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Abstract

In this paper, we model emotions in Emo-
tionLines dataset using a convolutional-
deconvolutional  autoencoder (CNN-
DCNN) framework. We show that adding
a joint reconstruction loss improves
performance. Quantitative evaluation with
jointly trained network, augmented with
linguistic features, reports best accuracies
for emotion prediction; namely joy,
sadness, anger, and neutral emotion in
text.

1 Introduction

Emotion recognition in content is an extensively
studied area. It deals with associating words,
phrases or documents with various categories of
emotions. The importance of emotion analysis in
human communication and interactions has been
discussed by Picard (1997). Historically studied
using multi-modal data, the study of human emo-
tion from text and other published content has be-
come an important topic in language understand-
ing. Word correlation with social and psycholog-
ical processes is discussed by Pennebaker (2011).
Preotiuc-Pietro et al. (2017) studied personal-
ity and psycho-demographic preferences through
Facebook and Twitter content. The analysis of
emotion in interpersonal communication such as
emails, chats and longer written articles is neces-
sary for various applications including the study of
consumer behavior and psychology, understand-
ing audiences, and opinions in computational so-
cial science, and more recently for dialogue sys-
tems and conversational agents. This is an active
research space today.

In contrast to sentiment analysis, emotion
analysis in user generated content such as
tweets (Dodds et al., 2011), blogs (Aman and Sz-
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pakowicz, 2007) and chats remains a space less
trodden. The WASSA-2017 task on emotion in-
tensity (Mohammad and Bravo-Marquez, 2017)
aims at detecting the intensity of emotion felt by
the author of a tweet. Whereas (Alm et al., 2005;
Aman and Szpakowicz, 2007; Brooks et al., 2013;
Neviarouskaya et al., 2009; Bollen et al., 2011)
provide discrete binary labels to text instances for
emotion classification. Typical discrete categories
are a subset of those proposed by Ekman (Ekman,
1992) namely anger, joy, surprise, disgust, sad-
ness, and fear.

Paper Structure: The remainder of the paper is
organized as follows. We summarize the Emo-
tionLines dataset in Section 2. Section 3 describes
different parts of our system. We present our ex-
periments in Section 4. Section 5 discusses the
results of our final system submitted to the Emo-
tionX challenge. Finally, we present conclusion
and future directions in section 6.

2 Data

EmotionLines dataset contains dialogues from the
Friends TV series and EmotionPush chat logs.
Both Friends TV scripts and EmotionPush chat
logs contain 1,000 dialogues split into train-
ing(720), development(80), and testing(200) set
separately. In order to preserve completeness of
any dialogue, the corpus was divided by the di-
alogues, not the utterances. Refer to Chen et
al. (2018) for details on the dataset collection and
construction.

The EmotionX task on EmotionLines dialogue
dataset tries to capture the flow of emotion in a
conversation. Given a dialogue, the task requires
participants to determine the emotion of each ut-
terance (in that dialogue) among four label candi-
dates: joy, sadness, anger, and neutral.
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3 System Description

In this section, we provide the technical details of
our model.

3.1 Architecture Overview

We propose a joint learning framework for emo-
tion detection built on a convolutional encoder
(CNN). We introduce a joint learning objective
where the network needs to learn the (1) utter-
ance text (the data itself) and the (2) emotion in-
formation from the labeled data (EmotionLines)
together. The CNN along with a deconvolutional
decoder (DCNN) provides the mechanism for text
reconstruction, i.e. to learn the text sequences. On
the other hand, the learned encoding, augmented
with linguistic features, acts as the input feature
space for emotion detection.

Reconstruction Loss

Classification Loss

Deconvolutional
Decoder

Supervised
Classification

(Latent Representation

Convolutional
Encoder

Embeddings

Input Text (60)

Figure 1: Architecture Overview

The architecture diagram is shown in figure 1.
The network aims at emotion classification and in
turn also learns the reconstruction objective. Key
components of this approach are: (1) Convolu-
tional Autoencoder (CNN-DCNN), (2) Linguis-
tic features, and (3) Joint-learning objective.

Consider a text input d to the model. Each word
wh in d is embedded into a k-dimensional repre-
sentation e; = E[w!] where E is a learned ma-
trix. The embedding layer is passed through a
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CNN encoder to create a fixed-length vector hp,
for the entire input text d. This latent representa-
tion, appended with linguistic features is then sent
to a fully connected layer with a softmax classifier
on top. Along with this, hy, is also fed to a decon-
volutional decoder which attempts to reconstruct
d from the latent vector. Therefore, the final loss
function: age Lge + (1 — age) L for the model is a
combination of the classification error L. and the
reconstruction error L,. explained in the follow-
ing subsections.

3.2 CNN-DCNN Autoencoder

Zhang et al. (2017) introduce a sequence-to-
sequence convolutional encoder followed by a de-
convolutional decoder (CNN-DCNN) framework
for learning latent representations from text data.
Their proposed framework outperforms RNN-
based networks for text reconstruction and semi-
supervised classification tasks. We leverage their
network in our work.

Convolutional Encoder. CNN with L layers, in-
spired from Radford et al. (2015) is used to encode
the document into a latent representation vector,
hr. Former L — 1 convolutional layers create a
feature map which is fed into a fully-connected
layer implemented as a convolutional layer. This
final layer produces the latent representation hp,
which acts as a fixed-dimensional summarization
of the document.

Deconvolutional Decoder. We leverage the de-
convolutional decoder introduced by Zhang el
al. (2017) as is for our model. The reconstruction
loss is defined as,

Loe = Y Y logp(ibfy = wh),

deD t

D

where D is the set of observed sentences. wg and
W, correspond to the words in the input and output
sequences respectively.

3.3 Linguistic Features

Here, we explain the various linguistic features
used in our network. Inspired from Chhaya et
al, (2018), we use 68 linguistic features further
divided into 4 sub-groups: Lexical, Syntactic,
Derived and Affect-based. = The lexical and
syntactic features include features such as ‘avera-
geNumberofWords per sentence’ and ‘number of
capitalizations’. Features that can help quantify
readability of text are the part of derived features.



Thus, this set contains features like Hedges,
Contractions, and Readability scores. The fourth
group of features are the Affect—related features.
These features are lexica—based and quantify the
amount of affective content present in the text.
All features used by Pavlick et al. (2016) for for-
mality detection and by Danescu et al. (2013) for
politeness detection are included in our analysis.
We use Stanford CoreNLP! and TextBlob? feature
extraction and pre-processing.

Lexical and Syntactic Features: The lexi-
cal features capture various counts associated
with the content like *#Question Marks’, ’ Average
Word Length’ etc. Syntactic features include
NER-based features, Number of blank lines, and
text density which is defined as follows:

_ #(sentences)
1+ #(lines)

where p is the text density, #(sentences) denotes
number of sentences in the text content and
#(lines) number of lines including blank lines
in the text message. Prior art in NLP extensively
relies on these features for their analysis.

Derived: Readability Features: The derived
features capture information such as readability
of text, existence of hedges, subjectivity, contrac-
tions and sign—offs. Subjectivity, contractions and
hedges are based on the TextBlob implementation.
Readability is measured based on Flesh—Kincaid
readability score. This score is a measure of ease
of reading of given piece of text. We use the
textstat package® in Python for implementation.

Psycholinguistic Features: The affect fea-
tures used in our analysis include:

1. Valence-Arousal-Dominance (VAD) Model
(Mehrabian, 1980): We use the Warriner’s
lexicon (Warriner et al., 2013) for these
features. This lexicon contains real-valued
scores for Valence, Arousal, and Dominance
(VAD) on a scale of 1 9 each for 13915 En-
glish words. 1, 5, 9 correspond to the low,
moderate (i.e. neutral), and high values for
each dimension respectively.

"https://stanfordnlp.github.io/CoreNLP/
>https://textblob.readthedocs.io/en/dev/
3https://pypi.python.org/pypi/textstat/0.1.6
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2. Ekman’s Emotions (Ekman, 1992): Ekman
introdcued six fundamental emotions namely
anger, joy, surprise, disgust, sadness, and
fear. In this work, we use the NRC lexicon
(EMOLEX) (Mohammad et al., 2013) which
provides a measure for the existence of the
emotion as well as the intensity of the de-
tected emotion on word level.

. PERMA Model (Seligman, 2011): The
PERMA model is a scale to measure posi-
tivity and well-being in humans (Seligman,
2011). This model defines the 5 dimen-
sions: Positive Emotions, Engagement, Re-
lationships, Meaning, and Accomplishments
as quantifiers and indicators of positivity and
well-being. Schwartz et al. (Schwartz et al.,
2013) published a PERMA lexicon. We use
this lexicon in our work.

Formality Lists:We use the formality list, pro-
vided by Brooke et al. (2010), for our experiments.
It contains a set of words usually used to express
formality or informality in text.

3.4 Supervised Classification

Traditional affective language studies focus on
analyzing features including lexical (Pennebaker
et al., 2001), syntactic, and psycholinguistic fea-
tures to detect emotions. We augment the latent
vector produced by CNN encoder with the set of
linguistic features (Section 3.3) to capture emo-
tions.

Let b denote the representation vector for lin-
guistic features extracted from the input data d. b’
is normalized and concatenated with hp, to derive
h” = hy —~ h'. h”, producing a probability p,,
for each neuron in the softmax layer, where y,, de-
notes the ground-truth for corresponding class n.

We use cross-entropy based classwise loss as
given below:

lossy, = — |yn log(pn) + (1 — yn) log(1 — py)

Since, EmotionLines suffers from class imbal-
ance, we give higher weight (w,,) to the losses in-
curred on data samples of minority classes.

an
N
Wn o YT a

where a,, denote the number of samples of class
n in the training set. Finally, we use a weighted



Features Feature list
Lexical Average Word Length, Average Words per Sentence, # of Upper Case Words, # Ellipses, # Exclamation
marks,
# Question Mark, # Multiple Question Marks, # Words, # Lower Case words, First word upper case,
# NonAlphaChars, # Punctuation Chars
Syntactic # BlankLines, NER-Person, NER-Location, NER-PersonLength, NER-Organization, TextDensity
Derived # Contractions, ReadabilityScore- FKgrade, FirstPerson, Hedge, Subjectivity,
Sentiment, ThirdPerson, SignOff
Psycholingistic ANEW-arousal, ANEW-dominance, ANEW-valence,
Features
EmolexIntensity-anger, EmolexIntensity-fear, EmolexIntensity-joy, EmolexIntensity-sadness, Emolex-
anger, Emolex-anticipation,
Emolex-disgust, Emolex-fear, Emolex-joy, Emolex-negative, Emolex-positive, Emolex-sadness,
Emolex-surprise, Emolex-trust,
Perma-NEG-A, Perma-NEG-E, Perma-NEG-M, Perma-NEG-P, Perma-NEG-R, Perma-POS-A,
Perma-POS-E, Perma-POS-M, Perma-POS-P, Perma-POS-R
Formal Words formal-words, informal-words (Brooke et al., 2010)

Table 1: Summary of feature groups used in our model.

Friends TV Series Script | WA | UWA | Joy Sad | Ang | Neu
CNN + MLP (S) 67.67 | 57.61 | 66.67 | 38.70 | 38.82 | 76.58
S + Joint Learning (J) 67.40 | 58.47 | 63.41 | 45.16 | 38.82 | 76.17
S + Linguistic Features (L) | 65.30 | 59.48 | 66.67 | 43.55 | 47.06 | 70.88
S+J+L 60.97 | 59.39 | 59.35 | 58.06 | 44.71 | 64.56
EmotionPush Chat Logs WA | UWA | Joy Sad | Ang | Neu
CNN + MLP (S) 68.89 | 59.22 | 69.37 | 76.31 | 22.22 | 68.97
S + Joint Learning (J) 70.44 | 59.58 | 68.75 | 76.31 | 22.22 | 71.03
S + Linguistic Features (L) | 67.54 | 64.03 | 70.00 | 63.16 | 55.56 | 67.39
S+J+L 65.69 | 65.08 | 71.88 | 68.42 | 55.56 | 64.48

Table 2: Weighted (WA) and Unweighted (UWA) accuracies(%) on Friends and EmotionPush validation
sets provided by the challenge authors. S: Supervised learning using CNN encoder trained on labeled
data only, J: Joint learning with reconstruction task using DCNN decoder, L: Linguistic features.

cross entropy loss defined by

| N
L.= N Z:l Wy, * 0SSy, 2)
n=

Table 1 provides a summary of the features con-
sidered. Ngrams and other semantic features are
ignored as they introduce domain-specific biases.
Word-embeddings are treated separately and con-
sidered as raw features to train a supervised model.

3.5 Joint learning

The CNN-DCNN network learns the text informa-
tion i.e. sequences, the linguistic features learn
the emotional aspect. Joint learning introduces the
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mechanism to learn shared representations during
the network training. We implement joint learn-
ing using simultaneous optimization for both se-
quence reconstruction (CNN-DCNN) and emotion
detection (linguistic features). The combined loss
function is given by,

L = ogeLlge + (1 - aae)Lc- (3)

where o, is a balancing hyperparameter with 0 <
aqe < 1. Higher the value of e, higher is the im-
portance given to the reconstruction loss L, while
training and vice versa.



Friends WA | UWA | Joy Sad | Ang | Neu
S 64.90 | 59.09 | 69.10 | 53.22 | 45.88 | 68.24
S+1J 69.54 | 60.54 | 71.54 | 51.67 | 45.88 | 75.20
S+L 62.78 | 59.16 | 62.60 | 54.10 | 56.47 | 64.75
S+J+L | 6583 | 60.48 | 68.29 | 48.33 | 58.82 | 68.44
EmPush | WA | UWA | Joy Sad | Ang | Neu
S 68.89 | 64.62 | 80.62 | 52.63 | 66.67 | 58.54
S+17 70.44 | 60.53 | 85.00 | 58.97 | 33.33 | 63.27
S+L 67.54 | 62.95 | 76.87 | 56.41 | 44.44 | 72.60
S+J+L | 6569 | 64.89 | 75.62 | 63.16 | 55.56 | 65.21

Table 3: Accuracy(%) for models trained on Friends + EmotionPush data, tested on individual
validation sets.

4 Experiments

In this section, we show the experimental evalua-
tion of our system on the EmotionLines dataset.

4.1 Experimental Setup

CNN encoder with MLP Classifier: We use 300-
dimensional pre-trained glove word-embeddings
(Pennington et al., 2014) as input to the model.
The encoder contains two convolutional layers.
Size of the latent representation is set to 600. The
MLP classifier contains one fully-connected layer
followed by a softmax layer.

Joint Training: We set a,e = 0.5 as this gives
equal importance to both objectives and reports
best results.

Linguistic Features: We concatenate a full set of
68 linguistic features with the latent representation
for emotion detection.

Friends UWA | Joy | Sad | Ang | Neu
Our Model | 62.5 | 71.1 | 55.3 | 55.3 | 68.3
Highest 62.5 | 71.1 | 55.3 | 55.3 | 99.5
EmPush UWA | Joy | Sad | Ang | Neu
Our Model | 62.5 | 76.0 | 51.7 | 45.9 | 76.3
Highest 62.5 | 76.0 | 54.0 | 45.9 | 99.0

Table 4: Results on the EmotionX challenge test
sets for Friends and EmotionPush datasets.
Accuracy(%) rounded off to one decimal point.

4.2 Results

Table 2 shows the results for models trained on
individual training sets using our weighted loss
function. The performance is evaluated using
both, the weighted accuracy (WA) and the un-
weighted accuracy (UWA), as defined by the chal-
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lenge authors (Chen et al., 2018).

WA= Z Dele “4)
ceC
UWA = ‘(1” Z e 5)

ceC

where a. denotes the accuracy of emotion class
c and p. denotes the percentage of utterances in
emotion class c.

Adding a reconstruction loss with classification
loss improves performance. We attribute this
to improved generalizability provided by a semi-
supervised loss. Concatenating linguistic fea-
tures improves minority class accuracies for both
Friends TV dialogues and EmotionPush chats.
The improvements due to joint loss and linguistic
features are more significant for EmotionPush chat
log dataset. Accuracies of majority class (Neutral)
take a considerable hit with the addition of J and LL
for both datasets, whereas minority emotions like
Sadness and Anger consistently benefit from addi-
tion of linguistic features.

Table 3 contains results for models trained on
both Friends and EmotionPush training data. In-
crease in training data, even though from a dif-
ferent domain, improves performance for Joy and
Anger emotions. Accuracy on sadness dips signif-
icantly for EmotionPush. Overall WA and UWA
also increase slightly for Friends dataset.

5 EmotionX Submission and Analysis

We implement an ensemble of the four model vari-
ants trained on the Friends + EmotionPush data as
our final submission for the EmotionX challenge.
We arrive at the final class predictions using the
algorithm explained in Algorithm 1. For each test



Algorithm 1 Ensemble Algorithm

procedure FILTER(p_x, threshold)
candidates <+ ]
for p € p_x do
if max(p) > threshold then
candidates.add(argmax(p)))
end if
end for
return candidates
: end procedure
10:

1:
2
3
4
5:
6
7
8
9

> For each base model

11: procedure ENSEMBLE(data, p_softmax) > p_softmax.shape = (#test samples, #models, #classes)

> High Confidence

> Moderate Confidence

> Low Confidence

12: ensemble_pred < |]

13: for x € data do

14: candidate_classes < FILTER(p-softmazx[z],0.75)

15: if len(candidate_classes) > 0 then

16: ensemble_pred.add(most_common(candidates))

17: else

18: candidate_classes < FILTER(p_softmaz|x],0.50)

19: if len(candidate_classes) > 0 then

20: ensemble_pred.add(most_common(candidate_classes)))
21: else

22: candidate_classes < FILTER(p_softmaz|z],0.00)

23: ensemble_pred.add(most_common(candidate_classes))
24: end if

25: end if

26: end for

27: return ensemble_predictions

28: end procedure

sample, we find models for which the maximum
output probability associated with a class is greater
than a threshold of 0.75 (High Confidence). Pre-
dictions from this subset are considered as the can-
didate high confidence classes. The most common
class in this subset is taken as the final prediction
for EmotionX submission. If the subset is empty,
a similar approach is followed but with a reduced
threshold of 0.50 (Moderate Confidence). Predic-
tions for samples which do not satisfy any of the
above thresholds are termed as Low Confidence
Predictions.

The results on the test-set for both datasets are
shown in Table 4. Comparison with the best re-
sults in each class shows that for Friends dataset,
our model tops for all emotions except Neutral.
Whereas, for the EmotionPush dataset, we per-
form well on Joy and Anger. Our model had the
best unweighted accuracy (UWA) for both datasets
in the EmotionX challenge.
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Text Prediction | Label
Cor.ne on, Lydia, you can Neutral Neutral
do it.
Push! Anger Joy
Push ’em out, push ’em

A

out, harder, harder. neer Joy
Push ’em out, push ’em
out, way out! Anger Joy
Let’s get that ball and re-
ally move, hey, hey, ho, Joy Joy
ho.
Let’s— T was just—yeah,
right. Joy Joy
Push! Anger Joy
Push! Anger Joy

Table 5: An example dialogue from Friends
dataset with corresponding predictions and labels.

5.1 Error Analysis

Our model does not explicitly import contextual
information from other utterances in the conversa-
tion. Therefore, quite expectedly, we found that



most of the utterances misclassified by our model
occur in dialogues where the current utterance
does not exhibit the emotion it is tagged with.

Another set of errors occur where the whole
conversation is not able to explain the respective
emotions of each utterance. Table 5 shows an ex-
ample conversation where it might be difficult for
even a human to classify the utterances without the
associated multi-modal cues.

6 Conclusion and Future Work

We propose a CNN-DCNN autoencoder based ap-
proach for emotion detection on EmotionLines
dataset. We show that addition of a semi-
supervised loss improves performance. We pro-
pose multiple linguistic features which are con-
catenated to the latent encoded representation for
classification. The results show that our model de-
tects emotions successfully. The network, using a
weighted classification loss function, tries to han-
dle the class imbalance in the dataset.

In future, we plan to include results of model-
ing emotion on the whole dialog using an LSTM
layer over our network. We would experiment
with concatenating subsets of linguistic features
to better estimate the contribution of each feature
group. We also plan to use data-augmentation
techniques such as backtranslation and word sub-
stitution using Wordnet and word-embeddings in
order to handle class-imbalance in the dataset.
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