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Abstract

We propose a method to improve human activity recognition in video by leveraging seman-
tic information about the target activities from an expert-defined linguistic resource, VerbNet.
Our hypothesis is that activities that share similar event semantics, as defined by the semantic
predicates of VerbNet, will be more likely to share some visual components. We use a deep
convolutional neural network approach as a baseline and incorporate linguistic information from
VerbNet through multi-task learning. We present results of experiments showing the added infor-
mation has negligible impact on recognition performance. We discuss how this may be because
the lexical semantic information defined by VerbNet is generally not visually salient given the
video processing approach used here, and how we may handle this in future approaches.

1 Introduction

Human activity recognition is a crucial component of comprehensive, multimodal event detection and
identification as well as a prerequisite for more complex tasks, such as establishing timelines from video
and video caption generation. In this work, we attempt to improve the performance of activity recognition
in video by considering the event semantics associated with the activity types. Yatskar et al. (2016) have
done this for images by leveraging a large dataset that is thoroughly labeled with the activity performed
in each image, the actors involved, and the roles the actors play in the activity. While their method works
well, it comes at the cost of obtaining and labeling the dataset. In this work, we eschew the use of an
expensive labeled dataset and instead leverage the lexical semantic information found in VerbNet (VN)
(Kipper et al., 2008) and only a small amount of manually annotated data.

Our hypothesis is that activities that share similar event semantics will be more likely to share some
visual components. To begin to explore this hypothesis, we must first select the type and specificity of
semantics that should be coupled with an activity. Here, we use VN to obtain semantic representations
in the form of composed predicates, which apply to classes of verbs denoting more or less similar event
types. The semantic representations therefore provide a level of generalization over somewhat distinct
events. This extra information comes at the activity level rather than the sample level, and thus provides
relatively weak supervision. Nonetheless, we feel our hypothesis intuitively holds promise and, if sup-
ported, would enable efficient improvement in activity recognition with less training data. Specifically,
the ability to detect similar visual components across an event type could allow for generalizing from the
recognition of one activity type (e.g., baseball pitch) to another that is semantically similar (e.g., throw
discus).

2 Related Work

Human activity recognition is a heavily researched problem in computer vision. The goal is to determine
the activity being performed in a video (e.g., walking, playing piano). This can be challenging due to the
large range of appearances that videos of a given activity can take on. The problem is usually formulated
as a classification task where each target video must be classified as one of a list of potential activities
based on features extracted from its frames.
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In addition to visible features extracted from videos, it is common to leverage external information
from text, audio, or image data sets. Much work has been done investigating the relationship between
text and imagery, though it has mainly focused on still images rather than videos. Recent work in this area
has been spurred by the increasing availability of novel datasets, such as the visual question-answering
research of Antol et al. (2015), which makes use of a dataset of open-ended natural language questions
about images. On the video side, Motwani and Mooney (2012) use text mining and object recognition
to help with activity recognition. Vondrick et al. (2016) leverage text captions to try to assign intent to
human actions in video. To our knowledge, no work has been done to examine the relationship between
event semantics in text-based lexical resources and videos.

3 Background to VerbNet

VerbNet,! based on the verb classification of Levin (1993), groups verbs into classes according to their
compatibility with certain “diathesis alternations” or syntactic alternations (e.g., She loaded the wagon
with hay vs. She loaded hay into the wagon). Although the groupings are primarily syntactic, the classes
do share semantic features as well, since, as Levin posited, the syntactic behavior of a verb is largely
determined by its meaning.> VN makes the shared semantics of a class explicit by including a semantic
representation for each usage example demonstrating a characteristic diathesis alternation of a class. For
example, in the Throw class, the following semantic representation would apply to this usage example:

Ex.:“Maddox pitched the ball into the field.”

Roles: Agent Verb Theme Destination

Semantic Predicates:

CONTACT (during(EO), Agent, Theme)

EXERT_FORCE(during(EO), Agent, Theme)

not(CONTACT(during(E1), Agent, Theme))

MOTION(during(E1), Theme)

LOCATION(end(E1), Theme, Destination)

not(LOCATION(start(E1), Theme, Destination))

CAUSE(Agent, E1)
This representation is intended to break the event down into smaller semantic elements, given as the
predicates (in caps). The predicates are organized with respect to the time of the event (‘E’); thus they
can apply during, at the start, or at the end of an event. The above representation can be paraphrased as
expressing that Maddox (Agent) is in contact with and exerts force (EO) on the ball (Theme); he then
releases (is not in contact with) the ball and the ball is in motion (E1); the ball’s location at the end of the
motion event is the field (Destination), where it was not located at the start of the event; Maddox causes
this event as the Agent. Notice that although this representation captures many of the salient semantic
components of a throwing event, it may not capture the salient visual aspects of a throwing events.

The numbered classes in VN are organized into a shallow taxonomy. Classes with shared semantic

elements, and accordingly with shared subsets of the same semantic predicates, begin with the same class
number. For example, Throw-17.1 and Pelt-17.2 form one “meta-class.”

4 Data and Annotations

For video data, we chose to use the benchmark UCF101 dataset (Soomro et al., 2012) because of its
wide variety of activities in comparison to other datasets. We then compared the coverage of the 101
activities in UCF to the types of events represented in VIN. We selected four types of events of interest
that had some overlap between UCF and VN: events involving motion with a vehicle (VN meta-class
51.4.X), throwing events (VN 17.X), hitting events (VN 18.X), and human group motion events (VN
51.3.2). Intuitively, we felt that each of these events had some clear visual properties associated with the
semantics of the type (i.e. fairly clear, distinct image-schemas (Lakoff, 1990))

'VerbNet version 3.2 is used: https://verbs.colorado.edu/verb-index

?Levin’s hypothesis continues to be debated, but efforts to crowdsource empirical evidence of the presence and saliency of
the semantics in VN are promising (Hartshorne et al., 2014; Hartshorne et al., 2013).
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One linguist and author of this paper, experienced with VN annotation, annotated each of the 101 UCF
activity categories with an indication of whether or not the semantics of one of the four types was present
in that activity. This was done by first completing a thorough review of the semantic representations
found in the (meta-)classes for a given event type.® Then, a sample of 10-12 videos from each UCF
activity category were observed to get a sense of the nature of actions included in an activity, and the
variability of the clips included under a single category.* For each UCF category, one of the following
indications was given: “Yes” the semantic elements of an event type are present in this activity, “No”
the semantics are not present in the activity, or “maybe” the semantics are present in some videos of
the activity but not in all. For example, video clips of the UCF activity Biking all include the semantics
of motion with a vehicle, none include the semantics of throwing or hitting events, and some clips may
include the semantics of group motion in video clips that show a group of cyclists. Additional examples
are included in Table 1.

UCF Activity Vehicle Motion Throwing Hitting Group Motion
ApplyEyeMakeup no no no no

Bowling no yes maybe no

Drumming no no yes no

Surfing yes no no no
MilitaryParade no no no yes
SkateBoarding yes no no no

Total “Yes”/“Maybe”/*No”  12/1/88 10/8/83 14/12/75  3/4/94

Table 1: Sample of annotation examples showing which UCF activities correspond to which event type.
The “maybe” indicates some Bowling video clips that include the ball hitting pins. Annotations were
completed for all 101 UCF activities, only six of these are shown here.

5 Experiment

We use the two-stream convolutional network approach of Simonyan and Zisserman (2014) as a baseline
model.® In this model, two neural networks are trained to classify videos. The first is trained on the raw
frames and the second on optical flow features extracted from the frames. Both networks are trained to
classify the activities from small portions of the video (the visible network is trained on single frames,
while the motion network is trained on five-frame segments). To test a video, 25 equally spaced frames
are passed through the visual network and 25 equally spaced five-frame segments are passed through the
motion network. The video is then classified as the activity with the highest average probability.

We alter the approach of Simonyan and Zisserman (2014) by injecting information from VN with
multi-task learning (Caruana, 1993). Multi-task learning is the process of simultaneously training for
several objectives. In our case, we train the networks to classify the VN class or meta-class the activities
belong to in addition to the categories of the activities themselves.

5.1 Network and Training Details

We use the pre-trained (other than the final layer, which is randomly initialized) version of AlexNet
(Krizhevsky et al., 2012) for the frame network. For the optical flow network, we use the structure of
CNN-M 2048 of Chatfield et al. (2014) with random initialization. The networks are very similar in that
both have five convolution layers followed by three fully connected layers. The main difference between
the two (beyond initialization method) is that CNN-M 2048 is wider (more hidden nodes per layer).

3Note that we are focused on finding the presence or absence of particular semantic predicates (e.g., is there MOTION? is
there CONTACT?), as opposed to certain participants or semantic roles. We are focusing on the latter in ongoing work.

*UCF includes 13320 videos, about 130 videos/activity.

5 All annotations can be made available upon request.

SMany state-of-the-art activity recognition methods are offshoots of the two-stream approach of Simonyan and Zisserman
(2014). For example, Feichtenhofer et al. (2016) experiment with early fusion of the two streams, and Wang et al. (2016)
incorporate object detectors into the algorithm.
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In order to incorporate information from VN, we create four extra tasks for the networks to solve.
Each task is to determine whether or not a video belongs to one of the four chosen VN event types. We
formulate this with a separate logistic regression loss for each event type. During training, for each event
type, we treat activities labeled “yes” as positive samples, activities labeled “no” as negative samples,
and ignore activities labeled “maybe.”

All tasks share the first seven layers of the network (Conv1, Conv2, Conv3, Conv4, Conv5, FC6, and
FC7). The last layer of the network is a fully connected (FC) layer that serves as a linear classifier for
a given task, so it cannot be shared amongst them. Thus each objective has its own eighth (FCS8) layer.
See Figure 1 for a visual representation of the layout.
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Figure 1: Multitask learning layout: the orange shapes represent loss functions, the blue shapes represent
the network, and the green shape represents the input data. Sections outlined with dotted lines denote the
additional multitask learning components.

We train the networks using the standard back-propagation algorithm and mini-batch stochastic gradi-
ent descent. We train the raw frame network for a total of 20,000 iterations. We start the learning rate at
.01 and divide it by 10 after 14,000 iterations. Due to the random initialization, we must train the optical
flow network for longer, and thus train it for 110,000 iterations. We start the learning rate at .01, and
divide it by 10 after 50,000 and 100,000 iterations. When training both networks, we set the momentum
to .9, the batch size to 256, and the weight decay to .0001. We use dropout in the first two fully connected
layers (FC6 and FC7) of both networks with dropout rate of .5 for the frame network and .75 for the flow
network.

5.2 Results

We ran two sets of experiments; we report results for the networks individually (as opposed to their fused
performance) in order to examine which of the two networks (one trained on frames, the other on optical
flow) is most affected by our method. For all experiments, we report the classification accuracy (i.e.
percentage of videos matched to correct activity out of 101 choices) of the trained networks on the 3,783
test videos from split one of the of the UCF data set.

In the first set of experiments, we use all four VN classification objectives in addition to the primary
UCEF classification objective. We then train the networks with different values (0, 1, 2) for the relative
weight given to the VN objectives. Table 2 compares the results when the VN objectives (All, All 2x
Weight) are used and when they are not used (Baseline). When the weight is set to one, our method has
a negligible effect on the performance compared to the baseline method (i.e. weight = 0). Increasing the
weight to two causes the network performance to decrease.

In the second set of experiments, we train the networks with only one additional VN task at a time to
see if some event types are more beneficial than others. All objectives were given the same weight in
these experiments. In Table 2, we also compare the results of using one VN objective at a time (Vehicle
Motion, Throwing, Hitting, Group Motion) to not using any of the VN objectives (Baseline). The extra
VN tasks have little effect on the activity recognition performance compared to the baseline method.

We believe the main reason our method fails to provide significant improvement over the baseline
is the lack of a relationship between the VN categories and visual appearance of the activities. For
example, Bowling and BaseballPitch are both in the throwing category, but they are not necessarily
visually similar—what portions of the actions are visually similar are likely not salient enough to be
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VN Type Frames Optical Flow

All 67.14 77.07

All 2x Weight 61.33 76.47
Vehicle Motion  66.22 77.07
Throwing 66.32 77.27
Hitting 66.59 76.92
Group Motion 67.17 77.50
Baseline 67.08 77.13

Table 2: Performance comparison of our method to the baseline method (Baseline) which does not use
any VN information. We evaluate our method using all four VN objectives at once (All), all at once
but doubly weighted (All 2x Weight), and with one VN objective at a time (Vehicle Motion, Throwing,
Hitting, Group Motion). All values denote the classification accuracy on the 3783 videos.

useful in the current video processing approach (see sample still images taken from the UCF101 dataset
in Figure 2). Although our hypothesis was not supported using this approach, we have recourse to pursue
this hypothesis in different ways. It may be that the semantic representation that we selected is adequate,
but our video processing methodology is not, or that we need to select a different semantic representation
more suited to the current video processing methodology.

Baseball Pitch Bowling

Figure 2: Still images taken from video clips of Baseball Pitch and Bowling videos in UCF101 dataset
(http://crcv.ucf.edu/data/UCF101.php). Although the event semantics of the two activities may share
similarities, many visual aspects of the activities (e.g., the surroundings) are very different.

6 Conclusions & Future Work

Although a negative result, this is a notable finding: event-semantic similarity does not necessarily trans-
late into visual similarity. In our next steps, we will ensure that the extra semantic information used to
train our network is also visually salient. We plan to do this with a multi-task learning approach where, in
addition to training the network to recognize the activities, we will also train it to recognize objects and
entities that are frequently associated with the target activities. This will enable us to better recognize,
for example, Bowling activities based on the recognition of a bowling ball and pins. We will leverage
annotated text corpora to determine what objects most often fill a participant role slot, or semantic role,
for the target activities. We will then use ImageNet (Deng et al., 2009) to train our systems to detect
these objects.
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