Aggressive language identification using word embeddings and sentiment
features

Constantin Orasan
Research Group in Computational Linguistics
University of Wolverhampton, UK
C.Orasan@wlv.ac.uk

Abstract

This paper describes our participation in the First Shared Task on Aggression Identification. The
method proposed relies on machine learning to identify social media texts which contain aggres-
sion. The main features employed by our method are information extracted from word embed-
dings and the output of a sentiment analyser. Several machine learning methods and different
combinations of features were tried. The official submissions used Support Vector Machines and
Random Forests. The official evaluation showed that for texts similar to the ones in the training
dataset Random Forests work best, whilst for texts which are different SVMs are a better choice.
The evaluation also showed that despite its simplicity the method performs well when compared
with more elaborated methods.

1 Introduction

Social media has become a normal medium of communication for people these days as it provides the
convenience of sending messages fast from a variety of devices. Unfortunately, social networks also
provide the means for distributing abusive and aggressive content. Given the amount of information
generated every day on social media, it is not possible for humans to identify and remove such messages
manually, instead it is necessary to employ automatic methods. In an attempt to boost the research in
this area, the First Workshop on Trolling, Aggression and Cyberbullying! has organised the First Shared
Task on Aggression Identification.> The purpose of this shared task was to encourage the development
of methods capable of classifying messages from social media (in the case of this task Facebook and
Twitter) into three categories Overtly Aggressive (OAG), Covertly Aggressive (CAG) and Non-aggressive
(NAG). The task was organised for English and Hindi. For each of the languages, the organisers prepared
a training dataset containing texts and comments from Facebook. Participants were able to test their
systems on two datasets. The first one was a dataset which contained text from Facebook and therefore
it was similar to the training set. The second dataset consisted of tweets and gave the opportunity to test
the systems on a dataset which was quite different than the training data. The systems were evaluated
using a weighted macro-averaged F-measure. A detailed description of the task, the data used and an
overview of the results can be found in (Kumar et al., 2018a).

Recent years have seen an increase in the number of papers attempting to detect hate speech, offensive
and abusive language. A high number of papers published in this area are from researchers who attempt
to tackle the problem of cyberbullying (Dinakar et al., 2011; Xu et al., 2012; Dadvar et al., 2013). As is
the case with many other fields in Natural Language Processing, the vast majority of the existing methods
rely on machine learning. (Burnap and Williams, 2015) uses Support Vector Machines, Random Forests
and a meta-classifier to distinguish between hateful and non-hateful messages. More recent papers focus
on using Deep Learning for this task:(Gambick and Sikdar, 2017) train several classifiers based on
convolutional networks and (Zhang et al., 2018) combine convolutional and gated recurrent networks
to detect hate speech in tweets. A survey of recent research in the field is presented in (Schmidt and
Wiegand, 2017) and the current challenges are discussed in (Malmasi and Zampieri, 2018)

Uhttps://sites.google.com/view/trac1/home
“https://sites.google.com/view/trac 1 /shared-task

113

Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, pages 113-119
Santa Fe, USA, August 25, 2018.



This paper presents a machine learning method which combines information from word embeddings,
features derived from emoticos and information from a sentiment analyser to identify texts which con-
tain aggression. The structure of the remainder of the paper is as follows: Section 2 describes the
methodology used to train the machine learning methods and how the features were calculated. Sec-
tion 3 presents the evaluation results, followed by conclusions in Section 4. The code corresponding to
the research presented in this paper is available at https://github.com/dinel/aggression_
identification.

2 Methodology

The approach used in this research relies on machine learning to distinguish between the three categories
of texts used in this shared task. The features used to train our algorithm are presented in Section 2.1,
followed by a discussion of the machine learning algorithms employed in Section 2.2. They were applied
to the data set provided by the organisers. The data collection methods used to compile the dataset used
for training, development and testing are described in (Kumar et al., 2018b).

2.1 Features used

The approach explored in this research relies on three sources of information for extracting the features
corresponding to a text: word embeddings, emoticons and the sentiment expressed in the text. In order
to extract these features, our pipeline relies at the preprocessing stage only on NLTK? to tokenise the
texts. Analysis of the output of the tokeniser showed that it is not robust enough to deal with some of the
data it had to process. This is particularly true in the case of Twitter data. Therefore, one way to improve
the results reported in Section 3 could be to use a more accurate tokeniser. The reminder of this section
describes the way each type of feature is determined.

2.1.1 Word embeddings

The main purpose of the method proposed here was to investigate to what extent the semantic informa-
tion encoded by word embeddings can be used to identify texts that contain aggression. For this reason,
we used GloVe vectors (Pennington et al., 2014) to extract the vector representation of words. For the
experiments presented in this paper, we used the pretrained word vectors obtained from the Common
Crawl corpus containing 840 billion tokens and 2.2 million vocabulary entries. Each word was repre-
sented using a vector with 300 elements.* We experimented with other versions of the word vectors
which were trained on less data or had smaller dimensions, but they did not lead to better results. How-
ever, we did not experiment with word embeddings generated from Tweets. Given the significantly lower
results obtained on the Social media data (see section 3) it would be interesting to train the system using
these word embeddings and compare the results.

In order to obtain the embedding features associated with a text, we add all the vectors corresponding
to words in the text and divide them by the number of words in the text. The words which are not present
in the GloVe vectors are ignored and not used for weighting the overall vector.

Analysis of the data revealed that 12552 words from the training data and 3119 words from the devel-
opment data do not appear in the GloVe vectors we used. In addition, 1499 words from the Facebook
testing dataset and 3823 from the Twitter dataset are not present in the GloVe vectors. In most of the
cases these words appear only once. The majority of these words are not English words or are badly
tokenised words. Overall, the numbers reported above are small given the size of the data which makes
us believe that the missing words had little influence on the performance of the system.

2.1.2 Emoticons

In addition to word vectors, the proposed method also uses the emoticons in the training data to determine
an ‘emoticon score’ for each of the classes to be predicted. The assumption is that some emoticons are
more likely to indicate a type of aggression or the lack of aggression than others. To this end, we use the
training data to calculate the TF*IDF score for each of the emoticons with respect to each class. This

3http://nltk.org
“This file can be downloaded from http://nlp.stanford.edu/data/glove.840B.300d.zip

114



is achieved by calculating the frequency of each emoticon in a class and the number of classes in which
the emoticon appears. After that, we apply a slightly modified TF*IDF formula to calculate the score
where we consider that we have a total of four classes rather than three. In this way we do not end up
with lots of emoticons with a score of zero. This was decided after initial experiments where the score
was calculated considering three classes led to worse results. Table 1 presents the top 5 emoticons for
each class as determined by our method. As can be seen in the table, some of the emoticons are highly
ambiguous, with :face_with_tears_of joy: appearing in top 5 of all three classes.

Class CAG NAG OAG
1 :face_with_tears_of_joy: :heart_suit: :face_with_tears_of_joy:
2 :grinning _face: :cross_mark: :hatching_chick:
3 :clapping_hands: :anger_symbol: :cross_mark:
4 :smiling_face_with_horns: | :face_with_tears_of_joy: :pouting_face:
5 :OK_hand: :hushed_face: ;joker:

Table 1: Top emoticons for each class

For each new text we calculate three features, each corresponding to one of the classes to be predicted.
The values of the features are the sum of the emoticons scores appearing in the text for the corresponding
class. The values of these three features are normalised by the number of emoticons in the text.

The emoticons are converted to their corresponding strings description using emoji library.> This step
was not really necessary this particular research, but was introduced in order to accommodate future
extension of the proposed method in which we may try to group emoticons together on the basis of their
meaning. One possible way of doing this is by using information from EmojiNet.®

2.1.3 Sentiment features

The third type of features used by our method are sentiment features as determined by SentiStrength’
(Thelwall et al., 2010). In contrast with other methods for sentiment analysis which indicate whether a
text is positive or negative, or give a number corresponding to rating, SentiStrength returns two scores
between 1 and 5 indicating the amount of positive and negative sentiments in a text. The intuition behind
including this feature is that texts containing aggression are more likely to be negative. These features
were not used in all the runs.

2.2 Machine learning algorithms

The approach used to determine whether a text contains aggression or not relies on machine learning.
Several machine learning methods were evaluated during the development stage of the competition and
Support Vector Machines (Vapnik, 1995) and Random Forests (Breiman, 2001) proved to be the most
appropriate for the task.

2.2.1 Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised machine learning algorithms that can be
used for both classification and regression, and proved very useful in NLP applications. When used as a
classification method, as is the case in this research, SVMs learn from the training data the parameters
of a hyperplane which separates the data in the best way. When data is not linearly separable, a kernel
function is employed in order to project the data in a different space which may make the data linearly
separable. There are several kernel functions available such as the radial basis function (RBF), sigmoid
function and the polynomial function. Experiments carried out during the development stage showed
that the best results are obtained using the RBF kernel ®

Shttps://pypi.org/project/emoji/
Shttp://emojinet.knoesis.org/
"http://sentistrength.wlv.ac.uk/
8https://en.wikipedia.org/wiki/Radial _basis_function_kernel

115



The accuracy of SVMs is influenced by the soft margin parameter C' which determines the penalty
of wrongly classifying an instance. In addition, the RBF kernel also has the y parameter which is the
inverse standard deviation of the RBF function. A grid search was performed in order to determine the
best values of the C' and ~y parameters. The best results on the development dataset were obtained using
C = 2 and v = 0.5 when no sentiment features were used, and C' = 5 and v = 0.5 in the setting where
the sentiment features were employed.

2.2.2 Random Forests

Random Forests classifiers are ensembles of decision trees trained on random splits of the training data
and which are used together to classify new instances. Random Forests also proved useful in NLP largely
due to their ability to avoid overfitting. In contrast to SVMs, random forests have fewer parameters to
estimate. In the case of this research, a grid search was performed to determine the number of trees used
and their maximum depth. The best results on the development data set were obtained when 160 trees
were considered with a maximum depth of 10.

3 Results

We participated in the shared task with three systems in order to test the performance of different com-
binations of machine learning methods and sets of features. These are:

1. SVM-no-sentiment: in this setting we used SVM as a classifier and we did not include the senti-
ment features. The parameters used were C = 2 and v = 0.5

2. SVM-with-sentiment: in this setting we used SVM as a classifier and we included the sentiment
features. The parameters used were C' = 5 and v = 0.5

3. RF-with-sentiment: in this setting we used random forests as a classifier and we included the
sentiment features. The parameters used were 160 for the number of trees and 10 for the maximum
depth.

Tables 2 and 3 present the performance of the three systems on the unseen test data. The figures
reported in the table are F1 (weighted), the official evaluation metric, Accuracy (on the test data) and
Accuracy on dev, which is the accuracy of the method on the development dataset and which was used
as reference when comparing various method during the development phase. The best performing setting
on the Facebook dataset (RF-with-sentiment) ranked 13th out of 30 participants, whilst the best on the
Twitter dataset (SVM-with-sentiment) ranked 18th out of 30 systems.

As can be seen, for the Facebook dataset the best result is obtained by the Random Forest classifier,
whereas for the Twitter data the best result is obtained by the SVM classifier. In both cases sentiment
features are used. The performance of the three systems submitted is quite similar on the Facebook data.
On the social media data, the performance of the system which uses random forests as a classifier is
significantly lower than the other two. This is particularly surprising given that it led to the best results
on the Facebook data and indicates that the system which uses random forests overfits to the domain and
cannot be easily ported to a new domain.

System F1 (weighted) Accuracy Accuracy on dev
Random Baseline 0.3535 - -
SVM-no-sentiment 0.5717 0.5295 0.5768
SVM-with-sentiment  0.5672 0.5251 0.5591
RF-with-sentiment 0.5830 0.5579 0.5459

Table 2: Results for the English (Facebook) task.

Figures 1 and 2 present the confusion matrices for the best system. As can be seen, in the case of the
Facebook data, the most problematic class to identify is OAG with an F-score of 0.2692, followed by
CAG with an F-score of 0.3353. Figure 1 shows that a large number of OAG are misclassified as CAG,

116



System F1 (weighted) Accuracy Accuracy on dev
Random Baseline 0.3477 - -

SVM-no-sentiment 0.4956 0.5441 0.5768
SVM-with-sentiment  0.5074 0.5529 0.5591
RF-with-sentiment 0.3892 0.4749 0.5459

Table 3: Results for the English (Twitter) task.

Confusion Matrix

OAG -
T
Q
©
o CAG -
2
—
- 0.2
NAG - - 0.1
0.0

Y
X

Predicted label

Figure 1: Confusion matrix for the SVM-with-sentiment system on the English (Facebook) task

and most of the misclassifications of CAG are as NAG. The latter is to be expected given the difficulties
of identifying covert aggression. Despite the large number of NAG instances misclassified, this class has
the highest f-score: 0.7106.

The picture is different for the Twitter data. The class with the lowest f-score is CAG (0.3247) followed
by OAG (f-score 0.4424) and NAG (f-score 0.7122). Interestingly enough, the proposed method has over
97% recall on the NAG class, but only 56% precision. The same method had only 56% recall and 82%
precision on the NAG class on the facebook data.

4 Conclusion

This paper has briefly presented our participation in the Aggression Identification Shared Task. Several
systems were developed and the code corresponding to these systems was made available at https:
//github.com/dinel/aggression_identification. When testing on a dataset similar to
the one used for training (i.e. Facebook data) the best system is one which uses Random Forests as a
classifier. On a dataset which contains tweets, and therefore is different from the training data, the best
classifier is the one which uses Support Vector Machines. The features used by the two systems are
the same. In both cases the inclusion of features which capture the sentiment of the texts helped. The
core of the methods is the use of features extracted from word embeddings. Despite their simplicity the
methods performed well ranking 13th out of 30 participants on the Facebook dataset and 18th out of 30
systems on the Twitter dataset. Analysis of the pipeline used in this research revealed several avenues to

117



Confusion Matrix

OAG A

CAG A

True label

NAG A

(©]
&
Predicted label

&
e)

Ky

Figure 2: Confusion matrix for the SVM-with-sentiment system on the English (Twitter) task

improve its performance. This includes better tokenisation of the texts and use of domain specific word
embeddings. However, the most likely way to improve significantly the results is to use more powerful
learning architectures (e.g. use neural networks) and more informative features.

References

Leo Breiman. 2001. Random forests. Machine Learning, 45(1):5-32, October.

Pete Burnap and Matthew L Williams. 2015. Cyber hate speech on twitter: An application of machine classifica-
tion and statistical modeling for policy and decision making. Policy & Internet, 7(2):223-242.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman, and Franciska de Jong. 2013. Improving cyberbullying
detection with user context. In Advances in Information Retrieval, pages 693—-696. Springer.

Karthik Dinakar, Roi Reichart, and Henry Lieberman. 2011. Modeling the detection of textual cyberbullying. In
The Social Mobile Web, pages 11-17.

Bjorn Gambéck and Utpal Kumar Sikdar. 2017. Using Convolutional Neural Networks to Classify Hate-speech.
In Proceedings of the First Workshop on Abusive Language Online, pages 85-90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and Marcos Zampieri. 2018a. Benchmarking Aggression Identifi-
cation in Social Media. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbulling (TRAC),
Santa Fe, USA.

Ritesh Kumar, Aishwarya N. Reganti, Akshit Bhatia, and Tushar Maheshwari. 2018b. Aggression-annotated
Corpus of Hindi-English Code-mixed Data. In Proceedings of the 11th Language Resources and Evaluation
Conference (LREC), Miyazaki, Japan.

Shervin Malmasi and Marcos Zampieri. 2018. Challenges in Discriminating Profanity from Hate Speech. Journal
of Experimental & Theoretical Artificial Intelligence, 30:1-16.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532—-1543.

118



Anna Schmidt and Michael Wiegand. 2017. A Survey on Hate Speech Detection Using Natural Language Pro-
cessing. In Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media.
Association for Computational Linguistics, pages 1-10, Valencia, Spain.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. 2010. Sentiment in short strength
detection informal text. Journal of the American Society for Information Science and Technology, 61(12):2544—
2558, December.

Vladimir N. Vapnik. 1995. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin, Heidelberg.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and Amy Bellmore. 2012. Learning from bullying traces in social
media. In Proceedings of the 2012 conference of the North American chapter of the association for computa-
tional linguistics: Human language technologies, pages 656—666. Association for Computational Linguistics.

Ziqi Zhang, David Robinson, and Jonathan Tepper. 2018. Detecting Hate Speech on Twitter Using a Convolution-
GRU Based Deep Neural Network. In Lecture Notes in Computer Science. ESWC 2018, Heraklion, Greece.

119



