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Abstract

Manually labeled corpora are expensive
to create and often not available for low-
resource languages or domains. Auto-
matic labeling approaches are an alterna-
tive way to obtain labeled data in a quicker
and cheaper way. However, these labels
often contain more errors which can de-
teriorate a classifier’s performance when
trained on this data. We propose a noise
layer that is added to a neural network ar-
chitecture. This allows modeling the noise
and train on a combination of clean and
noisy data. We show that in a low-resource
NER task we can improve performance by
up to 35% by using additional, noisy data
and handling the noise.

1 Introduction

For training statistical models in a supervised way,
labeled datasets are required. For many natural
language processing tasks like part-of-speech tag-
ging (POS) or named entity recognition (NER),
every word in a corpus needs to be annotated.
While the large effort of manual annotation is reg-
ularly done for English, for other languages this
is often not the case. And even for English, the
corpora are usually limited to certain domains like
newspaper articles. For tasks in low-resource ar-
eas there tend to be no or only few labeled words
available.

Distant supervision and automatic labeling ap-
proaches are an alternative to manually creating
labels. These exploit the fact that frequently large
amounts of unannotated texts do exist in the tar-
geted domain, e.g. from web crawls. The la-
bels are then assigned using techniques like trans-
ferring information from high-resource languages
(Das and Petrov, 2011) or simple look-ups in

knowledge bases or gazetteers (Dembowski et al.,
2017). Once such an automatic labeling system
is set up, the amount of text to annotate becomes
nearly irrelevant, especially in comparison to man-
ual annotation. Also, it is often rather easy to ap-
ply the system to different settings, e.g. by using a
knowledge base in a different language.

However, while easily obtainable in large
amounts, the automatically annotated data usu-
ally contains more errors than the manually an-
notated. When training a machine learning algo-
rithm on such noisy training data, this can result in
a low performance. Furthermore, the combination
of noisy and clean training instances can perform
even worse than just using clean data.

In this work, we present an approach to training
a neural network with a combination of a small
amount of clean data and a larger set of automat-
ically annotated, noisy instances. We model the
noise explicitly using a noise layer that is added
to the network architecture. This allows us to di-
rectly optimize the network weights using stan-
dard techniques. After training, the noise layer
is not needed anymore, removing any added com-
plexity.

This technique is applicable to different classi-
fication scenarios and in this work, we apply it to
an NER task. To obtain a non-synthetic, realistic
source of noise, we use look-ups from gazetteers
for automatically annotating the data. In the low-
resource setting, we show the performance boost
obtained from training with both clean and noisy
instances and from handling the noise in the data.
We also compare to another recent neural network
noise-handling approach and we give some more
insight into the impact of using additional noisy
data and into the learned noise model.
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2 Related Work

Existing work showed the importance of handling
label noise. Zhu and Wu (2004) suggested that
noise in labels tends to be more harmful than noise
in features. Beigman and Beigman Klebanov
(2009) showed that annotation noise in difficult in-
stances can deteriorate the performance even on
simple instances that would have been classified
correctly in the absence of the hard cases.

Rehbein and Ruppenhofer (2017) presented a
technique for detecting annotation noise in auto-
matically labeled POS and NER tags in an ac-
tive learning scheme. It requires, however, several
sources of automatic annotations and human su-
pervision. Similarly, Rocio et al. (2007) and Lofts-
son (2009) focused on detecting noisy instances
in (semi-) automatically annotated POS corpora,
leaving the correction to human annotators.

The model proposed by Bekker and Goldberger
(2016) assumes that all clean labels pass through
a noisy channel. One does only observe the noisy
labels. The model of the noise channel, as well
as the clean labels, are estimated using an EM al-
gorithm. A neural network is then trained on the
estimated labels. van den Berg (2016) applied this
model to different tasks, obtaining small improve-
ments on NER with automatically annotated data.
A disadvantage of this approach is that the neural
network needs to be retrained in every iteration of
the EM algorithm, making the model difficult to
scale to complex neural architectures.

Goldberger and Ben-Reuven (2017) trans-
formed this model into an end-to-end trainable
neural network by replacing the EM component
with a noise adaptation layer. They experimented
with simple image classification data and Dgani
et al. (2018) applied it on the medical image do-
main. Both limit their approach to only using
noisy data. Also, they just evaluate the effec-
tiveness of their noise-handling method on simple
synthetic noise (uniform and permutation). When
applied to real-life scenarios, the noise might have
a more complex structure.

In the image classification domain, several ideas
have been proposed for estimating cleaned labels
using a combination of clean and noisy labels.
Fergus et al. (2009) employ a label propagation
approach. Sukhbaatar et al. (2015) apply a noise
model on top of a Convolutional Neural Network.
Vahdat (2017) constructs an undirected graphical
model to represent the relationship between clean

and noisy labels. However, an additional source of
auxiliary information is needed to infer clean from
noisy labels. The approach presented by Veit et al.
(2017) uses two components. A cleaning network
learns to map noisy labels to clean ones. The sec-
ond network is used to learn the actual image clas-
sification task from clean and cleaned labels. We
compare our approach to this idea in the experi-
ments.

3 Noise Layer

Given a clean dataset C consisting of feature and
label tuples (x, y), we can construct a multi-label
neural network softmax classifier

p(y = i|x;w) = exp(uTi h(x))∑k
j=1 exp(u

T
j h(x))

(1)

where k is the number of classes, h is a non-linear
function or a more complex neural network and
w are the network weights including the softmax
weights u.

The noisy dataset N is a set of additional train-
ing instances. Following the approach of Gold-
berger and Ben-Reuven (2017), we assume that
each originally clean (but unseen) label y went
through a noise channel transforming it into the
noisy label z. We only observe the noisy label, i.e.
N consists of tuples (x, z).

The noise transformation from a clean label y
with class i to a noisy label z with class j is mod-
eled using a stochastic matrix

θ(i, j) = p(z = i|y = j) =
exp(bij)∑k
l=1 exp(bil)

(2)

for i, j ∈ {1, ..., k} and where b are learned
weights. We call this the noise layer here. The
probability for an observed, noisy label then be-
comes

p(z = j|x;w; θ) =
k∑

i=1

p(z = j|y = i; θ)p(y = i|x;w) (3)

for (x, z) ∈ N .
In contrast to the work by Goldberger and Ben-

Reuven (2017), we also have access to clean data
C. From this, we create two models, as illustrated
in Figure 1. The base model without noise layer
is trained on C and the noise model with the noise
layer is trained on N . Both models share the same
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Figure 1: General architecture of the approach.
Above is the base model trained on clean data C
and predicting clean labels y. Below is the noise
layer model trained on noisy label data N . The
predicted labels y are transformed into the seen,
noisy labels z using the noise layer.

network weights. The models are trained alter-
natingly, each for one epoch of its corresponding
clean or noisy data. For prediction, the noise layer
is removed and just the base model is used.

As stated by Goldberger and Ben-Reuven
(2017), the initialization of θ is important. Since
we have access to a small amount of clean data
C, we use it for initializing the stochastic matrix.
We assume that we can create noisy labels for the
clean instances using the same process as for the
noisy data N . We then initialize the weights of θ
as

bij = log(

∑|C|
t=1 1{yt=i}1{zt=j}∑|C|

t=1 1{yt=1}
) (4)

where zt is obtained by creating a noisy label for
(xt, yt) ∈ C.

4 Dataset and Automatic Annotation

Named Entity Recognition (NER) is the task of
assigning phrases in a text an entity label. In the
sentence

Only France backed Fischler’s pro-
posal.

the country France is of the entity class location
and Fischler refers to a person. Creating training
data for this task requires that each word in the text
is labeled with its corresponding class. The effort
to create a sufficiently large dataset might be too
large for a low-resource language.

To tackle this problem, Dembowski et al. (2017)
proposed to use external lists and gazetteers of en-
tities to automatically label words in a training cor-
pus. A list of person names can e.g be extracted
from all of the entries appearing in Wikipedia’s
person category. Equipped with such lists for all

Class Precision Recall F1
PER 48.09% 25.90% 33.67%
ORG 52.45% 10.02% 16.83%
LOC 56.76% 65.42% 60.78%
MISC 0.00% 0.00% 0.00%

Overall 53.31% 27.36% 36.16%

Table 1: Evaluation of the automatic labeling on
the full English CoNLL-2003 training set (which
we use as noisy dataset N ).

entity classes, one can then label a text automat-
ically. A word gets assigned a specific class if it
appears in the corresponding entity list. A word or
token that does not appear in any list gets assigned
the null class ”O”. Additionally, simple heuris-
tics help to resolve conflicts between lists and to
remove some sources of errors. One might e.g.
not label the day of the weeks as names, although
”Friday” might be in the list of person names.

For this work, we use the English CoNLL-2003
NER corpus (Tjong Kim Sang and De Meulder,
2003). The dataset is labeled with the classes per-
son (PER), location (LOC), organization (ORG),
miscellaneous name (MISC) and the null class
(O). It consists of a training, a development and a
test set. To obtain a low-resource setting, we ran-
domly sample a subset of the training set as clean
data C. In the experiments, we vary this size be-
tween ca. 400 and 20000 words. The rest of the
labels are removed from the training set.

We then label the whole training set using the
method by Dembowski et al. (2017) in the ver-
sion with heuristics. This approach of automati-
cally labeling words allows to quickly obtain large
amounts of labeled text. However, both precision
and recall tend to be lower than for manually la-
beled corpora (cf. Table 1). It should be noted that
the MISC class is not covered with this technique
which is an additional source of noise in the auto-
matically annotated data. We use this as our noisy
data N .

5 Model Architectures and Training

In this section, we present the different model ar-
chitectures we evaluated in our experiments and
we give details on the training procedure.

For each instance, the input x is a sequence
of words with the target word in the middle sur-
rounded by 3 words from the left and from the
right of the original sentence, e.g. x = ”coun-
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tries other than Britain until the scientific” where
”Britain” is the target word with label y = LOC.
Sentence boundaries are padded. We encode the
words using the 300-dimensional GloVe vectors
trained on cased text from Common Crawl (Pen-
nington et al., 2014).

The base-model uses a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with state
size 300 to encode the input. Then a dense layer is
applied with size 100 and ReLU activation (Glo-
rot et al., 2011). Afterwards, the softmax layer is
used for classification. This model is only trained
on the clean data C.

The noise-model is built upon the base model
and uses the noise layer architecture explained in
section 3. First, the model is trained without noise
layer for one epoch on the clean data. Then, we
alternate between training with the noise layer on
the noisy data and without the noise layer on the
clean, each for one epoch. Instead of training
on the full noisy corpus, we use a subsample Ñ ,
randomly picked in each epoch. This allows the
model to see many different noisy samples while
preventing the noise from being too dominant. In
section 6.2, we evaluate this effect.

For the base-model-with-noise we use the
same clean and noisy data but the noise layer is left
out, using only the base model architecture with-
out an explicit noise-handling technique.

To evaluate the importance of the initialization
of the stochastic matrix θ, the noise-model-with-
identity-init uses the same training approach and
data as the noise-model. However, θ is initialized
with the identity matrix instead of using formula
4.

The noise-adaptation-model uses the original
model of Goldberger and Ben-Reuven (2017). It
consists of the base model with the noise layer
and is trained on the whole noisy dataset in each
epoch. It does not use the clean data. For initial-
izing θ, the base model is pretrained on the noisy
data and its predictions are used as an approxima-
tion to the clean labels.

We also compare to the recent work by Veit
et al. (2017). They train a noise cleaning compo-
nent which learns to map from a noisy label and
a feature representation to a clean label. These
cleaned labels are then used for training of what
we call the base model. The authors did not report
specific layer sizes and their architecture is devel-
oped for an image classification task, which dif-

fers structurally from our NER dataset (e.g. their
label vector is much sparser). We, therefore, adapt
their concept to our setting. As feature represen-
tation, we use the output of the BiLSTM which
is projected to a 30-dimensional space with a lin-
ear layer. This is concatenated with the noisy la-
bel and used as input to the noise cleaning com-
ponent. It is passed through a dense layer with
the same dimension as the label vector. The skip-
connection and clipping are used as in their pub-
lication. We use the same training approach and
data as with the noise-model, replacing the step
where the noise layer is trained. Instead, in each
epoch the noise cleaning component is trained on
C and the corresponding noisy labels. The base
model is then trained on a cleaned version of Ñ
and C. We call this the noise-cleaning-model.

All models are trained using cross-entropy loss,
except for the noise cleaning component of the
noise-cleaning-model which is trained with the ab-
solute error loss like in the original paper. All
models are trained for 40 epochs and the weights
of the best performing epoch are selected accord-
ing to the F1 score on the development set. Adam
(Kingma and Ba, 2015) is used for stochastic op-
timization.

6 Experiments and Evaluation

In this section, we report on our experiments and
their results. The training on noisy data as well
as the randomness in training neural networks in
general lead to a certain amount of variance in the
evaluation scores. Therefore, we repeat all experi-
ments five times and report the average as well as
the standard error. To obtain meaningful results,
no noise is added to the test data.

6.1 Model Comparison

To simulate different degrees of low-resource set-
tings, we trained the models on different amounts
of clean data. We vary the size between 407 la-
beled words (0.2% of the CoNLL-2003 training
data) and 20362 labeled words (10%) in six steps.
Since the noisy labels are easy to obtain, we use
the whole corpus N . The size of the random sub-
sample Ñ in each epoch is set to the same size as
the clean data.

The results of this experiment are given in Fig-
ure 2. There is a general trend that the larger the
amount of clean data is, the lower the differences
between the models are. It seems that once we
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Figure 2: Evaluation results of the models. Ex-
periments were run for different sizes of the clean
data C and the per epoch randomly subsampled
data Ñ . The average F1 score on the test set is
given over five runs. The error bars show two-
times standard error in both directions.

have obtained enough clean training data, the ad-
ditional noisy data cannot add much more infor-
mation, even when cleaned. This is reminiscent
of results from semi-supervised learning (e.g. in
Nigam et al., 2006).

For the two settings with the lowest amount of
data, the base-model-with-noise (which is trained
on clean and noisy data without a noise channel)
performs worst. For the four settings with more
data, it is better than base-model (which is only
trained onC). This could indicate that noisy labels
do hurt the performance in low-resource settings.
However, once a certain amount of clean training
data is obtained, this is enough to cope with the
noise to a certain degree and obtain improvements,
even when the noise is not explicitly handled.

The models that do handle noise, outperform
these baselines. When comparing noise-model
and noise-model-with-identity-init, we see a large
gap in performance. This shows the importance
of a good initialization of the noise model θ in the
low-resource setting.

The original noise-adaptation-model model by
Goldberger and Ben-Reuven (2017) obtains an av-
erage F1 score of 38.8. This shows that a model
purely trained on a large amount of automatically
annotated data can be an alternative to a model
trained on very few clean instances. However, the
effect of cleaning noisy labels without access to
any clean data seems limited, as the model can-
not even reach the performance of either the base-

model trained on 1018 instances nor our noise-
model on the smaller set of 407 instances.

The noise-model outperforms the cleaning-
model in the four lower-resource settings while the
latter performs slightly better in the two scenarios
with more data. With its access to the features in
the noise cleaning component, the cleaning-model
might be able to model more complex noise trans-
formations. However, it does not seem to be able
to leverage this capability in a low-resource set-
ting. In the low-resource settings, our noise-model
is able to handle the noise well and it gains over ten
points in F1 score over not using a noise-handling
mechanism or only training on clean data.

6.2 Amount of Noisy Data
In this experiment, we evaluate the effect of using
different amounts of noisy data during each epoch,
i.e. we vary the size of the subsampled, noisy
data Ñ . We experiment with the noise-model and
fix the amount of clean data C to 2036 labeled
words (1% of the CoNLL-2003 training data). We
choose |Ñ | as multiples of |C| using factors 0.5,
1, 2, 10, 20, 30 and 50.

The results are given in Figure 3. One can see
a trend that increasing the size of Ñ results in an
improvement in F1 score. This holds until factor
5. Afterwards, the performance degrades again.
This might indicate that the noisy data becomes
too dominant and the cleaning effect of the noise
layer is not able to mitigate it.

6.3 Learned Weights
Since, for evaluation purposes, we do have access
to the clean labels of the whole training set, we
can compare the noise that is in the noisy data to
what the noise layer learned. Table 1 shows the
evaluation of the automatically annotated labels on
the training data. Figure 4 shows the stochastic
matrix θ that was learned in one run of training
the noise-model with |C| = |Ñ | = 2036 labeled
words (1% of the CoNLL-2003 training data).

One can see that the learned weight matrix rep-
resents a reasonable model of the noise. For the
classes PER, ORG and MISC, the recall is very
low in the noisy data and therefore the correspond-
ing weights in the first column of the matrix are
high: Instances (or a certain percentage of the
probability mass) which the base model correctly
classifies as PER/ORG/MISC, are mapped to the
class O because this is the corresponding noisy
label (indicated by the low recall). For the LOC
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Figure 3: Evaluation results for varying the size of
the per epoch randomly subsampled noisy data Ñ .
The noise-model was used and the amount of clean
data C fixed to 2036 labeled words. The average
F1 score on the test set is given over five runs. The
error bars show two-times standard error in both
directions.

class, the recall in the noisy labels is much higher
and we see this reflected in the learned weights.
The prominent weight is θLOC, LOC, i.e. a predic-
tion of the label LOC is mostly left unchanged be-
cause it tends to be correctly labeled in the noisy
data.

7 Conclusions and Future Work

In this work, we presented a technique to train
a neural network on a combination of clean and
noisy annotations. We modeled the noise explic-
itly using a noise layer. We evaluated our ap-
proach on an NER task using real noise in the form
of automatically annotated labels. We found that
the probabilistic noise matrix learned is a useful
model of the noise. In the low-resource setting
where only a few manually annotated instances
are available, we showed the improvements of up
to 35% obtained from using additional, noisy data
and handling the noise.

For future work, we want to experiment with
different classification tasks and other sources of
noisy data. We would also like to explore more
complex noise models that are able to perform
well both in low- and high-resource settings.
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