little feature engineering might transfer the high success to polysynthetic and
fusional languages, or at least achieve the original Pareto tradeoff goal of 80%.3
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