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Abstract

We present an approach to detect aggression from social media text in this work. A winner-
takes-all autoencoder, called Emoti-KATE is proposed for this purpose. Using a log-normalized,
weighted word-count vector at input dimensions, the autoencoder simulates a competition be-
tween neurons in the hidden layer to minimize the reconstruction loss between the input and
final output layers. We have evaluated the performance of our system on the datasets provided
by the organizers of TRAC workshop, 2018. Using the encoding generated by Emoti-KATE,
a 3-way classification is performed for every social media text in the dataset. Each data point
is classified as ‘Overtly Aggressive’, ‘Covertly Aggressive’ or ‘Non-aggressive’. Results show
that our proposed method is able to achieve promising results on some of these datasets. In this
paper, we have described the effects of introducing an winner-takes-all autoencoder for the task
of aggression detection, reported its performance on four different datasets, analyzed some of its
limitations and how to improve its performance in future works.

1 Introduction

With the rapid growth of unregulated social media platforms, a major problem coming to surface is the
aggressive nature of text used by people while interacting in these mediums. Manual monitoring or filter-
ing of this user generated data is a challenging task due to its sheer scale. Therefore, automatic detection
of aggressive text is the logical first step to combat the issue. There has been an increased interest among
contemporary researchers to propose an acceptable solution of this problem in recent years. However,
proposing an automated solution for this problem has some inherent obstacles. One of the most chal-
lenging obstacles among this to annotate these texts with an appropriate sentiment score. Social media
texts are almost always short in length, and exhibit ambiguous grammatical syntax including abbreviated
forms, typo errors, repeated alphabets to emphasize intentions as well as coinage of new words. Addi-
tionally, detecting aggression on social media posts or comments is especially challenging due to its lack
of context. Almost all of these posts are provide very little to no context. Detecting common ‘hate-words’
using a bag-of-words analysis does not work in these cases as conventionally non-aggressive words can
be deemed aggressive when used sarcastically.

In this paper we have proposed Emoti-KATE, a winner-takes-all autoencoder for representing social
media text. Performance of our autoencoder is evaluated on a downstream task of classifying the text
based on its aggression level. We have broadly categorized a social media post or comment into one
of three categories: Overtly Aggressive, Covertly Aggressive and Non-Aggressive. In recent times, re-
searchers (Socher et al., 2011b; Hermann and Blunsom, 2013; Chen and Zaki, 2017) have established
that autoencoders can be effectively used to learn representations of document text for various applica-
tions. However, they have some inherent limitations. As Chen et al. (Chen and Zaki, 2017) has pointed
out, in a traditional autoencoder, contributions of most of the hidden neurons in reconstructing the input
vector are often redundant. They have shown that introducing competition among these hidden neurons
can help get rid of these redundancies. The output vectors generated by such winner-takes-all approach
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outperform most of the popular, contemporary document representation techniques as well. Inspired by
their success, we have taken a similar approach in this work. Emoti-KATE introduces a K-competition
layer between the input and output layers to generate the vector representation of each social media text.
We have evaluated the performance of our approach on a dataset of 15,000 aggression-annotated Face-
book posts and comments each in Hindi (in both Roman and Devanagari script) and English. After basic
preprocessing on the raw data1, the winner-takes-all autoencoder is deployed with a log-normalized vec-
tor at its input dimensions. Results show that while our system’s performance is promising in case of
English texts (weighted F1 score of 0.5694), the classifier has much scope of improvement for Hindi
texts (weighted F1 score of 0.4189). The main contribution of this work is an exhaustive investigation
into the performance of K-competitive autoencoders (Chen and Zaki, 2017) in identifying aggression
level in short, sparsely contexualized social media posts and comments. Our experimental result sug-
gests that introducing a competitive hidden layer in a autoencoder framework improves the performance
of aggression detection in sparse social media texts. A complete pseudocode of our system is presented
in Algorithm 1.

The rest of the paper is organized as follows: Section 2 gives a brief overview of the work already
done in this field. Section 3 describes the details of the dataset, preprocessing steps and the system we
have used to address the problem. Section 4 presents the analysis of results and finally, the conclusion
and future scopes are discussed in Section 5.

2 Related Work

Automatically detecting cyber-bullying and use of hate speech from textual analysis has gained momen-
tum with the rise of increasing amount of user-generated content on web. Most of the research works
have considered this to be a binary classification problem, i.e. aggressive or non-aggressive. The set of
features that has been widely used by contemporary researchers Schmidt and Wiegand (2017) includes
various word-level and character-level features including n-grams, usage of punctuations, capitalization,
and token-length. Some recent approaches have also proposed sentiment polarity detection, using lexical
resources available in web along with bag-of-words, and linguistic features such as POS tagging, de-
pendency parsing, knowledge-based feature extraction using ontology information etc. for this purpose.
To solve the problem of context sparsity, researchers have proposed some word clustering techniques as
well as meta-data analysis including user-profile analysis, and user-activity history analysis etc. How-
ever, most of these existing works have some strong assumptions inherent to their systems. For example,
in Dinakar et al. (2011) the authors assumed that an aggressive post in social media can primarily be
about one of the few topics, which include physical appearance, sexuality, race and culture, and intel-
ligence. They trained a multi-class classifier for identifying texts on these topics and individual binary
classifiers to subsequently classify whether the text covered one of the topics mentioned above. Features
such as TF-IDF, presence of swear words, frequent bigrams, and topic-specific n-grams were used to
train the classifiers. Dadvar et al. (2013) followed a similar approach and introduced user-profile specific
meta-data (separate classifiers based on user gender), which helped them to improve the precision of their
system. Nahar et al. (2012) extracted semantic features using Latent Dirichlet Allocation (LDA) along
with lexicon features, TF-IDF values and second-person pronouns to train a Support Vector Machine for
classification purposes. Sentiment analysis technique was leveraged to detect cyberbullying in a Twitter
dataset by Xu et al. (2012). They used Latent Dirichlet Allocation to identify the most frequent topics in
tweets that exhibited signs of bullying. Semi-supervised approaches with bootstrapping have also been
proposed in recent years (Schmidt and Wiegand, 2017). While there have been many significant research
contributions in this area, most of them considered the problem of aggression detection as a binary clas-
sification task, i.e., each text was to be classified either as aggressive or non-aggressive. Malmasi and
Zampieri (2018) is one of the early works that has taken a different approach. In their work, every social
media text is classified into three categories, hate speech, aggressive text and neutral. They argued that as
general profanity is an unavoidable part of social media posts due to their unregulated nature, our efforts

1we observed that ‘hashtags’ carry significant information in social media text and the segmentation improved our prediction
score on validation set by 3% to 5%
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should focus on distinguishing profanity from hate speech that targets an individual or a group. They
have used a single as well as ensemble classifiers with stacked generalization for this purpose. Their
feature set includes n-grams, skip-grams and clustering-based word representations.

With the evolution of deep neural network (DNN) based models for natural language analysis, there
has been some works using leveraged DNN models for this purpose as well. For example, Mehdad
and Tetreault (2016) have proposed a Recurrent Neural Network based Language Model approach with
character n-gram feature for this task to overcome the challenge of scarcity of large-scale dataset. Zhao
et al. (Zhao and Mao, 2017) have recently proposed a semantically enhanced marginalised denoising
autoencoder for detecting cyberbullying on social media text. In this work, they have extended a stacked
denoising autoencoder with semantic dropout noise and sparsity constraints. Contrary to these methods,
we have used a shallow autoencoder in Emoti-KATE. Following the work of Chen and Zaki (2017), we
have introduced a K-competition layer in our framework to tackle the problem of data sparsity and little
contextual information in these texts. This layer reduces the redundancy of reconstructed input patterns
in the respective contributions of hidden neurons to the final output layer. The main contribution of our
work is an exhaustive investigation of winner-takes-all autoencoder framework in detecting aggression
level in sparse social media texts. Our model has been evaluated on datasets collected from Facebook
and Twitter, in both Hindi and English languages.

Algorithm 1: K-competitive Autoencoder
Input: Training set (Dtrain), Test set (Dtest)
Output: Feature vectors (Vtest) of Dtest

Initialize Otest ← Φ . Otest ←Autoencoder output vectors for Dtest

for each document dε{Dtrain ∪Dtest} do
Compute input vector vd

end
W
′ ← training(Vtrain)

Otest ← tanh(W
′
Vtest + b) . Vtest ← Input vectors of Dtest

return Otest

procedure training: . Vtrain ←Input vectors for Dtrain

Forward propagate z = tanh(WVtrain + b)
Apply K-competition on activations z

′
= K-compete(z)

Compute error, back-propagate and iterate until convergence
return W ;

3 Methodology and Dataset

A K-competitive autoencoder for aggression detection in social media text is proposed in this work. A
detailed description of the dataset, some of its interesting characteristics and our approach towards this
task will be presented in this section.

3.1 Description of the dataset
The aggression-annotated dataset used in this shared task(Kumar et al., 2018a) has been collected and
prepaed by Kumar et al. (2018b). Collecting approximately 18k tweets and 21k facebook comments
from social media users in India, they used Crowdflower, a crowd-sourced platform to annotate the
entire dataset.2 This dataset is code-mixed i.e., it contains text in English and Hindi (written in both
Roman and Devanagari script). A total of 3 top-level and 10 level-2 tags were assigned to the entire
dataset. In this shared task, we have only considered the top-level tags, which are as follows: ‘Overtly
Aggressive’, ‘Covertly Aggressive’, and ‘Non-aggressive’. The organizers of TRAC 2018 have divided

2Interested readers can find more details about the data collection methods used to compile this dataset in Kumar et al.
(2018b).
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Figure 1: An illustration of competition among the hidden neurons in Emoti-KATE; The hidden
layer shows only one of each positive and negative neurons are selected as the winners out of the
six neurons competing to contribute to the output layer; All of the neurons in input, hidden and
output layers are fully connected but not shown in this figure for ease of interpretation

this dataset into a number of smaller datasets based on their origin (social media platform from where
it was collected) and language. This resulted in 4 different datasets for this task, which are as follows,
English-Facebook dataset, English-Social Media dataset, Hindi-Facebook dataset, and Hindi-Social Me-
dia dataset. We have evaluated and reported the performance of Emoti-KATE in Section 4, for each of
these datasets.

3.2 Preprocessing steps
Depending on the dataset, each document undergoes a number of preprocessing steps. The stopwords
were removed first. Then, the documents were stemmed using Porter Stemmer. We have used the NLTK
library for both of these steps. Next, each document representing a post in Twitter was further processed
as the ‘hashtags’ used along the normal text were further segmented into meaningful words. For example,
”#savethegirlchild” is segmented into four distinct words ”save”, ”the”, ”girl”, and ”child” at the end of
this step. If there are multiple such meaningful segmentations possible, all of these combinations are
generated. The segmented words generated by this process is then appended to the rest of the text in
the document, in the order they appeared in the original ‘hashtag’ itself. We have used data-driven
exhaustive search within the Brown corpus (Marcus et al., 1993) for this purpose. Split points are
decided by iteratively searching for every possible combination of meaningful words within the corpus.
The split points that produced the highest percentage of meaningful words are considered to be a possible
segmentation of the ‘hashtag’. We observe that although this strategy of handling ‘hashtags’ provides
the highest recall, it is very slow. Additionally, for social media platforms such as Twitter where the
maximum number of characters is limited and a significant number of posts use code-mixed data, this
strategy do not work very well.

3.3 Description of Emoti-KATE
Autoencoders (Vincent et al., 2008) are neural networks tasked to reconstruct an input vector by mini-
mizing the loss between the input and the final output layer. In recent years, it has been successfully used
to extract features encoding text data (Socher et al., 2011a; Li et al., 2015; Yang et al., 2017). We have
used a K-competitive autoencoder, called Emoti-KATE in this work. Contrary to a traditional shallow
autoencoder, a K-competitive autoencoder (Chen and Zaki, 2017), introduces a competition layer among
the hidden neurons. It has been shown in Chen and Zaki (2017), when encoding a sparse text document,
this competition among hidden neurons helps get rid of the redundancy contributed by some of the hid-
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den neurons in the final encoding. In the K-competitive layer, neurons compete among themselves for the
right to respond to the input vector, therefore focusing more on unique and important patterns in the input
data. Complete pseudo-code of the K-competitive encoder used in this work is presented in Algorithm 1.
Emoti-KATE is a shallow autoencoder, with a single competitive hidden layer. Let, xε Red denotes the
d-dimensional input vector of the autoencoder. The objective of this autoencoder is to reconstruct x at
the output layer. Let, h1, h2, ....hn denotes the neurons at the hidden layer. The weights between the
input-to-hidden layers and hidden-to-output layers are tied together. Therefore, if W ε Red×n represents
the input-to-hidden layer weight matrix, W T ε Ren×d will denote the weight matrix between hidden-to-
output layer. We have used tanh(x) = e2x−1

e2x+1
as the activation function between the input-to-hidden layer

and sigmoid function f(x) = 1
1+e−x as the activation function between hidden-to-output layer in our

implementation.

Input vector Description
X1 Word-counts weighted by sentiment-score
X2 X1 augmented with character-case information
X3 X2 with ‘hashtags’-segmented into unique words

Table 1: A brief overview of the input vectors used in our implementation

In this work, we have experimented with three different input vectors. A brief overview of how
these input vectors are computed is presented in Table 1. As mentioned, the first representation (X1)
denotes a weighted word-count vector of the document. Each word count is weighted by the sentiment
score for that word. We have used the sentiment analysis module embedded in nltk3 for this purpose.
The second input vector representation (X2) appends X1 with character-case statistics of the document.
More specifically, X1 is appended with a vector C = c1c2c3 of length 3, where c1, c2 and c3 denote
the number of lower, upper, and camel case words in the document. Finally, the last input vector (X3)
follows the same steps as X2, except one preprocessing step. The main difference between X2 and X3

is based on how they process ‘hashtags’ in a document. In case of both X1 and X2 they are treated as
distinct, individual words, whereas X3 takes a different approach. Each ‘hashtag’ in the document is
segmented into distinct meaningful words. The steps followed for this purpose has been described in
Section 3.2. Following the implementation by Chen et al. (Chen and Zaki, 2017), each input vector was
log-normalized before it is fed into the autoencoder. The training and encoding steps of Emoti-KATE
have been shown in Algorithm 1. We have used cross-entropy loss to compute the backpropagation error
in our implementation.

The main difference of a K-competitive autoencoder from a traditional shallow autoencoder is a K-
competition hidden layer. As mentioned before, we have used a single K-competitive layer in this work.
In a K-competitive layer with n neurons, say h1, h2, ...hn, gradients flowing through only the top-K
neurons obtain the right to contribute to the output layer. In Emoti-KATE, this selection of K neurons is
performed based on the activation values of the hidden neurons. We select the top dK2 e positive neurons
and the lowest bK2 c negative neurons during each feedforward step. The rest of the n−K loser neurons
are zeroed out. To compensate for the loss of these neurons as well as to amplify the competition among
the neurons, the winner neurons are then rewarded. This means reallocating the loss of activations of the
loser neurons to the winners therefore amplifying them in the process. We have illustrated the workflow
of the K-competition layer in Fig 1. Activations from the hidden neurons with positive activations i.e., h2
and h3 are suppressed and their activations are reallocated to h1, essentially amplifying its contribution
to the output neurons. Therefore, the only positive neuron that contributes to the output layer in Fig. 1 is
h1, as h2, h3 → 0. α is called the amplification factor. It decides how much of the loser activations flow
through the winners. For example, if α > 2

K , gradients flowing through loser neurons are amplified,
whereas if α = 0, they are completely suppressed and Emoti-KATE effectively (Chen and Zaki, 2017)
turns into a K-sparse autoencoder (Makhzani and Frey, 2013). The same process is repeated for the
negative neurons too. Hidden neurons h4 and h5 are zeroed out and their activations are reallocated to

3https://www.nltk.org/api/nltk.sentiment.html
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Dataset Input
Vector

Description F1
(weighted)

English-FB

X1 wordcount (WC) + sentiment score (SC) 0.5431
X2 WC + SC + capitalization feature (CF) 0.5285
X3 WC + SC + CF + hashtag analyzer (HA) 0.5694

Random Baseline 0.3535

English-
Social
Media

X1 wordcount (WC) + sentiment score (SC) 0.3379
X2 WC + SC + capitalization feature (CF) 0.2884
X3 WC + SC + CF + hashtag analyzer (HA) 0.3191

Random Baseline 0.3477

Hindi-FB

X1 wordcount (WC) + sentiment score (SC) 0.3969
X2 WC + SC + capitalization feature (CF) 0.3911
X3 WC + SC + CF + hashtag analyzer (HA) 0.4189

Random Baseline 0.3571

Hindi-Social
Media

X1 wordcount (WC) + sentiment score (SC) 0.2668
X2 WC + SC + capitalization feature (CF) 0.3143
X3 WC + SC + CF + hashtag analyzer (HA) 0.3142

Random Baseline 0.3206

Table 2: Results of Emoti-KATE on experimental datasets

the negative winner neuron h6 with α amplification. As a result, h6 is the only negative neuron that
contributes to the output layer.

4 Results

In this section, we will evaluate Emoti-KATE in learning meaningful representations of social media text
in detecting aggression in four different social media datasets. All of our experiments were performed
on a 2.80 GHz Intel i7 with 32GB RAM. We have used Keras4, a high level neural network library for
implementing the autoencoder. In our implementation for Emoti-KATE, we have closely followed the
design choices by Chen et al.5 (Chen and Zaki, 2017).

The system was evaluated on the basis of weighted macro-averaged F-scores. The individual
F-score achieved for class i.e., Overtly Aggressive (OAG), Covertly Aggressive (CAG) and Non-
Aggressive (NAG) was weighted by the proportion of the concerned class in the test set and the final
F-score is the average of these individual F-scores of each class. Our system achieved best result for
English Facebook texts and the lowest score was in Hindi Twitter data. A detailed description of the
results for each dataset has been provided below. The best performance achieved by Emoti-KATE for
each of these datasets has been highlighted in the respective tables. The best performance achieved by
randomly assigning class labels (random baseline) for each of the datasets have also been reported.

4.1 Results on the English-Facebook dataset

Our system performed best in English Facebook texts with a weighted F1 score of 0.5694 for the input
vectorX3, i.e., the input vector that considered Sentiment Score weighted Word Count vector augmented
with capitalization feature and ‘hashtag’ analyzer. The primary reason of our system performing better
on this particular dataset is the length of the texts. Typically, texts present in this dataset were longer
offering more context, resulting in a less sparse vector which ultimately improved the performance of
the classifier. Performance of Emoti-KATE on this dataset, for three different variations of input vec-
tors is presented in Table 2. We have also reported a class wise performance analysis for the best per-
formance (X3) of our system in Table 3. A heatmap representing the confusion matrix of this run is
presented in Fig. 2.

4https://github.com/keras-team/keras
5https://github.com/hugochan/KATE
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Class Precision Recall
OAG 39.216 39.216
CAG 33.803 22.967
NAG 72.063 80.639

Table 3: Class-wise distribution of
Precision and Recall for the best
result observed (X3)
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Figure 2: Heatmap of the confusion matrix for
our best result observed (X3)

4.2 Results on the English-Social Media dataset

Even though our approach achieved promising score in one of the English datasets, for the English social
media (Twitter) dataset, it has significant scope of improvement. The best run for this dataset could only
achieve a weighted F1 score of 0.3379. Two main reasons for this are as follows: (1) social media texts,
specially tweets consists of a lot of abbreviated forms, repeating characters in a word, newly coined terms
etc. which was not efficiently normalized, therefore not present during the training of the classifier, and
(2) length of the texts in this dataset was also very short which eventually resulted in sparse vectors.
Performance of our system for three different variations of input vectors has been described in Table 2.
We have also reported a class wise performance analysis for the best performance (X1) of our system in
Table 4. The heatmap representing a confusion matrix for this run is presented in Fig. 3.

For both the datasets in English, one interesting observation that came up from the confusion matrix
is that the system is biased towards the class NAG and this resulted in achieving higher recall in that
particular class (highest 80.639%).

4.3 Results on the Hindi-Facebook dataset

Similar to English, our system performs better in classifying Hindi Facebook texts than the social media
dataset (Twitter) by achieving a weighted F1 score of 0.4189, which is higher than the random baseline.
However, this dataset failed to score at par with the English dataset mainly due to the lack of good quality
sentiment lexicon resource in Hindi.

Performance of Emoti-KATE on this dataset, for three different variations of input vectors is presented
in Table 2. We have also reported a class wise performance analysis for the best performance (X3) of
our system in Table 5. A heatmap representing the confusion matrix of this run is presented in Fig. 4.

Class Precision Recall
OAG 43.137 6.094
CAG 35.319 20.097
NAG 43.46 87.371

Table 4: Class-wise distribution of
Precision and Recall for the best
result observed (X1)
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Figure 3: Heatmap of the confusion matrix for
our best result observed (X1)
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Class Precision Recall
OAG 46.988 32.32
CAG 46.379 72.881
NAG 31.944 11.795

Table 5: Class-wise distribution of
Precision and Recall for the best
result observed (X3)
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Figure 4: Heatmap of the confusion matrix for
our best result observed (X3)

4.4 Results on the Hindi-Social Media dataset

Similar to English-Social Media dataset, there is a lot of scope to improve the performance of our system
on the Hindi-Social Media dataset. We observed that unlike the English dataset, the inclusion of the
‘hashtag’ analyzer module did not improve the performance of this particular dataset. This is because
(1) ‘hashtags’ only consisted about 10 to 30 percent of the entire text on average which was not enough
to offset the performance for the entire text content, and (2) the ‘hashtag’ segmentation module did not
leverage a code mixed corpus to generate all possible unique segmentations for this dataset. Training
Emoti-KATE on sufficiently large code mixed corpus for ‘hashtag’ analysis as well as feature vector
generation mark some of the most significant future scopes of research. Performance of our system on
this dataset, for three different variations of input vectors is presented in Table 2. Similar to the rest
of the datasets, We have reported a class wise performance analysis for the best performance (X2) of
our system in Table 6 for this dataset also. A heatmap representing the confusion matrix of this run is
also presented in Fig. 5. We observe that our system is biased towards the class CAG in Hindi datasets.
Interestingly, highest recall values were obtained for the class CAG for both of the Hindi datasets in our
experimental setup.

We have compared our performance against two traditional approaches, a word2vec-based input vec-
tor, and an LDA-based input vector. We noticed an average improvement of 13.62% and 16.25% re-
spectively for Word2vec and LDA for all of our training datasets. To investigate the contribution of
the competitive hidden layer for the aggression detection task, we have also compared our performance
against a traditional variational autoencoder. We observed an average improvement of 19.47% across
all datasets. This boost in performance stems from the removal of redundant, confounding contributions
made by some of the hidden nodes which were removed by the competitive hidden layer. The differences
between output vectors reconstructed by a traditional autoencoder and Emoti-KATE has been illustrated

Class Precision Recall
OAG 37.586 23.747
CAG 33.424 64.829
NAG 32.727 15.254

Table 6: Class-wise distribution of
Precision and Recall for the best
result observed (X2)
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Figure 5: Heatmap of the confusion matrix for
our best result observed (X2)
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Figure 6: An illustration of the differences between reconstructed output vectors by a traditional
Variational Autoencoder and Emoti-KATE

in Fig. 6 for better understanding. Additionally, downstream effects of this competitive layer is more
pronounced in our results due to the short length nature and contextual sparsity, often observed in social
media texts.

It was observed that the system failed to identify a few aggressive sentences mainly due to the absence
of a few words in our training vocabulary which contributed to the aggression score. To cite one example,
our system predicted the sentence ”Saala darpok. When he comes to south he comes with full security. He
makes early morning visit and runs away from backdoor :D” to be ’NAG’, while the correct classification
is ’CAG’. For English texts, we trained our system with standard dictionary words and common english
slangs, but code-mixed nature of dataset resulted in a decline in performance.

On the other hand, one can notice from the dataset specific precision-recall tables, that we achieved
promising result in case of texts which are covertly aggressive, such as ”I have seen rajamouli and
his brahman uncle cleaning toilet... and a dalit is head priest in tirupati...lol mahismati. .. this flim
also brahmanwadi agenda...bahubali got poonool..99.99% PRAJA are shudra. ..” or ”Or hum ne 1971
se 2017 tak 90k se zeyada tumaray soldiers mar diye”. Even though these sentences do not explicitly
contain any word which can generally be tagged as aggressive, our system was able to detect the sense
unlike the traditional autoencoder which tagged these as non-aggressive. While the traditional variational
autoencoder failed to capture this category of texts successfully, the introduction of competitive hidden
layer helped us achieve a better precision for ’CAG’ tagged texts across all domains owing to the removal
of loser neurons’ contribution as shown in 6.

5 Conclusion

We have proposed an approach for aggression detection from social media text in this work. Using the
feature vectors generated by Emoti-KATE, a shallow winner-takes-all autoencoder, a 3-way classification
was performed on the experimental datasets, classifying each data point as ‘Overtly Aggressive’ (OAG),
or ‘Covertly Aggressive’ (CAG) or ‘Non-aggressive’ (NAG). One of the main challenges of this task
was identifying Covertly Aggressive texts. We observed that distinguishing CAG from the rest of the
categories (especially NAG) is a difficult task. Handling code switch and transliteration in the Hindi
datasets as well as presence of out-of-domain test data in the Social Media datasets made this task
more challenging. Results show that our method is a little biased towards the class NAG for English
datasets, and the class CAG for the Hindi ones. We also observed that NAG and CAG classes formed
the largest set of accurately6 classified categories in English and Hindi datasets respectively. Although
we have achieved promising results for the English datasets, the performance on Hindi datasets can be
significantly improved in future works. Using appropriate Hindi corpus for sentiment scoring, training
our model on English-Hindi code-mixed data as well as readily available out-of-domain datasets may
help achieve better performance than the present system. Additionally, instead of a shallow autoencoder
like Emoti-KATE, investigating the performance of competitive stacked denoising autoencoders is also
an exciting future endeavor.

6based on both precision and recall
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