
Proceedings of the First Workshop on Multilingual Surface Realisation, pages 65–71
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

65

The DipInfo-UniTo System for SRST 2018

Valerio Basile
Dipartimento di Informatica

Università degli Studi di Torino
Corso Svizzera 185, 10153 Torino
valeriobasile@gmail.com

Alessandro Mazzei
Dipartimento di Informatica

Università degli Studi di Torino
Corso Svizzera 185, 10153 Torino

mazzei@di.unito.it

Abstract

This paper describes the system developed
by the DipInfo-UniTo team to participate
to the shallow track of the Surface Realiza-
tion Shared Task 2018 (Mille et al., 2018).
The system employs two separate neu-
ral networks with different architectures to
predict the word ordering and the morpho-
logical inflection independently from each
other. The UniTo realizer is language in-
dependent, and its simple architecture al-
lowed it to be scored in the central part of
the final ranking of the shared task.

1 Introduction

Natural Language Generation from formal struc-
tures, and in particular tree-like structures, has
been approached with a variety of methods in the
literature. For instance, SimpleNLG (Gatt and Re-
iter, 2009) takes as input a tree-like representation
(a sort of quasi-syntactic tree enriched with a se-
ries of features) and produces an English sentence.
SimpleNLG has is largely used in different NLG
systems and has been ported to a number of differ-
ent language (Italian among them (Mazzei et al.,
2016)).

In the PhD thesis of Basile (2015), the genera-
tion process starts from a recursive representation
of the semantics of a discourse (a Discourse Rep-
resentation Structure, from Discourse Representa-
tion Theory) and it is carried out by transforming
the original DRS into a directed graph (quite sim-
ilar to a tree) aligned with the surface form at the
word level. While the approach of Basile (2015)
is aimed towards generation from abstract repre-
sentations of meaning, in practice it is applicable
to similar structures encoding information at a dif-
ferent level of abstraction, such as the trees that
form the input of the present shared task.

We draw further inspiration from the aforemen-
tioned work in dividing the generation process into
the word ordering prediction and morphology in-
flection generation. We follow a simplified ap-
proach by considering these two subtasks as inde-
pendent from each other. We implement two mod-
ules based on neural networks that work in paral-
lel, and whose output is later combined to produce
the final surface form (cf. Figure 2).

In this paper we describe the the DipInfo-UniTo
realizer (hencefort UniTO realizer) participating
to the shallow track of the Surface Realization
Shared Task 2018 (Mille et al., 2018).

In Section 2 we describe the system imple-
mented from scratch for the word ordering sub-
task, and in Section 3 we briefly describe the deep
learning-based approach that we used for the mor-
phology inflection subtask. In Section 4 we de-
scribe the experimental pipelines used for train-
ing and testing the UniTo realizer and, moreover,
we report the results on the test set. Finally, Sec-
tion 5 closes the paper with some considerations
and points to future developments.

2 Word Ordering

We adopted a local ordering approach to the
task of predicting word ordering, as opposed to
global ordering. We reformulate the problem of
sentence-wise word ordering in terms of reorder-
ing its component subtrees, and subsequently re-
composing the ordering of the words at the sen-
tence level starting from the ordered subtrees.

The algorithm is composed of three steps: split-
ting the input unordered tree into single-level un-
ordered subtrees (Section 2.1); predicting the lo-
cal word order for each subtree (Section 2.2); re-
composing the single-level ordered subtrees into a
single multi-level ordered tree to obtain the global
word order (Section 2.3).

66

2.1 Extracting Lists of Items to Rank from
the Input Trees

In the first step, we split the original unordered
universal dependency multilevel tree into a num-
ber of single-level unordered trees, where each
subtree is composed by a head (the root) and all
its dependents (the children), in a way similar to
(Bohnet et al., 2012).

suo

opera

contenere

prodotto

ROOT

chimico tossico

.

numeroso

(a) Tree corresponding to the sentence in the Italian training set
“Numerose sue opere contengono prodotti chimici tossici.”

prodotto

contenere

. opera chimico

prodotto

tossicosuo

opera

numeroso

(b) Three subtrees extracted from the main tree.

contenere opera prodotto
prodotto suo chimico
. opera tossico
opera

(c) Three lists of items to order, corresponding to the three sub-
trees.

Figure 1: Illustration of the process of splitting the
input tree into subtrees and extracting lists of items
for learning to rank.

An example is shown in Figure 1: from the (un-
ordered) tree representing the sentence “Numerose
sue opere contengono prodotti chimici tossici.”
(1a), each of its component subtrees (limited to
one-level dependency) is considered separarately
(1b). The head and the dependents of each subtree
form a list of unordered items (1c). Crucially, we
leverage the flat structure of the subtrees in order
to extract structures that are suitable as input to the
learning to rank algorithm in the next step of the
process.

As a consequence of the design of our approach,
in some cases the correct word order cannot be
predicted. In particular, this is the case for non-
projective tree structures, because the only real-
izations allowed by the formalism are those deriv-

ing from the dependency structure. For instance,
the dependency tree representing the sentence He
gave a talk yesterday about generation cannot be
realized by the UniTo realizer since the tree itself
is not projective. In this case, the best realization
could be along the lines of He gave yesterday a
talk about generation.

2.2 Supervised Learning to Rank
In the second step of the word ordering predic-
tion algorithm, we predict the relative order of the
head and the dependents of each subtree with a
learning to rank approach. We employ the list-
wise learning to rank algorithm ListNet, proposed
in (Cao et al., 2007). The relatively small size of
the lists of items to rank allows us to use a list-
wise approach, as opposed to pairwise or point-
wise approaches, while keeping the computation
times manageable. Indeed, ListNet is a general-
ized version of the pairwise learning to rank algo-
rithm RankNet (Burges et al., 2005).

ListNet uses a list-wise loss function based on
top one probability, i.e., the probability of an el-
ement of being the first one in the ranking. The
top one probability model approximates the per-
mutation probability model that assigns a proba-
bility to each possible permutation of an ordered
list. This approximation is necessary to keep the
problem tractable by avoiding the exponential ex-
plosion of the number of permutations.

Formally, the top one probability of an object j
is defined as

Ps(j) =
∑

π(1)=j,π∈Ωn

Ps(π)

that is, the sum of the probabilities of all the
possible permutations of n objects (denoted as Ωn)
where j is the first element. s = (s1, ..., sn) is a
given list of scores, i.e., the position of elements
in the list. Considering two permutations of the
same list y and z (for instance, the predicted order
and the reference order) their distance is computed
using cross entropy. The distance measure and the
top one probabilities of the list elements are used
in the loss function:

L(y, z) = −
n∑
j=1

Py(j)log(Pz(j))

The list-wise loss function is plugged into a lin-
ear neural network model to provide a learning
environment. ListNet takes as input a sequence

67

of ordered lists of feature vectors (the features are
encoded as numeric vectors). The weights of the
network are iteratively adjusted by computing a
list-wise cost function that measure the distance
between the reference ranking and the prediction
of the model and passing its value to the gradient
descent algorithm for optimization of the parame-
ters.

We used an implementation of ListNet1 that
was previously applied in a surface realization task
with a similar supervised setting (Basile, 2015).
On top of the core ListNet algorithm, this imple-
mentation features a regularization parameter to
prevent overfitting.

The choice of features for the supervised learn-
ing to rank component is a critical point of our
solution. We use several word-level features en-
coded as one-hot vectors:

• The universal POS-tag.

• The treebank specific POS tag.

• The morphology features and the head-status
of the word (head of the single-level tree vs.
leaf).

Furthermore, we included word representations,
differentiating between content words and func-
tion words:

• For open-class word lemmas (content words)
we added to the feature vector the corre-
sponding specific language embedding from
the pre-trained multilingual model Poly-
glot (Al-Rfou’ et al., 2013).

• Closed-class word lemmas (function words)
are encoded as one-hot bags of words vectors.

An implementation of the feature encoding for
the word ordering module of our architecture is
available online2.

2.3 From Local Order to Global Order
We reconstruct the global (i.e. sentence-level) or-
der from the local order of the one-level trees un-
der the hypothesis of projectivity. If the local
reordering of the one-level tree T h1 with root h
and children c1...cM produces an order of nodes
n1n2...nM+1, the hypothesis of projectivity im-
plies that in the global word order the position of

1https://github.com/valeriobasile/
listnet

2https://github.com/alexmazzei/ud2ln

all the children of the node nj will be after the po-
sition of the node nj−1 and before the position of
the node nj+1. So, the node global order (O) of a
k-level tree T hk rooted by the node h and with chil-
dren c1...cM can be rewritten formally in terms of
the local order as:

O(T hk)=


h if k=0
Oln(h, c1, ..., cM) if k=1
Oln(h,O(T c1k−1), ..., O(T cMk−1)) if k>1

where Oln(h, c1, ..., cM) is the permutation
learned by the ListNet algorithm from the train-
ing set and parametrized over the feature set
F (h, c1, ..., cM) (cf. Section 2.2), that is

Oln(h, c1, ..., cM)
def
= P

F (h,c1,...,cM)
ListNet (h, c1, ..., cM)

3 Morphology Inflection

For the task of morphological inflection predic-
tion, we implemented a module to work in par-
allel with the word order module described pre-
viously. This component of the system considers
the morphology inflection as an alignment prob-
lem between characters that can be modeled with
the sequence to sequence paradigm.

We used a deep neural network architecture
based on a hard attention mechanism. The
model has been recently introduced by Aharoni
and Goldberg (2017) and showed state-of-the-art
performance on several morphological inflection
benchmarks. The model consists of a neural net-
work in an encoder-decoder setting. However, at
each step of the training, the model can either
write a symbol to the output sequence, or move the
attention pointer to the next state of the sequence.
This mechanism is meant to model the natural
monotonic alignment between the input and out-
put sequences, while allowing the freedom to con-
dition the output on the entire input sequence.

We trained the system3 on the SRST train-
ing data set with no particular parameter tun-
ing, that is, adopting an “off-the-shelf” approach.
Moreover, we used a straight approach by us-
ing all the morphological features provided by
the original UD treebank annotation and the de-
pendency relation binding the word to its head.
So, in the training pipeline (Figure 2), we

3An implementation of the model by Aha-
roni and Goldberg (2017) is freely available
as https://github.com/roeeaharoni/
morphological-reinflection

https://github.com/valeriobasile/listnet
https://github.com/valeriobasile/listnet
https://github.com/alexmazzei/ud2ln
https://github.com/roeeaharoni/morphological-reinflection
https://github.com/roeeaharoni/morphological-reinflection

68

transform the training files into a set of struc-
tures ((lemma, features), form) in order to
learn the neural inflectional model associating a
(lemma, features) to the corresponding form.
The neural inflectional model is exploited in the
test pipeline in order to compute the form corre-
sponding to a specific (lemma, features) in the
test file.

4 Experiments

Since our approach does not rely on language spe-
cific procedures or hand-made rules, we have ini-
tially planned to train the UniTo realizer for all
the ten languages proposed by the SRST organiz-
ers. However, because of time constraints, we
decided to focus on four specific languages first:
English, Spanish, French and Italian (EN-ES-FR-
IT). In particular, for English, French and Italian
the learning time for word ordering and morphol-
ogy inflection was around 36 and 24 hours respec-
tively4. In contrast, for Spanish language, which
has a considerable larger learning file, the learning
time was approximatively doubled.

4.1 Pipelines
We designed two processing pipelines for the
training phase and testing phase as depicted in Fig-
ure 2. We applied separately four times both the
pipelines for the four tested languages EN-ES-FR-
IT.

In the training pipeline, we created two dis-
tinct files starting from the UD treebank training
files. The first file contains morphological infor-
mation (that is ((lemma, features), form), cf.
Section 3) and it is used to create the morpholog-
ical inflection model by using the deep learning
architecture described in Section 3. The second
file contains the vector representation of the tree
features (embeddings or function words, morpho-
logical features, etc., cf. Section 2.2) and it is used
to create the word order model by using the linear
neural network architecture described in Section 2.

In the testing pipeline, we created two distinct
files starting from the test files provided from the
organizers. Both files are created with the same
procedures of the training pipelines. The first file
was used to test the morphological neural model
and to create a mapping from the pair lemma-
features to the inflected form. The second file

4The experiments were run on two distinct multi-core PCs
with GNU/Linux operating systems and GPU computing ca-
pabilities

was used to test the word order neural model by
providing the local word orders for the subtrees
and the word order at the sentence level (cf. Sec-
tion 2.3). In a subsequent step, the information
from the morhological map and from the word or-
dered trees are merged into one single complete
and CONLL compliant tree structure. Finally, the
trees are detokenized (see 4.3) in order to produce
the sentences that are submitted as the final output
of the system.

4.2 Datasets

The rules of the shallow track for the SRST 2018
allowed to use any resource to train the surface
realizers. However, in order to investigate about
the syntactic information contained in the Univer-
sal Dependency format and its appropriateness for
NLG tasks, we decided to use mostly information
derived from the project Universal Dependency
(Nivre et al., 2016). Indeed, the only exception
regards the encoding of the open classes words in
terms of language specific pre-compiled embed-
dings for the word order model (Al-Rfou’ et al.,
2013) (cf. Section 2.2)).

The task organizers provided ten training and
ten development files derived from the version 2.1
of the UD dataset for the ten languages included in
the shallow track. Indeed, they provided a modi-
fied versions of the original treebanks in which the
information about the inflected word form was re-
moved and, the original word order was replaced
with a random order. Additionally, the organizers
provided ten text files containing the sentences of
the treebank in their original form.

However, we noted that the training files pro-
vided by the organizers had an unresolvable ambi-
guity in the case of a sentence containing the same
lemma multiple times. As a consequence, we de-
cided to use the original versions 2.1 of the tree-
bank files since they contain both the gold word
order and the inflected forms of the word. Dur-
ing the conversion of the dependency trees into a
vector form (see Section 2), we ignored the infor-
mation about word ordering and inflected forms.

For English, Spanish and French, we used the
training files developed in the English, Spanish-
AnCora, and French main UD treebanks respec-
tively. In contrast, for Italian we built a new train-
ing file by merging together the training file of the
Italian main UD treebank with the training files
of the UD Italian treebanks Italian-PUD, Italian-

69

Word Embeddings

UD
Test file

Extract
Morphology

Features

Test
DeepNN-Model

for Inflection

Extract
Tree

Features

Test
ListNet-Model

for local
word ordering

Merge forms
into trees

Derive the global
tree structure

Detokenize

Result
Sentences

Word Embeddings

Extract
Morphology

Features

Train
DeepNN-Model

for Inflection

Extract
Tree

Features

Train
ListNet-Model

for local
word ordering

UD
Train file

Training pipeline Testing pipeline

Figure 2: The training and testing pipelines.

ParTUT and Italian-PoSTWITA.

4.3 Detokenization

In order to produce the final result of the realiza-
tion one needs to transform the UD tree produced
by the UniTo realizer into a single string contain-
ing the sentence. Since the final goal of the task
was to reproduce an output sentence close to the
original sentence used by the treebanks develop-
ers, we needed to post-process the tree with addi-
tional two phases, that are contraction and space
removal.

Contraction In this phase the sentence was
modified in order to produce the contracted form
for some specific multi-word constructions. In
particular, for Spanish, French and Italian, there
are two linguistic phenomena to account for, that
are articulated preposition and clitics.

For instance, Italian provides a morphological
mechanism to contract prepositions and articles
into articulated prepositions. Indeed, there are
7 Italian simple prepositions (di (of), a (to), da
(from), in (in), con (with), su (on)) which contract
with the article. For instance, la casa della zia (the
house of-the aunt) = la + casa + della (di [prepo-
sition] + la [definite article feminine singular]) +
zia. In a similar way, clitics are pronouns which
in Italian in particular cases can be included in the
verb form, like in Dammi la mela (Give-me the ap-
ple) = Dammi (dai [verb] + me [pronoun]) + la +
mela.

Since they are special case of multiwords, both
articulated prepositions and clitics have a special

annotation status into UD treebanks. Indeed, there
is a line containing the multiword indexed with in-
teger ranges, like della 3-4, and additional lines
with single tokens annotation, like di 3 and la 4.
We exploit this annotation by automatically ex-
tracting from the EN-ES-FR-IT UD treebanks all
the regular expressions that are necessary to re-
compose the multiwords from the tokens (e.g. the
PERL regular expression s/ di la / della /gi).
By using the UD treebanks training files of EN-
ES-FR-IT we found 05, 923, 9, and 920 regular
expressions respectively.

Space Removal Each language has additional
specific rules for the treatment of space between
words and punctuations. In order to treat this spe-
cific cases we used the detokenizer script provided
in the moses project6: the detokenizer provides
specific rules for English, French and Italian7.

4.4 Results

In Table 1 we report the quantitative evaluation
provided by shared task organizers of the surface
realizer. With respect to the other teams, our re-
sults score in the middle-lower part of the final
ranking: 6th out of 8 according to the BLEU and
NE DIST score, and 5th out of 8 according to
NIST.

5English language does not have neither articulated
preposition and clitics.

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/detokenizer.perl

7As approximation, we used Italian configuration for
Spanish too.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl

70

EN ES FR IT Av.
BLUE 23.20 26.90 23.12 24.61 9.78
NE DIST 51.87 24.53 18.04 36.11 13.06
NIST 8.86 9.58 7.72 8.25 3.44

Table 1: The performance in terms of BLUE,
DIST and NIST scores of the UniTo Realizer. The
average is computed by considering the mean over
the ten languages proposed for the shallow track.

The BLUE scores obtained suggest that the
UniTo realizer have the same performances for all
four languages. In contrast, the NE DIST results
shows a better performance on the English lan-
guage with respect to the other languages. Since
BLEU and NIST give stronger weight to word or-
der and lexical choice respectively (Zhang et al.,
2004), these results suggest that our word order
and morphology inflection modules equally con-
tribute to the result. The difference in the NE
DIST performance across languages has been ob-
served in the other participants’ results, and it
could be due to the different morphological pro-
file of the English with respect to the romance lan-
guages (ES-FR-IT).

5 Conclusion and Future Work

In this paper, we described the main features of the
UniTo realizer, the system adopted by the DipInfo-
UniTo team to participate to the shallow track of
the Surface Realization Shared Task 2018. We de-
scribed the two main components of the realizer:
a linear neural network used to solve the word or-
dering subtask, and a deep neural network used to
solve the morphological inflection subtask.

A number of possible improvements could be
applied to the architecture. For instance, the mor-
phological inflection could consider features de-
riving from sequences of words, i.e., having the
word ordering module to inform the morphology
module, or the other way around. Moreover, addi-
tional experiments are necessary in order to obtain
the best tuning of the hyperparameters involved in
the training phase.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, pages 2004–2015.

Rami Al-Rfou’, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations
for multilingual nlp. In CoNLL, pages 183–192.
ACL.

Valerio Basile. 2015. From Logic to Language :
Natural Language Generation from Logical Forms.
Ph.D. thesis, University of Groningen, Netherlands.

Bernd Bohnet, Anders Björkelund, Jonas Kuhn, Wolf-
gang Seeker, and Sina Zarrieß. 2012. Generating
non-projective word order in statistical linearization.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 928–939. Association for Computational Lin-
guistics.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22Nd International Conference
on Machine Learning, ICML ’05, pages 89–96, New
York, NY, USA. ACM.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: From pairwise ap-
proach to listwise approach. In Proceedings of the
24th International Conference on Machine Learn-
ing, ICML ’07, pages 129–136, New York, NY,
USA. ACM.

Albert Gatt and Ehud Reiter. 2009. Simplenlg: A re-
alisation engine for practical applications. In Pro-
ceedings of the 12th European Workshop on Natu-
ral Language Generation, ENLG ’09, pages 90–93,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Alessandro Mazzei, Cristina Battaglino, and Cristina
Bosco. 2016. Simplenlg-it: adapting simplenlg to
italian. In INLG 2016 - Proceedings of the Ninth
International Natural Language Generation Confer-
ence, September 5-8, 2016, Edinburgh, UK, pages
184–192.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal dependencies v1: A mul-
tilingual treebank collection. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation LREC 2016, Portorož,
Slovenia, May 23-28, 2016.

http://dblp.uni-trier.de/db/conf/conll/conll2013.html#Al-RfouPS13
http://dblp.uni-trier.de/db/conf/conll/conll2013.html#Al-RfouPS13
https://tel.archives-ouvertes.fr/tel-01342434
https://tel.archives-ouvertes.fr/tel-01342434
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
http://dl.acm.org/citation.cfm?id=1610195.1610208
http://dl.acm.org/citation.cfm?id=1610195.1610208

71

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004.
Interpreting bleu/nist scores: How much improve-
ment do we need to have a better system. In In Pro-
ceedings of Proceedings of Language Resources and
Evaluation (LREC-2004, pages 2051–2054.

