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Abstract

Natural language processing researchers have proven the ability of machine learning approaches
to detect depression-related cues from language; however, to date, these efforts have primarily
assumed it was acceptable to leave depression-related texts in the data. Our concerns with this
are twofold: first, that the models may be overfitting on depression-related signals, which may
not be present in all depressed users (only those who talk about depression on social media);
and second, that these models would under-perform for users who are sensitive to the public
stigma of depression. This study demonstrates the validity to those concerns. We construct
a novel corpus of texts from 12,106 Reddit users and perform lexical and predictive analyses
under two conditions: one where all text produced by the users is included and one where the
depression-related posts are withheld. We find significant differences in the language used by
depressed users under the two conditions as well as a difference in the ability of machine learning
algorithms to correctly detect depression. However, despite the lexical differences and reduced
classification performance–each of which suggests that users may be able to fool algorithms by
avoiding direct discussion of depression–a still respectable overall performance suggests lexical
models are reasonably robust and well suited for a role in a diagnostic or monitoring capacity.

1 Introduction

Major depressive disorder is a serious illness that afflicts more than 1-in-15 Americans and more than
1-in-10 American young adults1. Depression is also the number one cause of suicide–the second leading
cause of death among adolescents–and a difficult disease to treat, because those suffering from it are often
reluctant to report. In part, this is true because depression is a highly stigmatized disease. Not only is
stigma a significant contributor to the suffering of both clinically and subclinically depressed individuals,
depression stigma is associated with lower rates of help seeking and higher rates of avoidance (Manos
et al., 2009). This results in a population that may be motivated to hide or otherwise disguise their
depression symptoms.

This paper examines whether a machine learning approach based on linguistic features can be used
to detect depression in Reddit users when they are not talking about depression, as would be the case
with those wary of depression stigma. We split this effort across two datasets: the first, we allow all
the Reddit posts from a sample of 12,106 users, about half of whom are depressed, and in the second,
we allow only those posts which were not directly discussing depression. With this second dataset, we
intend to approximate the activity of users reluctant to discuss depression online or attempting to hide
their depression.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by-sa/4.0/

1https://www.nimh.nih.gov/health/statistics/major-depression.shtml
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On each dataset we perform two sets of analysis: a lexical analysis–using LIWC (Pennebaker et al.,
2015) and Term-Frequency/Inverse-Document Frequency (TF-IDF) weights–and a classification task–
using a number of Support Vector Machine classifiers trained on lexical features. The first analysis
reveals differences between the text produced by depressed users when the corpus is allowed to include
depression-related text and when depression-related text is withheld. The second analysis reveals that the
classification task is more difficult when depression-related text is withheld; however, machine learning
classifiers are still able to detect linguistic traces of depression.

Our contributions with this paper are threefold. First we demonstrate the impact and potential impor-
tance of removing mental-health topics from a corpus before training natural language processing mod-
els; second, we provide attention to the task of detecting stigmatized or otherwise “hidden” depression,
which has to date not been looked at by the research community; and third, we find that the linguistic
patterns of depressed Reddit users are consistent with popular depression batteries and interventions.

2 Related Work

2.1 Depression detection

Language often reflects how people think, and it has been used in assessing mental health conditions
by psychiatrists (Fine, 2006). Recently, computational methods have begun to be employed to study
depressed users’ writings and activities on social media. A meta-analysis by Guntuku et al. (2017)
summarizes several iterations of the depression detection task, including clinical depression detection
(De Choudhury et al., 2013b; Schwartz et al., 2014; Tsugawa et al., 2015; Preoţiuc-Pietro et al., 2015),
post-partum depression prediction (De Choudhury et al., 2013a), post-traumatic stress disorder detection
(Harman and Dredze, 2014; Preoţiuc-Pietro et al., 2015), and suicidal attempt detection (Coppersmith
et al., 2016). For our purposes, it is most important to note how different authors operationalize the
depression detection task and what assumptions are included in that approach.

The first such approach, by Coppersmith et al. (2014) (also used by Coppersmith et al. (2015) and
Resnik et al. (2015)) , attempts to select a population of users with major depressive disorder by crawling
for users’ disclosure of diagnosis. The researchers first scrape a large, broadly relevant assortment of
Tweets, before downselecting to only those Tweets which match the regular expression “I was diagnosed
with [depression]”. Tweets by the users identified in this way are then scraped to create a gold standard,
and a control group of users can be randomly sampled and scraped from the general population.

A second, crowd-sourced-survey approach has also been used effectively (De Choudhury et al., 2013b;
Tsugawa et al., 2015). In this approach, the researchers have micro-task workers (e.g., Turkers from
Mechanical Turk) take two depression inventories (historically, CES-D (Radloff, 1977) and BDI (Beck
et al., 1996) ) and provide their social media handle. If the inventory results correlate (both indicating
depression or no depression), the authors will scrape the users’ social media data and place them in the
depressed group or the control group.

A third, less frequently used, approach is based on community membership or participation. In this
approach, users are classified as having a mood disorder–both depression (De Choudhury and De, 2014)
and anxiety (Shen and Rudzicz, 2017) have been studied–when they post in a given community (typically
a subreddit, as this approach has mostly been used with Reddit-data). This approach has tended more
towards descriptive research and past analysis have focused exclusively on content from the identified
communities.

Across all three methods, we find a shortcoming: authors largely make no effort to limit the topic of
discussion. Given that the gold standards created by the first and third sampling strategies above are
constructed by looking for disclosure of diagnosis or at least self-diagnosis, we can assume that these
users have a higher probability of discussing depression than a typical, control group user. Algorithms
trained upon these samples to predict depression may be cluing in on this topic-proclivity to achieve
artificially high results. Further, all three approaches, by not removing explicit discussion of depression
from their training data, at the very least can be expected to under perform on an important population:
the depressed who are reluctant to speak about their condition. To our knowledge, only three studies have
attempted to remedy this and each of those has been computationally (as opposed to psycho-linguistically
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All Subreddits Depression Withheld Pct. Change
Users–Depressed 4,947 4,324 −12.6%
Users–Control 7,159 7,153 −0.1%
Users–Total 12,106 11,477 −5.2%
Words–Depressed 55,980,678 48,399,823 −13.5%
Words–Control 93,109,041 92,787,403 −0.3%
Words–Total 149,089,719 141,187,226 −5.3%

Table 1: Dataset Composition by Tasks

oriented) oriented (Yates et al., 2017) or exploratory in nature (Losada and Crestani, 2016; Hiraga, 2017).

2.2 Depression Stigma

One of the reasons we are concerned with previous authors not removing depression-related text from
their data is because we are concerned about stigma leading many depressed users to be silent about their
depression. Latalova et al. (2014) suggest that stigma-related effects are an important factor preventing
depression-related help-seeking among men and that a complex relationship exists between masculinity
and depression. Through a narrative review of the research on stigma, they find that masculinity is both a
cause of depression and a cause of reduced-help seeking, exemplified by gender norms like “boys don’t
cry”.

Similarly, after having conducted a survey of a random sample (n=5,500+) of college students from 13
American Universities, Eisenberg et al. (2009) suggest that social-norms are a leading cause of perceived
public stigma and, in turn, personal stigma. They found that higher self-stigma is associated with lower
reported comfort seeking help and that self-stigma was highest among male students, Asian students,
young students, poor students and religious students.

In a random sample (n=1,300+) people from the general Australian public, Barney et al. (2006) find
this same pattern: higher reported self-stigma scores result in increased hesitation about seeking help for
depression. Major sources of this hesitation included personal embarrassment at having depression and
the perception that others would respond negatively. This last finding is in contrast to Schomerus et al.
(2006), who find that among a sample (n=2,300+) of the German public anticipation of discrimination by
others did not prevent help seeking behavior (though again, self-stigma was negatively associated with
help seeking).

Our view is that given the consistent findings that self-stigma reduces help-seeking, depression de-
tection efforts using social media and natural language processing have a unique opportunity to reach
these individuals. If models can be trained to identify not just the depressed and open about it, but the
depressed and hesitant, help could be directed to individuals who would otherwise neglect to seek it. In
this study, our aim is to approximate the scenario where the users are hesitant to post about depression.

3 Method

3.1 Data

The data for this analysis are the reddit posts of 12,106 reddit users, totalling 149,089,719 words. The
users are divided into two categories: depressed and not-depressed. Of the more than 12,000 users, 4,947
(≈ 40%) are considered depressed and these users account for nearly 56-million words (≈ 38%). The
7,159 (≈ 60%) non-depressed users are responsible for the other 93-million words (≈ 62%).

To gather our depressed users, we used a community participation approach similar to that employed
in other Reddit-based research (De Choudhury and De, 2014; Shen and Rudzicz, 2017). We considered
a user depressed if they started a thread in Reddit’s depression subreddit2–which identifies itself as a
“a supportive space for anyone struggling with depression.”–as a user self-identifying as suffering from
depression. On the basis of this heuristic, we scraped the 10,000 most recent post-authors from the

2www.reddit.com/r/depression
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Depressed Control
r/depression help r/aww r/AskReddit r/news
r/AskReddit r/Showerthoughts r/pics r/gaming
r/depression r/gaming r/funny r/aww
r/pics r/videos r/Showerthoughts r/todayilearned
r/funny r/todayilearned r/mildlyinteresting r/gifs

Table 2: Some of the common subreddits the users participated in

depression subreddit. To construct a control group, we scraped users who had started a thread in Reddit’s
AskReddit subreddit3, one of the site’s most popular communities with more than 18 million subscribers.
We believe AskReddit is a fitting control for the depression community because its question-and-answer
format is similar to the information and support seeking of the Depression community, and AskReddit is
among the most popular subreddits among depressed users in our sample.

With these two lists of users, we then scraped the entire available post-history of these users. Users
from whom we did not collect more than 1,000 words of text were removed from our dataset. By scraping
the entirety of our users posts we achieve a diverse range of conversation topics (see Table 3.1), including
computer games and internet culture, politics and current events, and more. Most of the discussion
sampled (≈ 96%) was unrelated to depression.

Two of the authors validated our heuristic for selecting depressed Reddit users through a systematic,
independent review of 150 posts from the front-page of the depression subreddit. The authors agreed
on 99% (149/150) of the total classifications and both authors agreed that 147 of the 150 posts indicated
at least a self-diagnosis of depression-like symptoms by the authoring user. A 99% confidence interval
about this proportion suggests that no less than 92% of users selected by our depressing heuristic are
suffering from self-diagnosed depression-like symptoms. We did not attempt to assess the number of
depressed users in our control sample; however we would expect the upper-bound on this to be around
1-in-204 .

3.2 LIWC Analysis

LIWC, the Linguistic Inquiry and Wordcount Tool, is psychometric analysis software based on the idea
that the words a person uses reveal information about their psychological state (Pennebaker et al., 2015).
The software has been extensively used in natural language processing tasks for feature-creation, includ-
ing within the area of mental-illness detection (for more, see Guntuku et al. (2017)). We use LIWC both
as a source of features and as part of a stand alone analysis.

For the latter, we estimate the true means of several depression-related indices using 95% T 2 intervals
(Hotelling, 1931) for the control and depressed users under our two detection conditions: (1) including
all data and (2) withholding depression-related data.

3.3 Classification

With respect to classification, we endeavor to solve two tasks. The first is a benchmark designed to mirror
the depression-detection efforts to date. In this task, we use all of the data from the 4,947 depressed
users and 7,159 non-depressed users in our dataset. The second task is an expanded version of efforts
by Hiraga (2017) which excludes the explicit discussion of depression. We achieve this by witholding
posts and comments from 17 subreddits related to depression. We selected subreddits for exclusion
by examining subreddits linked from the depression subreddit (e.g., r/SuicideWatch and r/mentalhealth)
and snowballing out to other related subreddits. We also examined a list of subreddits frequented by
depressed users for those with depression-related names. Limiting our data in this way, our dataset was
reduced to only 4,324 depressed users and 7,153 non-depressed users who met our 1,000-word threshold.
A comparison of these tasks is shown in Table 1.

3www.reddit.com/r/AskReddit
4According to the CDC, this is the rate of depression among the general public and AskReddit is a general purpose subreddit.
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All–Dep Off–Ctrl Off–Dep
All–Ctrl 950.1* 0.3 460.5*
All–Dep - 1397.7* 120.4*
Off–Ctrl - - 475.7*
*Significant at p<.001

Table 3: F-values of pairswise two-sample T 2 tests about the LIWC index means

For these tasks, we train two Linear Support Vector Machines (Fan et al., 2008) with TF-IDF weighted
combinations of word and character ngrams and LIWC features. Our character ngram features include
all 2- to 4-grams; our word ngram features contain unigrams and bigrams; our LIWC features contain
all the lexical indexes output by LIWC. We use a smoothed TF-IDF approach–implemented as tf(t)×
log(N+1

nt+1)–where tf(t) is the number of times the unigram or bigram t occurs, N is the number of
documents and nt is the number of documents containing the unigram or bigram t.

We limit our text prepossessing to sentence segmentation, tokenization, using a simple, social-media
aware tokenizer5, and ignoring case.

4 Results

4.1 LIWC Analysis

The 95% T 2 intervals about the user-level means of select depression-related indices demonstrates a
wide-gap between the control users and the depressed users that narrows significantly when depression-
related topics are removed from the data. We find significant differences between all group-condition
differences, except for the two control groups (control users including depression text and control users
with depression text withheld). Table 2 reports the F-values of all pairwise comparisons, with higher
numbers indicating a greater difference between the samples.

The intervals about the specific indices reveal that depressed users are less “analytic”, with less “clout”
and more “authentic” than their control-group counterparts. Further, they use the personal pronoun I
more, engage in more comparisons, speak with more affect, especially expressing more negative emotion,
anxiety and sadness, with a greater emphasis on the present and future. Small to no differences are found
between depressed and control users with respect to positive emotion expression (although depressed
users may use more), anger, social language, family language, and focus on the past.

Between the depressed users in the all-included condition and the depressed users in the withheld
condition, we find that depressed users appear more “analytic” and less “authentic” in the withheld case,
with a decreased use of the I pronoun, decreased expression of sadness, and a decreased focus on the
present. All of these changes make depressed users in the depression withheld condition more similar to
control users; however, overall they are still more similar to the depressed users with all data included
than to either control group.

4.2 Classification

The results from our two classification tasks in many ways reflect the differences found by the LIWC
analysis. Of the four model variants–LIWC scores only, character ngrams only, word ngrams only, and
the LIWC features plus both sets of ngram features–every variant achieved better performance in Task
1, which includes all the data collected, than its counterpart in Task 2. Between the four variants, the
LIWC+ngram model achieved the best performance (81.8% accuracy in Task 1 and 78.7% accuracy in
Task 2).

In the all topic case, as previously noted, we find that the LIWC+ngram model performs best. Its
accuracy, AUC and F1-score are all better than the second best model, based on word-ngram features,
that in turn is better than the third best model based on character-ngram features. The LIWC-based
model performs well, achieving 78.7% accuracy.

5We use a modified version of: Christopher Potts’ HappierFunTokenizing.
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Task 1: All topics Task 2: Depression withheld
Control Depression Control Depression

Analytic 45.67-48.22 32.79-36.16 45.75-48.30 36.60-40.10
Clout 52.07-54.15 43.55-47.04 52.05-54.14 44.64-48.10
Authentic 43.12-46.13 54.76-59.15 43.03-46.04 49.65-54.15
I 4.74-5.05 6.31-6.82 4.74-5.04 5.79-6.29
Comparisons 2.46-2.55 2.63-2.75 2.46-2.54 2.58-2.71
Affect 6.20-6.50 6.93-7.27 6.20-6.50 6.69-7.05
Pos. Emotions 3.80-4.06 4.05-4.32 3.80-4.06 4.01-4.31
Neg. Emotions 2.30-2.44 2.74-2.94 2.29-2.43 2.54-2.74
Anxiety 0.25-0.28 0.36-0.42 0.25-0.27 0.32-0.37
Anger 0.93-1.03 0.91-1.03 0.93-1.03 0.92-1.05
Sadness 0.37-0.40 0.60-0.68 0.37-0.40 0.47-0.53
Social 9.37-9.73 9.42-9.94 9.36-9.72 9.19-9.75
Family 0.34-0.39 0.30-0.36 0.34-0.39 0.29-0.36
Focus:Past 3.60-3.80 3.43-3.67 3.60-3.80 3.50-3.76
Focus:Pres. 11.50-11.82 12.96-13.43 11.49-11.81 12.31-12.76
Focus:Fut. 1.17-1.23 1.33-1.43 1.17-1.23 1.25-1.35
Bold text indicates a difference between treatment conditions for depressed users

Table 4: 95% T 2 interval about select LIWC results for groups across treatments

In the depression-topics withheld case, the results are similar. The composite model is the best, with
word-ngrams alone beating character-ngrams alone and LIWC features performing the worst of all. For
this second task, we also tested the best-performing model (the combined-features model) trained on the
data from first task. With respect to accuracy, this model out performed all models except its counterpart
combined-features model trained on the data from the second task; however, looking more holistically
at the measures of performance, underwhelming AUC (73.2%) and an underwhelming F1-score (64.8%)
suggest it not be quite as well calibrated as the word-ngram feature model.

5 Discussion

We were motivated to do this study by the concern that social media-based approaches to depression
detection may be overlooking certain populations of interest, especially those who have high self-stigma.
Our analysis reveals that concern to be warranted. Even within the constraints of our study design, which
only approximates users who are hiding their depression symptoms, we find that there are significant
differences between depressed users when they are talking about depression and depressed users when
they are not.

This difference is evident looking at the F-scores presented in Table 2 and the confidence intervals
in Table 4. Table 2 indicates large gaps between control and depressed users in both cases: all data
permitted and depression-data witheld. Table 4 indicates the specific areas where depressed users modify
their language when not discussing their depression. Overall, when not discussing depression, depressed
Redditor’s become more analytic and less willing to express their personal feelings, especially sadness
and their present state.

We find that the depressed Redditor’s language use fits within the paradigm one would expect. Beck’s
depress inventory (Beck et al., 1996) posits a trichotomy of depression: depressed attitude (1) towards
the self, (2) towards the world, and (3) towards the future. As reflected by their LIWC scores, it is
clear that depressed users more heavily emphasize themselves–seen in I usage–and the future–seen in
the “Future:Focus” variable–than users who were part of our control group.

Further, these results are also consistent with a mindfulness-linked view of depression (Kabat-Zinn,
2003; Hofmann et al., 2010). Depressed users show an increase in anxious language–especially prevalent
when users are talking about depression–decreased analytic language and, as previously mentioned, a
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Model Acc AUC F1
Task 1: All topics
Baseline
LIWC .787 .751 .680
Char ngrams .810 .771 .707
Word ngrams .813 .777 .717
LIWC+ngram .818 .786 .729

Task 2: Depression topic withheld
Baseline
Task 1 Best .780 .732 .648
LIWC .751 .706 .613
Char ngrams .774 .729 .646
Word ngrams .778 .738 .660
LIWC+ngram .787 .752 .681

Table 5: Task 1 and Task 2 Results

strong emphasis on the self. This suggests, as the mindfulness research has (Williams, 2008; Michalak
et al., 2008), that the wrong ‘mode of mind’, i.e., ruminating on negative thoughts, may exacerbate
depressive mood.

We can further color our understanding of what depressed users are talking about by examining the
words with the highest TF-IDF scores. A selection of words from the top-100 highest TF-IDF scores
for depressed users is shown in Table 5. We have categorized these words into 5 groups: therapy and
medication, people words, dialogic terms, Reddit and games, and porn and masturbation addiction.

Therapy and medication terms Unsurprisingly, the most common class of depression-indicator
words are therapy- and medication-related terms. What is interesting, however, is the wide range of treat-
ments about which depressed Redditors talk. They talk about talk-therapy related treatments (e.g., psy-
chitrist, counselor, therapist), standard medications for depression (e.g., Citalporam, Xanax,Prozac, and
the general: antidepressants), as well as alternative- or self-medications (e.g., CBD—THC oil, Kratom—
a relatively new psychoactive). This suggests redditors are looking at a wide-range of solutions for their
depression, further implying that they have been unsuccessful with previous attempts. It also suggests
that Reddit may be a fruitful place to monitor the prevalence un-prescribed treatments.

People words Consistent with our LIWC analysis, in the depressed user all topic results we find
personal pronouns like I’m and I’ve, which show users talking about themselves. This is also consistent
with a notion of depressed individuals emphasizing themselves (Beck et al., 1996).

Dialogic terms Terms that are often used in conversations such as (you, you’re, yea, yeh, ur, thankyou)
show up with regularity in the top-100. This suggests that depressed users are addressing other reddi-
tors with you (and youre) more than a typical reddit user. This could be because depressed redditors
engage more heavily in advice seeking and giving than standard redditors. These narration and response
situations would provide ripe opportunity to address others.

Reddit, manga, games Across all user types and conditions we find Reddit-specific terms related to
subreddits and gaming, such as meirl6, a meme-sharing sub, IGN, a popular gaming website, and various
game and manga characters Nyx, warlock, Goku and Vegeta.

Masturbation and pornography addiction Interestingly, a Reddit community dedicated to male
sexual restraint–nofap–and one of its core concepts, “porn, masturbation and orgasm avoidance”–pmo–
appear prominently in the depressed user tf-idf rankings. The stated purpose of the “NoFap” community7

is to help users “reboot from porn addicition”, by abstaining from orgasm for a month or more. This sug-
gests that depressed Redditors, or at least a subset of them, are inclined to side with the research that
has linked internet addiction, masturbation and pornography consumption with increases in depression

6www.reddit.com/r/meirl
7www.reddit.com/r/NoFap
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Therapy and medication People words Dialogic terms Reddit, games Porn addiction
Psychiatrist mg Counseling I’m Thank you Nyx PMO
Xanax Prozac NMOM I’ve yea IGN nofap
Adderall Therapist BDP ur yeah MeIRL
Anhedonia Counselor ug you
Lucid Zoloft DET you’re
Psychologist Citalporam Kratom ppl
Meds Antidepressants anhedonia
ECT CBD

Table 6: Assorted words from top-100 most “depressed” words by TF-IDF score

(Chang et al., 2015) and depressive symptoms like loneliness (Yoder et al., 2005), as well as decreases
overall health (Brody, 2010). The community appears to be mostly male users, which is perhaps not
surprising; however, it is worth noting that depression has also been linked with increased rates of mas-
turbation for women (Cyranowski et al., 2004).

Turning away from the lexical analysis to the predictive modeling, we find that the depression detection
tasks mirror the LIWC findings insofar as the first task, which includes all the data, does prove to be more
challenging (i.e., the models perform worse in it) than the the second task limited to depression-unrelated
data. Across all the models we see a reduction in about 3% points from the all-data condition to the data-
withheld condition. The one model trained on the all-data condition and tested on the data-withheld
condition suffered more—about 4% points.

Relative to other depression-detection tasks, the models for the first task appear to be above average
at depression detection (see Guntuku et al. (2017) for comparisons), and the performance of the LIWC-
feature exclusive models suggests that the data here may be noisier than others depression-detection
datasets (cf. Preoutic-Pietro et al., 2015 ). Given that, the 3.4% point reduction in AUC and 3.1% point
reduction in accuracy should be taken seriously as a cautionary sign that depression-detection models
may be overfitting for situations where social media users are open about their depression.

On a positive note, as Guntuku et al. (2017) note, these AUC scores are still better than the perfor-
mance of primary-care physicians, which range from 62% to 74% (Mitchell et al., 2011). This suggests
that even though social-media trained models may be overtrained, they may still be useful. Further,
given that there exists a high-rate of depression-related stigma among primary care goers (Roeloffs et al.,
2003), social-media based approaches may be an even more effective diagnostic tool because one can
easily imagine patients with depression stigma actively acting to hide their depression from a primary
care physician.

6 Conclusion

At the outset of this study, we believed that there was a chance natural language processing depression
detection models were at risk of missing depressed individuals who were reluctant to talk about their
depressive symptoms publicly, but nevertheless suffer substantially from depression. The results of our
analysis, T 2 intervals about LIWC index scores and two classification tasks, are consistent with this
belief. There appear to be substantial differences in depressed users language when they are explicitly
discussing depression and when depression-related data is withheld.

With respect to the LIWC indexes, we found that depressed users showed differences with our control
users as expected by psychological theory: increased anxiety, self-reference, negativity, sadness and
affect, paired with decreased analytic language. With respect to the classification tasks, we found that,
as expected, the depression data withheld task was more difficult than all topic task. Additionally, we
found that the best performing model combined word- and character-ngrams with LIWC features.

That said, these findings should be considered within the context of this study’s limitations. First,
the data shows a Reddit-specific bias (exemplified by the presence of porn/masturbation avoidance and
a large number of computer, manga and video games terms in the TF-IDF rankings). These findings
may not generalize to other social media platforms. Second, while depression diagnosis is temporally
bounded, we make no effort to limit our data with respect to time. We may be including data for our
depressed users from a time when they were not depressed, adding noise and reducing our accuracy. And
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third, while we intend to approximate the behavior of users who are both depressed and have high self-
stigma, our attempt to do relies on users who presumably are seeking help. Users who have truly high
self-stigma may behave differently. These findings and shortcomings naturally lead to future research
opportunities. Future research should examine how variations in depression stigma may impact internet
language use, how depressed-user language varies across social media platforms, and how language may
be used to predict perceptions of public stigma. Lastly, the “NoFap” community appears like it would
warrant further study on its own from a sociological perspective.

7 Ethical Considerations

This study aims to add consideration for the needs of high self-stigmatized individuals suffering from
depression or depression-like symptoms. With that in mind, there are many valid reasons that people
would be reluctant to disclose a mood-disorder or mental-health issue publicly. There is a difference
between using computational linguistic technologies to direct targeted help towards these individuals and
the use of these same technologies to expose these individuals. As long as the media continues to portray
people suffering from mental illness as violent and dangerous (Friedman, 2006) and the public continues
to believe that people suffering from mental illness endanger them (Barry et al., 2013), where natural
language processing overlaps with health, all applications should strive to meet the classic bioethics
principle of non-maleficence: first, do no harm.

Inappropriate uses of depression detection technology—especially on those with high-levels of depres-
sion stigma—may alter the way individuals relate to the disease. Individuals who feel targeted by this
approach may become less likely to seek support and more likely to perceive the public as judging them
for their illness. In those ways, misusing depression detection technology could exacerbate the stigma
effects on a stigmatized population that is already at greater risk. Given that the goal of depression-
detection for the stigmatized population is to help those individuals above all else, extra care should be
paid to how the modeling is perceived by those who are suffering from depression.
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