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Abstract

This paper presents the submission of the UH&CU team (Joint University of Colorado and Uni-
versity of Helsinki team) for the VarDial 2018 shared task on morphosyntactic tagging of Croat-
ian, Slovenian and Serbian tweets. Our system is a bidirectional LSTM tagger which emits tags
as character sequences using an LSTM generator in order to be able to handle unknown tags and
combinations of several tags for one token which occur in the shared task data sets. To the best
of our knowledge, using an LSTM generator is a novel approach. The system delivers sizable
improvements of more than 6%-points over a baseline trigram tagger. Overall, the performance
of our system is quite even for all three languages.

1 Introduction

This paper' presents the joint submission of University of Colorado and University of Helsinki for
the 2018 VarDial shared task on morphosyntactic tagging of Croatian, Serbian and Slovenian tweets
(Zampieri et al., 2018). Morphosyntactic tagging is a useful preprocessing task when parsing morpho-
logically complex languages since these typically encode syntactic information as inflectional material
in word forms. For example, both of the following Croatian words forms are inflected forms of ’dog’:
pas and psa. However, the first one is far more likely to encode a grammatical subject since it displays
nominative case. This demonstrates that coarse POS tags are not sufficient for capturing all syntactically
relevant aspects of words in morphologically complex languages. Instead, rich morphological tags are
needed.

It is not sufficient to train one morphosyntactic tagger and expect it to perform well in all domains. The
reason for this is that the performance of data-driven models typically suffers when they are applied to
domains which considerably differ from their training domain. Consequently, NLP models often deliver
poor results when applied to the social media domain since most models are trained on newswire or
related, more formal, domains. This is a problem because text analysis for social media has become
increasingly important both from an economical and research perspective in recent years.

Social media differs from newswire in many respects. As explained in Section 3, Croatian, Serbian
and Slovenian text in the social media domain often lacks diacritics, which ordinarily are a prominent
feature in the orthographies of these languages. Moreover, orthographic rules concerning capitalization
are frequently ignored. Furthermore, our error analysis in Section 5 shows that Twitter text contains a
large amount of foreign, mainly English, loan words. These are some of the reasons why NLP systems
can fail to deliver good performance on social media text.

The VarDial shared task specifically targets the social media domain. Our system is trained on col-
lections of morphosyntactically annotated Tweets (Ljubesic¢ et al., 2017a; Ljubesi¢ et al., 2017b; Erjavec
et al., 2015). It is an LSTM (Hochreiter and Schmidhuber, 1997) morphosyntactic tagger which utilizes
pretrained subword-aware word embeddings and character-based word embeddings. The setup is shown
in Figure 1. This basic setup for an LSTM tagger is not new. However, our system does have novel
aspects, especially in the output layer.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.
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Figure 1: Our system starts by padding the input sentence zy, ..., z7 with end-of-sequence symbols
[EOS]. It then embeds all tokens in the sentence (see Figure 3 for details). Embeddings are fed into
a bidirectional LSTM encoder which outputs forward and backward representation vectors f; and by
at each position ¢t. To predict the morphosyntactic tag at position ¢, the concatenated representation
[ft; br—¢] is then fed into an LSTM generator which emits the MULTEXT-East tag for token xz; one
character at a time.

Previous approaches to neural morphosyntactic tagging have either treated complex morphological
tags like Npmsn (the singular nominative of a masculine noun) as atomic units or predicted each feature
(for example N, p, m, s, n) separately. Both of these approaches are insufficient for our needs. The first
approach is suboptimal because the system will treat MULTEXT-East tags (Erjavec, 2012) Npmsn and
Npms1 as completely separate entities even though both are in fact proper noun tags which share number
and gender. Indeed, Miiller et al. (2013) and Silfverberg et al. (2014) show that sub-tag dependencies
improve the performance of linear taggers. It is conceivable that the same applies to deeper neural
architectures.
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Figure 2: In this sentence ’and did he kiss mother in law?’, the token jel receives two separate tags
because it is a contraction of the verb je ('to be’ in 3rd person singular) and the interrogative particle li.

The second approach, namely individually predicting each feature of the tag, does take into account
individual sub-tags. However, this approach does not model their dependencies or the complete tag in
any way which also seems problematic. In the case of morphosyntactic tagging in the MULTEXT-East
schema, there is also a more serious problem with predicting each sub-label in isolation. Namely, tokens
can sometimes receive multiple tags, for example in the case of contractions (Ljubesi¢ et al., 2017a). An
example of this is shown in Figure 2. A straightforward approach to predicting sub-tags cannot handle
this situation. Therefore, we opt for using an LSTM generator for emitting tags. It can model both
individual sub-tags and dependencies between sub-tags. Because LSTM networks excel at long range
dependencies, there is reason to believe that our approach also captures information about complete
MULTEXT-East tags.

The paper is structured in the following way: In Section 2 we present related approaches neural to
morphosyntactic tagging and tagging in the social media domain. In Section 3, we present our LSTM
tagger. Section 4 presents the data sets used in the VarDial task and Section 5 presents our experiments
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and results. Finally, we present discussion and directions for future work in Section 6 and conclude the
paper in Section 7.

2 Related Work

Our system is inspired by the neural POS tagger introduced by Dozat et al. (2017), however, we have
extended their approach to handle morphological tagging. In the past two years, POS tagging for mor-
phologically complex languages has received a fair amount of attention. Starting with the work by Plank
et al. (2016a), neural approaches, particularly bidirectional LSTM taggers, have dominated the field.
This is exemplified by the entry of Dozat et al. (2017) for the 2017 CoNLL shared task on multilingual
parsing, where their neural POS tagger delivered the best results by far for nearly all languages (Zeman
et al., 2017).

Even though work on neural POS tagging has received more attention, there are a number of papers
on neural morphosyntactic tagging. Heigold et al. (2016a) evaluate several architectures for morphosyn-
tactic tagging® of German and Czech. They find that pretrained word embeddings bring large gains
in presence of small training sets and that character-based architectures deliver the best performance.
Heigold et al. (2016b) extend these experiments to 12 additional languages.

Most existing systems for morphosyntactic tagging treat complex morphosyntactic tags in the same
way as POS tags, that is, they do not model the internal structure of tags. As an exception to this,
Krasnowska-Kiera$ (2017) predict each sub-tag in complex morphosyntactic tags separately. As men-
tioned above, this is not a sufficient solution in our case since it does not address the problem of multiple
morphosyntactic possible tags for one token. Therefore, we opt for using an LSTM generator for emitting
tags. To the best of our knowledge, this approach is novel.

We utilize automatically tagged data from the web domain (LjubeS$i¢ and Klubicka, 2014) to improve
the performance of our system. Plank and Nissim (2016b) use a similar approach for POS tagging of
Italian tweets. They use automatically tagged data from the social media domain and find that it can
deliver sizable improvements. Our results point in the same direction.

3 Methods

This section describes our bidirectional LSTM tagger. It also describes how automatically tagged web
data is used for improving tagger accuracy and the data transformations that we perform on the web data
in order improve performance in the Twitter domain.

3.1 A Neural Morphological tagger

Our system is an unstructured morphosyntactic LSTM tagger®. We utilize character-based embeddings
and pretrained embeddings and the system emits morphological tags using an LSTM generator. This
allows us to both emit tags, which we have not seen in the training data, and emit combinations of
several tags for one token. This is necessary for handling contractions present in the shared task datasets,
as explained above.

Embedding layer Our word embedding layer combines three types of word embeddings: pretrained
word embeddings, randomly initialized word embeddings and character-based embeddings. See Figure
3 for a visualization.

Pretrained embeddings are initialized using FastText (Bojanowski et al., 2017) which treats word
forms as a bags of character n-grams. We use FastText because it can provide an embedding vector both
for tokens that were observed during training and for other tokens. This is important when dealing with
morphologically complex languages, where out-of-vocabulary (OOV) rates are typically high. We train
pretrained FastText embeddings using large quantities of plain text. In addition to pretrained embeddings,
we use regular randomly initialized token based embeddings. It is common practice to include both types
of embeddings in a tagger.

*Many authors including (Heigold et al., 2016b) refer to morphosyntactic tagging as morphological tagging.
3The term unstructured refers to the fact that the tag for each token in the sentence is predicted in isolation. This is common
practice in the field of neural morphological tagging.
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Figure 3: Word embeddings in our system are a concatenation of four vectors: a pretrained word em-
bedding P(w), a randomly initialized whole word embedding W (w) as well as forward and backward
character based embeddings fc(w) and be(w) computed by a bidirectional LSTM encoder.

Finally we use character-based embeddings based on a bidirectional character-level LSTM encoder. To
compute character-level embeddings, we treat the input word as a sequence of characters c1, ..., ¢y and
pad it with end-of-sequence symbols resulting in a sequence cg, ..., cny+1. We then compute character
embeddings E(¢;) for each character in the sequence cy, ...,cy+1. Subsequently, we use the forward
component of the LSTM encoder for encoding the sequence E(cp), ..., E(cy 1) into a representation
vector. Similarly, we use the backward component of the encoder for encoding the reverse sequence
E(¢n41), .-, E(co) into a representation vector. We use the final cell-state [fc; bc] of the bidirectional
LSTM encoder as the representation of the sequence.

As a final step, we concatenate all vectors into a unified token representation. As stated above, any
word form, whether seen during training or not, will receive a pretrained embedding vector. Therefore,
we do not need to treat OOV tokens differently with regard to the pretrained embedding. In contrast, the
random initialized token embedding may encounter unknown tokens during test time. Therefore, we use
a special unknown word token [UNK], whose embedding is initialized randomly. During training, we
then replace input token embeddings with the embedding for [UNK] with probability pyorpunk. In order
to simulate the distribution of OOV tokens, [UNK] embeddings are trained exclusively on input tokens
which occur once in the training data.

It may also happen that we encounter unknown characters in the test data. Therefore, we also use an
unknown character symbol and train it analogously to the unknown word symbol, that is, we randomly
replace character with [UNK] during training with probability pcuarunk.

Sentence-level LSTM encoder We use a bidirectional encoder LSTM for deriving a sequence of state
vectors [f; br_¢] from token representation vectors. The state vector sy = [f; br_¢] is the concatena-
tion of the cell states of the forward and backward components of the bidirectional LSTM.

Tag generator The sentence-level representation at position ¢ is fed into an LSTM generator, which
generates MULTEXT-East tags, for example Npmsn, as character sequences. Formally, the generator
is a recursive function G(ET1ag(ck—1), hg,st¢) conditioned on the embedding Erag(cx—1) of the pre-
viously generated character c_1, the current hidden state of the generator hy, and the hidden state of
the sentence-level encoder LSTM s¢. The function value G(Etag(ck—1), hg,st) is a distribution over
possible characters occurring in MULTEXT-East tags and the output character ¢ is determined as the
mode of that distribution. The process is initialized by setting c( to an end-of-sequence symbol [EOS].
We apply teacher forcing (Goldberg, 2017) when training the generator.

3.2 Data transformation

There are a number of differences between the language use in Croatian, Serbian and Slovenian Tweets
and language use in more formal domains. Capitalization and diacritics are often omitted in Tweets and
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there are far more English and foreign language words in Tweets. Additionally, there are English words
whose orthography has been adapted to Croatian, Serbian or Slovenian spelling. Although, addressing all
of these points is likely to improve tagging accuracy, we decided to focus on capitalization and diacritics.

Before training pretrained embeddings, we remove all diacritics from words in the embedding training
data. For example, koriStenjem — koristenjem. When indexing the word embedding, we remove
diacritics from the query word. In addition, we make embeddings case insensitive so grijanje, Grijanje
and GRIJANJE all receive the same embedding vector.

3.3 Improving Performance using Web Data

As further explained in Section 5, we use automatically tagged Croatian, Serbian and Slovenian web
data (Ljubesi¢ and Klubicka, 2014) for improving the performance of the tagger. This is done simply
by combining web data and Twitter data into one training corpus. We train several taggers combining
different parts of the web data with the Twitter data and perform majority voting to get the final result.

3.4 Implementation Details

We use 300 dimensional randomly initialized word embeddings, pretrained word embeddings, charac-
ter embeddings and sub-tag embeddings. We use 2-layer bidirectional LSTM encoders for computing
character representations, sentence-level representations and for generating output tags.

Due to the small size of the Twitter training corpora and the well known tendency of deep learning
models to overfit, we add Gaussian noise with standard deviation 0.2% to randomly initialized word
embeddings and pretrained embeddings during training. We also apply 50% dropout to the parameters
of all LSTM networks. Additionally, we replace characters with an [UNK] symbol with probability
0.1 during training. We also replace the randomly initialized word embedding for words that occur
once in the training corpus with an [UNK] embedding with probability 30%. During training, we use
minibatches of size 50 and train for 100 epochs using Adam (Kingma and Ba, 2014). The tagger is
implemented using DyNet (Neubig et al., 2017).

4 Data

P Attribute (en) Value (en) Code (en)

0 CATEGORY Noun

1 Type common
proper

2 Gender masculine
feminine
neuter

3 Number singular
plural

4 Case nominative
genitive
dative
accusative
vocative
locative
instrumental

5 Animate no
yes
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<

Table 1: Croatian and Serbian Specifications for Noun

For training we use the following data sets: Twitter data for Croatian (Ljubesi¢ et al., 2017a), Serbian
(Ljubesic et al., 2017b) and Slovenian (Erjavec et al., 2015). Additionally, we use automatically tagged
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web data for all thee languages (Ljubesi¢ and Klubicka, 2014). All data sets were tagged according to
MULTEXT-East Morphosyntactic Specifications*. For all three languages the specification recognizes
12 parts of speech (Noun, Verb, Adjective, Pronoun, Adverb, Adposition, Conjunction, Numeral, Parti-
cle, Interjection, Abbreviation, Residual) and each category has different numbers of language specific
attributes and values. For example, in all three languages, nouns have 5 attributes (Type, Gender, Num-
ber, Case and Animate) and each attribute has language-specific values. Table 1 shows attributes and
corresponding values for the Croatian and Serbian Noun category. Slovenian has the same attributes,
but different values for the category Number (singular, plural and dual) and Case (there is no vocative in
Slovenian). Two examples for noun tags are shown in figure 4.

Uskrs Npmsn (Noun, proper, masculine, singular, nominative)
sudbinu Ncfsa (Noun, common, feminine, singular, accusative)

Figure 4: Tag explanation for two nouns: "Uskrs” (eng. Easter) and ”sudbinu” (eng. destiny)

As mentioned above, the MULTEXT-East specification allows for several tags for one token. This
happens for contractions like jel which are in fact combinations of two ore more distinct word form je
”to be” and li, which is an interrogative particle, in this case.

5 Experiments and Results

We perform experiments on morphosyntactic tagging of Croatian, Serbian and Slovenian Twitter data.
Additionally, we use automatically tagged web data for each language to improve performance.’ For
each language, we create pretrained FastText embeddings using the first 10M sentences from the web
data.® We then form ten tagger training sets using Twitter training data and the tagged web data. These
training sets are used for training ten models, in total. Each training set contains the entire original
Twitter data but all of them contain disjoint segments of the web data. We use 500K tokens of web
data for each training set (more than this degraded results in preliminary experiments). The web data
segments are consecutive S00K token chunks data starting at the top of the data set.

CROATIAN SERBIAN SLOVENIAN
POS MOR TAG POS MOR TAG POS MOR TAG
BASELINE - - 0.834 - - 0.832 - - 0.832

OUR SYSTEM 0.943 0.886 0.887 0.957 0.900 0.900 0946 0.884 0.884

Table 2: Accuracy for part-of-speech (POS), morphological features (MOR) and the complete mor-
phosyntactic tag (TAG).

We apply the ten different systems for tagging the test set and perform majority voting to get the final
test set tag for each word. We compare the system against a baseline HunPos trigram tagger (Halacsy
et al., 2007) which is described in Zampieri et al. (2018). The results are shown in Table 2. Our system
substantially outperforms the baseline on all three languages.

Table 3 shows the most common tagging errors that our system makes. As can be seen, confusions
between noun tags like Npmsn and the foreign word tag Xf are frequent for all three languages. Most
of these concern English words which the tagger incorrectly identifies as Croatian, Serbian or Slovenian
words and labels accordingly. Another common error type is that nominatives are tagged as accusatives
or vice versa. For example, many Croatian and Slovenian singular masculine nominatives Ncmsn are
incorrectly tagged as inanimate accusatives Ncmmsan. This is an understandable error since Croatian and
Slovenian do not overtly mark singular accusatives of inanimate nouns (Barié et al., 1995; Pauliny et al.,
1968).

In Serbian, a common error type is the confusion of conjunctions Cs and adverbs Rgp. This happens
because adverbs can be used for combining sentences into one. If one of the sentences is subordinate

*http://nl.ijs.si/ME/V4/msd/html/

SWe do not use the manually tagged out-of-domain data provided in the shared task.
%We do not use the morphosyntactic tags for pretrained embeddings. We use default settings for FastText.
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CROATIAN SERBIAN Slovenian

No GT Result  No GT Result No GT Result
69 Npmsn Xf 56 Rgp Cs 44  Xf Npmsn
45 Ncmsn Ncmsan 43 Cs Rgp 36 Ncmsn Ncmsan
38 Qo Cc 42 Ncmsn Ncmsan 28 S1 Sa

30 Xf Npmsn 35 Qo Cc 28 Ncmsan Ncmsn
29 Ncmsan Ncmsn 35 ©Ncmsan Ncmsn 27 0 Px—————-— y
28 Npmsn Ncmsn 30 Vmm2s Vmr3s 27 Npmsn Ncmsn
23  Ncmsn Xf 27 Npmsn Xf 25 Ncmsn Npmsn
22 S1 Sa 26 Agpnsny Rgp Xf 24 Agpnsn Rgp

20 Xf Ncmsn 22 Cc Qo 23  Xf Ncmsn
20 Sa S1 19 s1 Sa 22  Npfsn Ncfsn

Table 3: Most common mistakes per line (total error lines: HR 2428, SR 2325, SL 2246)

to the other one, the word is analyzed as an adverb. However, when neither sentence is subordinate,
the word is analyzed as a conjunction.This, of course, requires rather elaborate analysis of the sentences
involved. Therefore, it is not surprising that the distinction results in tagging-errors. The same confusion
happens in the Croatian test set, however it is less common. The reason for this is that tokens that are
causing this error (kad(a) ’when’, kako "how’ and gde *where’, cro. ’gdje’) are almost two times more
often present in the Serbian test set than in Croatian as shown in Table 4.

sr hr
kad (when) 112 72
kada (when) 53 13
kako (how) 66 40
gde/gdje (where) 24 13
TOTAL 255 138

Table 4: Occurrences of words kad, kada, kako and gde (Croatian gdje) in Serbian and Croatian test data

6 Discussion and Future Work

Our results show that neural methods deliver large improvements in accuracy compared to a traditional
trigram tagger. This is a nice result because our neural tagger is unstructured whereas the HunPos base-
line is a second order structured model. However, it is not as easy to beat a well engineered discriminative
model as the shared task results show (Zampieri et al., 2018).

Our error analysis uncovers a number of directions for future work. It would clearly be beneficial to
be able to better model foreign words. Also better contextual modeling is required in order to be able
to distinguish nominatives and accusatives in cases where there is no overt morphological marking. It
will probably be quite challenging to model the distinction between conjunctions and adverbs in Serbian
since this may require rather deep analysis of the embedded sentences.

It is possible that the errors related to the confusion between noun forms as well as conjunctions and
adverbs are related to data sparsity, on one hand, and tagging errors in the web data, on the other hand.
This requires further analysis.

7 Conclusions

In this paper, we presented an LSTM tagger for morphosyntactic tagging of Croatian, Serbian and Slove-
nian tweets. The tagger employs pretrained FastText embeddings and an LSTM generator for emitting
tags. Our experiments show that a neural approach results in large improvements compared to a tradi-
tional trigram tagger. However, our error analysis still uncovers a number of directions for future work.
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Especially better modeling of foreign words could help to further improve results.
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