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Abstract

The Winograd Schema Challenge targets pronominal anaphora resolution problems which re-
quire the application of cognitive inference in combination with world knowledge. These prob-
lems are easy to solve for humans but most difficult to solve for machines. Computational models
that previously addressed this task rely on syntactic preprocessing and incorporation of external
knowledge by manually crafted features. We address the Winograd Schema Challenge from
a new perspective as a sequence ranking task, and design a Siamese neural sequence ranking
model which performs significantly better than a random baseline, even when solely trained on
sequences of words. We evaluate against a baseline and a state-of-the-art system on two data sets
and show that anonymization of noun phrase candidates strongly helps our model to generalize.

1 Introduction

The Winograd Schema Challenge (WSC) targets difficult pronoun resolution problems which are easy to
resolve for humans, but represent a great challenge for AI systems because they require the application
of cognitive inferencing in combination with world knowledge (Levesque et al., 2012; Levesque, 2014).
It has been argued that a computer that is able to solve WS problems with human-like accuracy must be
able to perform “human-like” reasoning and that the WSC can be seen as an alternative to the Turing
test. Consider the following Winograd Schema (WS):

Example 1.1 The city councilmen refused the demonstrators a permit because they feared violence.

Both city councilmen and demonstrators agree in number and gender and even in semantic type, as
both mentions refer to groups of humans (with political interests). While we could imagine a city with
councilmen who approve violence and hence forbid a demonstration by peaceful protesters, this reading
may appear nonsensical to most readers. Most humans will straightforwardly resolve the pronoun they
to corefer with the city councilmen. Now consider the outcome of replacing a single word – the predicate
feared – with the semantically related predicate advocated, yielding its twin sentence:

Example 1.2 The city councilmen refused the demonstrators a permit because they advocated vio-
lence.

With this change, the resolution is reversed: now they refers to the demonstrators. Humans may
reason that city council men are naturally concerned with the well-being of their city and thus they are
not in favor of a demonstration by protesters who advocate violence. Winograd problems as displayed
in Examples 1.1 and 1.2 occur very rarely in natural language texts and cannot be properly resolved
by traditional coreference resolution (CR) systems. The primary reason is that standard CR systems
heavily rely on features such as gender or number agreement or mention-distance information. However,
such features do not give away any knowledge that would be useful for resolving WS problems. Given
a random baseline of 0.5 accuracy, the Stanford resolver (Lee et al., ), winner of the CoNLL 2011
Shared Task (Pradhan et al., 2011), achieves a sobering accuracy of 0.53 when facing Winograd Schema
problems (Rahman and Ng, 2012). Lee et al. (2017) describe a state-of-the-art neural system for general
neural coreference resolution and observe that, while trained on much more data than is available in
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the WSC, their system shows little advance in the uphill battle of resolving hard pronoun coreference
problems that require world knowledge.

As our main contribution we are proposing a novel and very general take on the WSC task that we
formulate as a sequence ranking task in a neural Siamese sequence ranking model. Moreover, we design
features derived from manually designed knowledge bases and show how they can be integrated in this
model. We investigate anonymization of noun phrase candidates that significantly enhances the general-
ization capacity of the model. We evaluate against baselines and a state-of-the-art (SOTA) system with
special focus on the impact of different features and propose connotation frames as a novel feature for
the WSC task. All Siamese model variants, even those trained on word sequences only, show signifi-
cant improvements over the baseline on our main testing set. Our best performing model achieves 0.63
accuracy.

2 WSC Datasets and Related Work

Strict Data is Scarce: WSCL. Starting with the work by Levesque et al. (2012), a collection of (cur-
rently) 282 strict WS problems is maintained online1, which will henceforth be referred to as WSCL.
We make a distinction between strict and relaxed Winograd Schemata. Relaxed Winograd Schemata are
problems which can be solved by computing simple corpus statistics. E.g., The chimpanzee couldn’t use
Linux because it is an animal is of the relaxed type because a simple google query returns significantly
more results for chimpanzee is an animal than Linux is an animal (19,700 vs. 3 hits). Such relaxed, easy-
to-solve examples are not contained in the WSCL data set, but do occur in the WSCR data set, described
below. The problems in WSCL have an average length of 18 tokens. Some problems may consist of more
than one sentence and require understanding across sentence boundaries.2

Relaxed Data: WSCR. The main dataset used in this work3, which we refer to as WSCR, was pub-
lished by Rahman and Ng (2012). The data was created by 30 undergraduate students. It comprises 943
twin sentences and comes already divided into training (70%) and test set (30%). As opposed to the
WSCL data, WSCR comprises both strict and relaxed Winograd schemata. We found that it also contains
sentences with no straightforward resolution, as in Ex. 2.1 and 2.2 (with gold antecedents underlined):

Example 2.1 Bob likes to play with Jimbo because he loves playing.

Example 2.2 The bus driver yelled at the kid after she drove her vehicle.

When we presented these problems to a class of students, close to half of them voted for the other
reading in Example 2.1 (more than half in Example 2.2). This is reasonable, since the alternative reading
(Jimbo loves playing) can be inferred from the fact that generally people like to play with someone who
likes to play – rather than with someone who does not like to play. The alternative reading of Example
2.2 could be even more likely, since it makes perfect sense that when a kid tries to drive the bus driver’s
vehicle, the bus driver will get angry and might yell at the kid. When inspecting the data, we found that
while notably having lower quality than WSCL, most sentences have a clearly preferred reading, which
coheres with the gold annotation. The problems in WSCR seem less diverse as all consist of exactly one
sentence and in every sentence we find at least one discourse connector or a comma connecting a main
clause with the antecedent candidates to a sub-clause that contains the pronoun.

Feature- and Example-based Ranking. Together with the WSCR data set, Rahman and Ng (2012)
also publicized the description of a linear ranking system that achieves 73% accuracy on the published
data. The system relies on 8 features, which it uses to fit a SVM ranking model. Contrary to our work, all
features depend on syntactic dependency annotation. While incorporating complex external knowledge
resources such as FrameNet (Baker et al., 1998) or narrative chains (Chambers and Jurafsky, 2008), the
most helpful feature turned out to be simple Google-queries, it significantly outperformed the random
baseline with a considerable margin of 6% to the next best single feature. Kruengkrai et al. (2014)
attempted to replicate parts of the system, selecting five features. Some of them were implemented

1https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml
2E.g. It was a summer afternoon, and the dog was sitting in the middle of the lawn. After a while, it got up and moved to a

spot under the tree, because it was hot.
3url: http://www.hlt.utdallas.edu/˜vince/papers/emnlp12.html
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differently, e.g. instead of querying Google directly, the Google n-gram dataset (Brants and Franz, 2006)
was used. The authors present a system that extracts representative examples from the web. Both systems
were tested on a subset of the WSCR test set (for the problems where web examples were found). The
reimplemented system yielded 0.56 accuracy while their own approach yielded 0.69 accuracy.

Integer Linear Program (ILP). Peng et al. (2015b) use an ILP (Schrijver, 1986) inference approach
with a novel way of knowledge representation. Their system yields 0.76 accuracy on WSCR, which is
the current state-of-the-art result on this data. In their approach “Predicate Schemas” are instantiated and
scored using knowledge acquired from external knowledge bases compiled into constraints for a decision.
Consider ‘The bee landed on the flower because it {was hungry, had pollen}’, where the gold resolution
is that (i) the bee was hungry and (ii) the flower had pollen. A simple predicate schema for this problem is
instantiated as hungry(bee) vs. hungry(flower) and has pollen(flower) vs. has pollen(bee). Scores
for the instantiated predicates are then gathered from external knowledge sources such as Google4.

Other Work on Difficult Coreference Resolution. Sharma et al. (2015) build a semantic parser
and Schüller (2014) use syntactic dependency annotation and knowledge base linking in order to solve
WSC problems. Both works use the Answer Set Programming language (ASP, cf. (Baral, 2003; Gelfond
and Lifschitz, 1988)) on the generated abstract representations for reasoning about the correct antecedent.
Sharma et al. (2015) for evaluation considers only causal attributive and direct causal events and Schüller
(2014) performs experiments with only 4 twin problems for demonstration purposes.

We conclude that (i) all examined prior work focuses on either a specific subset of Winograd problems
or/and is tested on only one specific data set, WSCL or WSCR but never both. Also (ii) we are the first to
present an end-to-end WSC system which, contrary to all prior methods, does not rely on sophisticated
preprocessing or linguistic annotation. (iii) We avoid heavy reliance on Google searches, which we argue
the approaches of both Rahman and Ng (2012) and Peng et al. (2015b) suffer from. This is mainly due
to two reasons: 1., Google has restricted automatic access to their search engine, making it difficult to
solve more than a handful of pronoun resolution problems in short time without payment and, even more
importantly 2., reproduction of results is impossible due to the nature of Google’s search-algorithm as
a black box – one cannot ensure to retrieve the exact same or even similar query results as previous
authors. Our work, by contrast, does not rely on non-reproducible features and will be the first to present
an end-to-end neural approach for addressing the WSC.

3 Framing the WSC as a Sequence Ranking Task

We propose a new view on Winograd problems by translating the problem to a sequence ranking or
classification task that discriminates a preferred or plausible sentence reading from a very similar but
dispreferred or implausible reading. The preferred reading emerges when we replace the pronoun with
its coreferent gold antecedent noun phrase and the dispreferred reading emerges when we instead use the
wrong antecedent as the replacement. For example, given the WS problem Joe paid the detective after
he received the final report on the case., we can derive the preferred reading:
Example 3.1 Joe paid the detective after Joe received the final report on the case.
and the clearly less preferred reading
Example 3.2 Joe paid the detective after the detective received the final report on the case.

Most humans easily come to understand that Example 3.1 is in line with common sense (preferred),
while the second Example 3.2 seems somewhat bogus and less in line with common sense (dispreferred).
Inserting the correct (incorrect) antecedent noun phrase in place of the pronoun converts a Winograd
problem with alternative but clear pronoun resolutions into preferred and dispreferred readings.

Formal Description. Let a Winograd problem be defined as a tuple (s, p, c+, c−) ∈ W , where s is a
sequence of tokens, p is the given anaphoric pronominal token and c+ represents the correct and c− the
incorrect noun phrase antecedent. We design a function f :W →W ′, returning a tuple (r+, r−) ∈W ′,
containing two sequences of tokens, where r+ is the preferred reading of s and r− is the dispreferred
reading of s which are the result of replacing the anaphoric pronoun p in s with c+ or c−.5

4Note that plants and bees are both very likely to have pollen, the predicate schema may be prone to errors in this case.
5When the pronouns are possessive (his, her, their), we replace p in s with the genitive form of c+ or c−.
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Discussion. We derive sentences without pronouns from sentences with pronouns by inserting the
aforementioned corresponding noun. A motivation for this process is the assumption that pronouns ‘stand
for’, ‘replace’ or are ‘substitutes’ for previously mentioned or understood noun phrases. Framing the
problem as a sequence preference ranking task has two major advantages. First, by replacing the anaphor
with one of the possible antecedents, we contextualize each of these candidates to the local context of
the anaphor. This contextualization can be exploited in a neural end-to-end system that constructs a full
sentence representation, including the (resolved) pronoun. Second, with the two alternative readings
being constructed, we can define a model that determines which of the two readings is preferred, or can
be considered more plausible. That is, we frame the task as a preference ranking task, as opposed to a
categorical binary classification task. In sum, we argue that framing/formulating the task of Winograd
sentence/problem resolution as a task of comparing the plausibility of alternative readings provides an
appealing alternative to prior task formulations: It permits the application of hypothetically any type of
sentence representation model to be applied out-of-the-box.

Note however that by no means we want to postulate that humans understand and resolve Winograd
problems by internally comparing a pair of complete sentence representations with alternatively resolved
pronouns. But what perhaps is also clear is that humans do not dependency parse the full sentence and
then access knowledge bases weighting manually crafted mention features as commonly done in the
WSC task (Rahman and Ng, 2012; Sharma et al., 2015).

4 Neural Sequence Models for the WSC

Having converted each WS problem into two highly similar yet different readings allows us to define a
neural end-to-end model in at least two different ways. In a naı̈ve formulation (Naı̈ve Model), we can
simply force a model to predict whether a specific reading is plausible or implausible (binary classifi-
cation). Alternatively, we can also exploit the fact that the two readings – produced by replacing the
anaphor with a candidate antecedent (see above) – are highly similarand frame the task as a sequence
ranking problem and design a relational model that constructs two internal representations that are com-
pared and ranked. We call this the Siamese Model.

Naı̈ve Model. We encode a sequence of tokens with an embedding layer and a two-layered Bi-LSTM
(Hochreiter and Schmidhuber, 1997) and use a logistic regression layer on top to predict whether the
sentence – representing one or the other of the two possible readings – is accepted or not. For training,
from each pair of readings indexed by i = 1, ..., N we extract two training examples, where the preferred
reading r+i is assigned class 1, and the dispreferred reading r−i is assigned class 0. This model can be
optimized by minimizing a standard binary cross-entropy loss. A disadvantage of this model is that the
classifier is not explicitly optimized towards the goal of discriminating competing readings since during
training accepted and inaccepted readings are isolated from each other.

Siamese Model. Similar to the Naı̈ve Model, we encode a sequence of tokens with an embedding
layer followed by two-layered Bi-LSTM and use a single SELU (Klambauer et al., 2017) unit on top
that predicts a plausibility score hθ(r) for a reading r, where θ are the parameters of the model. The
model is mirrored and uses shared weights to process two different representations at the same time, one
for each reading (Fig. 1). We compute two plausibility scores over a pair of readings for every training
example, where the aim is to maximize the difference between the scores for the plausible sequences
and the implausible ones. At inference, the resolution with highest plausibility score is chosen. We
avoid decomposing a pair of readings into two independent training and testing examples as done in the
naı̈ve model and by feeding the model both sequences at the same time we directly optimize the model
to assign the preferred reading a higher plausibility score compared to the dispreferred reading. This is
reflected in the (totally differentiable) margin ranking loss, which we define as

1

N

N∑
i=1

[
1− σ

(
hθ(r

+
i )− hθ(r

−
i )
)]
, (1)

where σ is the logistic function. The general architecture is outlined in Fig. 1 and lends itself naturally
to the incorporation of at least two different types of additional input features.



45

Keith fired Blaine because Blaine showed up late. 

 Keith fired Blaine because Keith showed up late. 
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Figure 1: General Siamese architecture for comparing WSC readings. Embed layer is a function converting a sequence of
tokens to a sequence of real valued vectors (we use a lookup table containing pretrained GloVe embeddings). 2d-2d encoder
means any function that converts a sequence of vectors into another sequence of vectors (we use a Bi-LSTM returning state
vectors). 2d-1d means any encoder converting a sequence of vectors into a single vector (we use a Bi-LSTM and concatenate
the end states of each sequential read). ‘a’ can represent any activation neuron (we use a SELU unit).

Siamese Multi-Input Model. Our general architecture is displayed in Figure 1. The architecture nat-
urally lends itself for the incorporation of many additional features, which have the potential to provide
pointed world knowledge for the model that it cannot derive from the scarce training data. In the basic
model (Figure 1), we can inject two additional types of features: real valued vectors and real valued
matrices. Consider that the word embedding sequence for a Winograd example is of length l which is
again projected by a Bi-LSTM (2d-2d encoder in Figure 1) onto a state matrix of dimension l × n and
consider the case of one additional matrix type feature: after the matrix has been shaped to the same
dimensionality l × n we can use concatenation, element-wise addition and element-wise multiplication
to merge the additional feature representation with the sentence representation into a representation of
dimension l × 4n before it is fed into the next layer. As additional matrix-type features we experiment
with dependency edge sequences and information about the connotation of the arguments induced by
their predicate as stated in the resource Connotation Frames (Rashkin et al., 2015; Rashkin et al., 2016).
The features and motivation for usage are more extensively discussed in the next paragraphs.

We can also incorporate features which come as real valued vectors: we use an averaged semantic
embedding of the tokens of the candidate noun phrase (described more closely in the next paragraph) to
provide useful information for cases where the candidate noun phrase is not a generic person name but
carries meaning. The vector can be injected into the model between the 2d-1d encoder and the output
activation computation. A FF-layer is used to shape the vector so that it matches the output dimension
h of the 2d-1d encoder enabling us to perform element-wise addition, element-wise multiplication and
concatenation resulting in a high level sentence representation of dimension 4h.

Anonymization of Candidate NPs. The fact that training data is really small motivates us to propose
anonymization of noun phrase candidates as a simple means for discouraging the model to memorize the
noun phrase candidates, forcing it to focus on the complex but general interactions between arguments
and predicates. Consider the following pair (correct antecedents underlined):

Example 4.1 Mary thanked Susan for all the help she had received.

Example 4.2 Mary thanked Susan for all the help she had given.

Memorizing the candidates would be fatal for any model, since the resolution is not determined by the
candidate noun phrases alone (both are generic names of the same gender), but rather from the interaction
between predicates and arguments. We want the model to focus on deeper information from the meaning
of the sentences that is general and relevant to support the correct resolution of the pronoun.

Candidate NP-level Feature. While many WS problems can be easily solved by humans in
anonymized form, there are cases for which information about the candidate noun phrases is necessary,
or even mandatory, especially for the relaxed Winograd problems in the WSCR-data. Consider

Example 4.3 He hates Cuba and likes Japan because it is a communist country.

This example is not strict because it is rather easy to resolve for machines by simply computing simi-
larity measures between the candidate noun phrases and the predicate communist country.6 ConceptNet
(Speer and Havasi, 2012) and the available semantic embeddings trained on this resource (Speer and
Lowry-Duda, 2017) i.a. contain information from WordNet (Miller, 1995) and may give the model the

6More precisely, the predicate communist country restricts the arguments unambiguously to the correct phrase.
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S: (n) Cuba, Republic of Cuba (a communist state in the Caribbean on the island of
Cuba)

S: (n) Cuba (the largest island in the West Indies)

Figure 2: WordNet gloss for the noun Cuba. It contains information about the political stance of the government.

The ball hit the window and Bill fixed the it.
p(wx) -0.33 -0.20 0.33 -0.03
p(rx) 0.06 -0.73 0.13 0.40
e(x) -0.20 0.33 0.60 0.73

Figure 3: An example of how we apply Connotation Frames for hit and fix. The numerical value ∈ [−1, 1] ranges from positive
(+1) to negative (-1). p(wx) and p(rx) represent the perspective of the writer (w) or reader (r) towards the object or subject of
the verb x. e(x) stands for the effect on the subject or object. The frames contain 4 more perspectives which are omitted in the
Figure.

information that Cuba is a communist country (see Figure 2). The information from the gloss that Cuba
is the largest island in the West Indies is not necessary, but one could easily make up a WS problem for
which it is necessary as in He likes Cuba and hates Japan because it is located in the Caribbean Sea..
This is the only feature acting on a candidate noun phrase level and it is computed by averaging the
semantic embeddings of the corresponding tokenized candidate noun phrases.

Dependency Edges. For the resolution of many WS problems, feeding explicit syntactic information
may be useful and help the model in learning useful information about predicates and their interactions.
Consider Examples 4.1 and 4.2, where the predicate of the pronoun is gives(x,help) and the predicate in
which both possible antecedents participate in is thanks(Mary,Susan). It is very useful to know that Mary
is the subject of thanks and Susan the object. When provided with such information the model may learn
the abstract pattern that the subject argument of gives is more likely to be the object of thank(x,y) than
its subject, while the subject argument of receive is more likely to be the subject argument of thank(x,y).

Connotation Frames. Connotation Frames is a resource7 that contains frames of verbs that indicate
how the arguments of the verb are affected by the predicate meaning (Rashkin et al., 2015; Rashkin
et al., 2016). The frames represent this information by presenting numerical values for seven types of
connotations concerning different components of the frame. For example, the value of the object of
the frame resolve(s,o) is negatively connotated. This reflects that what needs be to resolved is usually
considered a problem, and a problem is most likely an issue which is perceived negatively. Consider

Example 4.4 The ball hit the window and Bill fixed it.

For application we retrieve the frames for hit and fix and apply them to the arguments of the respective
verbs in a sentence, resulting in a matrix with columns of dimension seven. The result is displayed in
Figure 3 (where only 3 dimensions are displayed). For words or arguments of predicates not covered by
the resource, we use a zero-vector.

5 Experiments

Data. Unlike most other research on WSC, we test our models on both data sets discussed above –
WSCL, the smaller data set of higher quality (282 examples) with strict and mostly unambiguous WSC
cases, which we exclusively use for testing and WSCR, which comes in a predefined split of 1322 training
and 564 testing problems, but which is of slightly reduced quality for the reasons discussed in Section 3.
Note that, as in previous work, we do not exploit the fact that each Winograd problem has a twin.

Baselines. Given that the WS problems in WSCL and WSCR come in pairs with alternative resolutions
to first vs. second antecedent candidate, we apply a random process as the baseline with 0.5 probability
of achieving the correct guess. Since the problem can be seen as a binary classification task, we calculate
binomial tests to assess the probability of the zero-hypothesis that a random process achieves the same

7Available at https://homes.cs.washington.edu/˜hrashkin/connframe.html.
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amount or more correct predictions than the evaluated system. We also downloaded the state of the art
system of Peng et al. (2015a), which the authors made publicly available8. However, it is important to
note that the publicized system had been retrained on both training and testing data of WSCR9, making
it difficult to re-evaluate it under the original experimental conditions. When evaluating the system with
anonymized candidates, we only select cases where the integrated mention detection was able to detect
both (and only both) candidates and linked the pronoun to one of those. All other cases we have to
treat as unresolved. The downloaded system yields an accuracy of 0.99 (397 correct, 3 incorrect, 164
unresolved) on WSCR. In our evaluation Table we present the result from their paper (Table 1: SOTA)
As an additional baseline we use as a representation of the input sentences the representations predicted
by a trained sentence embedding model, here InferSent (Conneau et al., 2017). InferSent has been been
trained on large-scale natural language inference tasks (Bowman et al., 2015) and therefore may have
internalized valuable information about whether sentence readings are coherent or rather nonsensical.
We infer 4096-dimensional sentence vectors with the trained model provided by the authors10 and fit a
linear ranker SVM, using randomly sampled development data to find a suitable regularization parameter.

Experimental Setup and Evaluation. We evaluate our models in two testing scenarios: (i)
Train:WSCR+Test:WSCL: In this setup we train the model on the full WSCR data and test on the unseen
WSCL data, to test the generalization capability of our models across data sets. (ii) Train+Test:WSCR In
the second scenario we use the predefined split of the WSCR data for training and evaluation. Since both
scenarios do not involve a development set, we randomly split off 100 twin pair problems (200 exam-
ples) from the training data for development purposes. Since there is much stochasticity in the models
(stochastic gradient descent, parameter sampling, training-development split, etc.), we do five random
initializations with different seeds. We choose the model parameterizations from the epochs where they
performed best on the development set. These models predict the test set and we compute mean and
standard deviation of accuracy. We also introduce two ensembles, the naı̈ve ensemble (Naı̈veE) and the
Siamese ensemble (SiamE), which are majority voters informed by the predictions of the five different
random seed models.

Parameter Search. We examine the Naı̈ve model and the Siamese model, using all discussed features
and pretrained, fixed 300 dimensional GloVe word embeddings (Pennington et al., 2014). Dependency
edge embeddings with 10 dimensions are initialized randomly from N10(0, 1). The two embeddings for
the anonymized mentions are drawn from N300(0, 1). The Bi-LSTMs have 32 hidden units each, the
weight matrix used for the linear transformation of the inputs is initialized according to Glorot and Ben-
gio (2010), who proposed this initialization scheme to bring substantially faster convergence. The weight
matrix used for the linear transformation of the recurrent state is initialized as a random orthonormal ma-
trix (Saxe et al., 2013; Mishkin and Matas, 2015) and the biases are initialized with zeros. Parameters
are searched with RMSProp (learning rate 0.001) and mini-batches of size 128 over 1,000 epochs.

Results. Table 1 displays our main results in the two experiment settings, with WSCL and WSCR as
testing data. Surprisingly, when we test the SOTA system of Peng et al. (2015a) on the strict WSCL data,
the model fails to generalize. Again considering only the examples where the mention detection detected
both and only both candidates and the pronoun was linked to one of them, it makes 24 correct and 22 false
predictions and does not significantly outperform the random baseline (p=0.44). Our model experiences
the same problem when trained on WSCR and tested on WSCL – a random process produces more or the
same amount of correct predictions with p=0.14. The InferSent model, being pre-trained on large-scale
NLI tasks proved to be a strong baseline and outperformed the baseline on both datasets by a notable
margin, achieving the best result on WSCL (0.56 accuracy, significant on level p<0.05, non-significant
for p<0.005). When trained on the WSCR training data and tested on the WSCR testing data, however
our neural model significantly outperforms the random baseline by an observable margin of 9 percentage
points (pp.) for Siam and 13 pp. for SiamE. A traditional coreference system and winner of the Conll
2011 Shared Task (Pradhan et al., 2011) is significantly outperformed by our neural model by 10 pp.

8http://cogcomp.cs.illinois.edu/page/software/_view/Winocoref
9Personal communication.

10https://github.com/facebookresearch/InferSent
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Siam SiamE Naı̈ve Naı̈veE random InferSent SOTA

Test acc p acc p acc p acc p acc p acc p acc p

WSCR 0.59±0.02 0.00 0.63 0.00 0.53±0.02 0.07 0.54 0.04 0.50 0.50 0.58 0.00 0.76? 0.00
WSCL 0.51±0.01 0.30 0.54 0.13 0.49±0.01 0.50 0.51 0.38 0.50 0.50 0.56 0.02 0.52? 0.44

Table 1: Test results for different systems on two WSC data sets. ? means that the score is taken from Peng et al. (2015a)
(for WSCR) or was approximated by applying the published tool as described in the text (for WSCL). Underlined p-values are
smaller than 0.005. Averages and standard deviations are computed over five different random initializations of Siam (and
Naı̈ve), where we averaged over those five parameterizations that performed best on the development data. p-values for Siam
and Naı̈ve are computed using the predictions of the median accuracy model determined on the development set from the the
five different random initializations. All neural models use data where noun phrase candidates are anonymized.

active feature accuracy Siam accuracy SiamE

word sequence only 0.57±0.02 0.59

+ edges 0.58±0.01 0.61


sequence
level

+ connotation frames 0.58±0.02 0.60
- connotation frames 0.59±0.02 0.60
- edges 0.59±0.01 0.61
+ ConceptNet embedding 0.59±0.01 0.61

}
NP
level- ConceptNet embedding 0.58±0.01 0.59

all active 0.59±0.01 0.63

Figure 4: Feature ablation experiments, where we are separately adding one of the different features to the word sequence
input (+) or remove one feature from the model(-).

in accuracy when considering the ensemble model, and 6 pp. when considering the average of all five
initializations with best scores on the development set (accuracy for the shared task winner was taken
from (Rahman and Ng, 2012)). The naı̈ve models fail to significantly outperform the random process
strongly indicating that the Siamese ranking model is more suitable for the WSC task as it is optimized
by directly learning the differences in interpretation among two highly similar proposed resolutions, one
correct and one incorrect or implausible.

Anonymization. When we train and test our system on data which was not anonymized, the score
of the Siamese ensemble model without features drops to 0.53 (p=0.059). The training loss decreased
rapidly and the model exhibited little generalization capacity on unseen data. This indicates that – while
neural models appear to have the potential to learn very abstract information needed for solving WSC
from few data examples (561 twin pair training examples) – (i) they are very prone to overfitting when
training data is scarce and not anonymized (it instantly remembers the surface noun phrases) and con-
sequently (ii) anonymizing NPs can be very valuable for solving WSC problems, especially in a neural
network setting. This is confirmed by our experiments with the neural InferSent, where the testing
scores for anonymized data vs. non-anonymized data also differ observably (WSCR, non-anonymized:
0.52, anonymized: 0.58; WSCL, non-anonymized: 0.51, anonymized: 0.56).

Feature Ablations. To show the impact of individual features used in our feature-rich models Siam
and SiamE, we perform experiments where we either (i) remove one specific feature from the model (‘-’
in Table 4) or (ii) add a single feature on top of the encoded sentence representation (‘+’ in Table 4). The
results provide no clear picture but suggest that the complex features brought only small performance
gains when applied individually, however, when applied jointly, they increase the model’s performance
observably from 0.59 to 0.63 accuracy. The ConceptNet NP phrase candidate level feature yields a
performance increase of 2 pp. accuracy over the basic model and caused the largest drop of -4 pp.
accuracy when removed from the model. On the positive side, our results suggest that non-linear neural
models can learn abstract patterns based on word sequences alone, in contrast to successful methods from
prior literature which all rely on linguistic annotation (e.g. dependency parsing) and carefully designed
features and rules for accessing external knowledge bases. The Siamese model, trained solely on word
sequences outperforms the random process significantly (p< 0.005).
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Bill punched Bob in the face because he was being rude to Mary.
Bill punched Bob in the face because he wanted to protect Mary.
John introduced Bill because he knew everyone.
John introduced Bill because he was new.
John visited Luke in the hospital because he was sick.
John visited Luke in the hospital because he lived close by.

The boss fired the worker when he stopped performing well.
The boss fired the worker when he called him into the office.
The U.S.S Enterprise tried to assist a sister ship, but they arrived too late to save them.
The U.S.S Enterprise tried to assist a sister ship, but they did not receive help quick enough to prevent their demise.
Adam failed to kill Alexander, so he hired a bodygaurd in case of a second attempt.
Adam failed to kill Alexander, so he hired an assassin for the second attempt.

Figure 5: First box: Fully correctly resolved twin pair problems by all randomly initialized models. Second box: Fully falsely
resolved twin pair problems by all randomly initialized models.
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Figure 6: Coefficients for correct Siamese model guesses, sentence complexity features (left), discourse relations and that-
conjunction (right). Bottom: Normalized distributions over sentence lengths: total (blue), problems with because-structure,
amount of errors minus correct predictions. All statistics are computed from WSCR.

Deeper Analysis. In order to obtain deeper insight into the strengths and weaknesses of our model, we
examine what properties discriminate the examples that our model solves successfully from the ones that
it predicts erroneously. According to Levesque et al. (2012), it is critical to find a pair of twins that differ
in one critical word in order to construct a full fledged WS, so it is natural that one may be interested
in the model’s performance over the twin pairs, i.e. the performance with respect to complete Winograd
Schemata. Thereby we may also gain a better intuition of how vulnerable the model is with regard
to changing the critical word. Figure 5 displays twin sentences from WSCR, where all five randomly
initialized models came to the made the same prediction over the whole pair. Complete twin pairs were
resolved correctly in 10 cases and incorrectly in 7 cases. The first case can be seen as ‘most easy’ for the
model while we can conclude that the second case appeared to be the ‘most difficult’ or ‘confusing’ cases
for the model. The examples suggest that the models perform better on sentences with unambiguous
causal discourse markers (because) and less linguistic complexity (less verbs, shorter in length). To
investigate more closely to what extent a successful resolution is informed by linguistic complexity, we
designed 6 linguistic sentence-level features (length, number of verbs, passive construction, negation,
sequence probability estimated with a language model and ratio of tokens to be found in the training data)
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and 10 binary features for different discourse connectors (because, when, while, etc.) and the sentence
embedding conjunction that. From all five Siamese model initializations we collect the predictions,
normalize the features onto a range between 0 and 1 and fit a regularized logistic regression model to
predict a correct or incorrect prediction based on the aforementioned features. The coefficients of the
features are displayed in Figure 6. The sequence length is strongly negatively correlated with a successful
model prediction. On the other hand, the higher the estimated sentence probability and overlap with the
training data, the more likely the Siamese model is to make a correct prediction. Perhaps more interesting
are the coefficients for the discourse relation features. As the examples in (Figure 5) already suggested,
the Siamese model performs better with the unambiguous causal discourse connector because as opposed
to the ambiguous connector when or the sentence embedding conjunction that. However, this can also
be explained by the fact that because is the most common discourse marker in the training data (698
occurrences in 1322 problems). Also, we found that problems involving because are generally shorter
than other sentences in the data (see Figure 6, bottom).

6 Conclusion

Our assumption is that for interpreting Winograd sentences, humans process and build up a representation
for full sentences, and that based on their understanding of the sentence with one or the other way
of resolving the pronominal reference, they are able to decide which reading is correct. How exactly
this is performed in terms of cognitive processes we cannot answer. However, the approach we are
proposing offers two important ingredients of such a potential/hypothesized interpretation process: we
formalized the WSC as a general sequence ranking problem and designed a Siamese neural network
model that (i) computes full-fledged sentence interpretations as they would emerge from from resolving
the pronominal anaphor to one or the other antecedent , and (ii) a ranking function that decides which
of these interpretations can be assigned a higher confidence. Our Siamese model is able to solve a
considerable amount of WSC challenge questions, after training it on pairs of sentence representations
with correctly vs. incorrectly resolved anaphoric pronouns, where it learns information (features) that
distinguishes these pairs. When applying the learned model to unseen pairs, it significantly outperforms
not only a random process but also a naı̈ve baseline neural model. While the model still lags behind state-
of-the-art linear systems that rely on syntactic preprocessing and complex external knowledge sources
accessed by manually designed features, our results are most promising: the Siamese sequence ranking
model is able to learn how to resolve WS by only considering word sequences as input, and does so
significantly better than the random baseline.

Cross-dataset experiments however showed that the WSC is far from being solved – while a state-
of-the-art method and our system successfully answer many problems in one testing set (where the
training data stems from the same source, created by a class of undergraduate students), both fail to
generalize when presented a different, smaller WSC data set (where the examples perhaps are more
carefully designed and seem notably more natural). On the smaller data both systems do not significantly
outperform a random process. Because of this drastic drop in all of the model’s performances and the
small amounts of data we suggest that future work on the WSC should carefully test the methods on as
much data as is available.

Our task formulation provides an easily accessible way for other researchers working on textual un-
derstanding to quickly test their sentence models on a very important AI and text understanding task.
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