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Abstract

Neural part-of-speech (POS) taggers are
known to not perform well with little train-
ing data. As a step towards overcoming
this problem, we present an architecture
for learning more robust neural POS tag-
gers by jointly training a hierarchical, re-
current model and a recurrent character-
based sequence-to-sequence network su-
pervised using an auxiliary objective. This
way, we introduce stronger character-level
supervision into the model, which enables
better generalization to unseen words and
provides regularization, making our en-
coding less prone to overfitting. We exper-
iment with three auxiliary tasks: lemma-
tization, character-based word autoencod-
ing, and character-based random string
autoencoding. Experiments with mini-
mal amounts of labeled data on 34 lan-
guages show that our new architecture out-
performs a single-task baseline and, sur-
prisingly, that, on average, raw text au-
toencoding can be as beneficial for low-
resource POS tagging as using lemma in-
formation. Our neural POS tagger closes
the gap to a state-of-the-art POS tagger
(MarMoT) for low-resource scenarios by
43%, even outperforming it on languages
with templatic morphology, e.g., Arabic,
Hebrew, and Turkish, by some margin.

1 Introduction

POS tagging, i.e., assigning syntactic categories to
tokens in context, is an important first step when
developing language technology for low-resource
languages. POS tags can provide an efficient in-
ductive bias for modeling downstream tasks, espe-
cially if training data for these tasks are limited.

However, POS tagging can be very challeng-
ing if only a few labeled sentences are avail-
able. Previous work on POS tagging with lim-
ited or no annotated data comes in three fla-
vors, e.g., (Yarowsky et al., 2001; Goldwater and
Griffiths, 2007; Li et al., 2012; Biemann, 2012;
Täckström et al., 2013; Dong et al., 2015; Agić
et al., 2015): unsupervised POS induction, cross-
lingual transfer, or, if some suitable data are avail-
able, supervised induction from small labeled cor-
pora or dictionaries. This work focuses on the lat-
ter: We explore the effect of multi-task learning
for building robust POS taggers for low-resource
languages from small amounts of annotated data.

In low-resource settings, neural POS taggers
have been observed to perform poorly compared to
log-linear models. This is unfortunate, since neu-
ral POS taggers have other advantages, including
being easily integrable into multi-task learning ar-
chitectures, sidestepping feature engineering, and
providing compact word-level and sentence-level
representations. In this paper, we therefore take
steps to bridge the gap to state-of-the-art taggers
in such scenarios.

Specifically, we consider training neural POS
taggers from 478 annotated tokens (the size of the
smallest treebank in UD 2.01). In such a setting, it
is often useful to leverage data from other, related
tasks (Bingel and Søgaard, 2017), if available.
However, since for many low-resource languages
such data is hard to find, we consider multi-task
learning scenarios with no other sequence labeling
data at hand:

(i) a scenario in which type-based morpholog-
ical information is available, e.g., word-
lemma pairs as can be found in standard dic-
tionaries or UniMorph,2

1http://universaldependencies.org/
2http://unimorph.org/

http://universaldependencies.org/
http://unimorph.org/
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(ii) a scenario where we only rely on raw text cor-
pora in the language, and

(iii) a scenario where we do not assume any addi-
tional data, but construct a synthetic auxiliary
task instead.

In order to include secondary information such as
word-lemma pairs into our model, we integrate
a character-based recurrent sequence-to-sequence
model into a hierarchical long short-term mem-
ory (LSTM) sequence tagger (cf. Figure 1). By
formulating suitable auxiliary tasks (lemmatiza-
tion, word autoencoding or random string au-
toencoding, respectively), we can include addi-
tional character-level supervision into our model
via multi-task training.

Contributions. We present a novel architecture
for inducing more robust neural POS taggers from
small samples of annotated data in low-resource
languages, combining a hierarchical, deep bi-
LSTM sequence tagger with a character-based
sequence-to-sequence model. Furthermore, we
experiment with different choices of external re-
sources and corresponding auxiliary tasks and
show that autoencoding can be as efficient as an
auxiliary task for low-resource POS tagging as
lemmatization. Finally, we evaluate our models
on 34 typologically diverse languages.

2 POS Tagging with Subword-level
Supervision

Hierarchical POS tagging LSTMs that receive
both word-level and subword-level input, such as
Plank et al. (2016), are known to perform well on
unseen words. This is due to their ability to asso-
ciate subword-level patterns with POS tags. How-
ever, hierarchical LSTMs are also very expressive,
and thus prone to overfitting. We believe that us-
ing subword-level auxiliary tasks to regularize the
character-level encoding in hierarchical LSTMs is
a flexible and efficient way to get the best of both
worlds: such a model is still able to make predic-
tions about unknown words, but the subword-level
auxiliary task should prevent it from overfitting.

2.1 Hierarchical LSTMs with
Character-level Decoding

Our proposed multi-task architecture is shown in
Figure 1. For the hierarchical sequence label-
ing LSTM, we follow Plank et al. (2016): Our

Figure 1: Our multi-task architecture, consist-
ing of a shared character LSTM (down), as well
as a sequence labeling (up) and a sequence-to-
sequence (right) part.

subword-level LSTM is bi-directional and oper-
ates on the character level (Ling et al., 2015;
Ballesteros et al., 2015). Its input is the charac-
ter sequence of each input word, represented by
the embedding sequence c1, c2, . . . , cm. The final
character-based representation of each word is the
concatenation of the two last LSTM hidden states:

vc,i = conc(LSTMc,f (c1:m), (1)

LSTMc,b(cm:1))

Second, a context bi-LSTM operates on the
word level. Like Plank et al. (2016), we use
the term “context bi-LSTM” to denote a bidi-
rectional LSTM which, in order to generate
a representation for input element i, encodes
all elements up to position i with a forward
LSTM and all elements from n to i using a
backward LSTM. For each sentence represented
by embeddings w1, w2, . . . , wn, its input are
the concatenation of the word embeddings
with the outputs of the subword-level LSTM:
conc(w1, vc,1), conc(w2, vc,2) . . . , conc(wn, vc,n).
The final representation which gets forwarded
to the next part of the network is again the
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concatenation of the last two hidden LSTM states:

vw,i = conc(LSTMw,f (conc(w, vc)1:i), (2)

LSTMw,b(conc(w, vc)n:i))

This is then passed on to a classification layer.

2.1.1 Character-based Decoding

We extend the network with a new component, a
character-based sequence-to-sequence model. It
consists of a bidirectional LSTM encoder which is
connected to an LSTM decoder (Cho et al., 2014;
Sutskever et al., 2014).

Encoding. The encoder corresponds to the
character-level bi-directional LSTM described
above and thus yields the representation

vc,i = conc(LSTMc,f (c1:m), (3)

LSTMc,b(cm:1))

for an input word embedded as c1, c2, . . . , cm. Pa-
rameters of the character-level LSTM are shared
between the sequence labeling and the sequence-
to-sequence part of our model.

Decoding. The decoder receives the concatena-
tion of the last hidden states vc,i as input. In partic-
ular, we do not use an attention mechanism (Bah-
danau et al., 2015), since our goal is not to improve
performance on the auxiliary task, but instead to
encourage the encoder to learn better word repre-
sentations. The decoder is trained to predict each
output character yt dependent on vc,i and previous
predictions y1, ..., yt−1 as

p(yt|{y1, ..., yt−1}, vc,i) = g(yt−1, st, vc,i) (4)

for a non-linear function g and the LSTM hidden
state st. The final softmax output layer is calcu-
lated over the vocabulary of the language.

Joint model. Figure 1 shows how parameters
are shared between the sequence labeling and
the sequence-to-sequence components of our net-
work. All model parameters, including all embed-
dings, are updated during training. Our model ar-
chitecture is “symmetric”, i.e., it does not distin-
guish between main and auxiliary tasks. However,
we use early stopping on the development set of
the main task, such that convergence is not guar-
anteed for the auxiliary tasks.

2.2 Multi-task Learning

We want to train our neural model jointly on (i)
a low-resource main task, i.e., POS tagging, and
(ii) an exchangeable auxiliary task (cf. §3). There-
fore, we want to maximize the following joint log-
likelihood:

L(θ)=
∑

(l,s)∈DPOS

log pθ (l | s) (5)

+
∑

(in,out)∈Daux

log pθ (out | in)

Here, DPOS denotes the POS tagging training
data, with s being the input sentence and l the cor-
responding label sequence. Daux is a placeholder
for our auxiliary task training data with examples
consisting of input in and output out. We exper-
iment with three different auxiliary tasks, which
will be described in the next section.

The set of model parameters θ is the union of
the set of parameters of the sequence labeling and
the sequence-to-sequence part. Parameters of the
character LSTM are shared between the main and
the auxiliary task.

3 (Un)supervised Auxiliary Tasks

In this section, we will describe our three auxiliary
tasks in more detail.

3.1 Random String Autoencoding

Random string autoencoding is a synthetic auxil-
iary task created for a setting in which we have no
additional resources available. It consists of, given
a random character sequence as input, reconstruct-
ing the same sequence in the output. Concretely,
given the alphabet AL of a language L, the task
is to learn a mapping r 7→ r for r ∈ A+

L . Note
that the random string r is in most cases not a
valid word in L. Additionally, we prepend a spe-
cial symbol Sr to the input which indicates the
current task to the encoder, e.g., “OUT=AE” or
“OUT=POS”.

3.2 Word Autoencoding

Word autoencoding is a special case of the pre-
vious auxiliary task, in that we now use actual
words in the language, e.g., from unlabeled cor-
pora or dictionaries. As for random string autoen-
coding, the task consists of reproducing a given
input character sequence in the output. As before,
we additionally feed a special symbol Sw into the
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model which signals the current task to the en-
coder. Our final training examples are of the form
(Sw;w) 7→ w, where w ∈ VL for the vocabulary
VL of L. Word autoencoding has been used as an
auxiliary task before, e.g., (Vosoughi et al., 2016).

3.3 Lemmatization
Lemmatization is a task from the area of inflec-
tional morphology. In particular, it is a special
case of morphological inflection. Its goal is to map
a given inflected word form to its lemma, e.g.,

sueño 7→ soñar. (6)

Sequence-to-sequence models have shown strong
performances on morphological inflection (Aha-
roni et al., 2016; Kann and Schütze, 2016;
Makarov et al., 2017). Therefore, when morpho-
logical dictionaries are available, we can easily
combine a neural model for lemmatization with a
POS tagger, using our architecture. Our intuition
for this auxiliary task is that it should be possi-
ble to include morphological information into our
character-based word representations.

Formally, the task can be described as follows.
Let AL be a discrete alphabet for language L and
let TL be a set of morphological tags for L. The
morphological paradigm π of a lemma w in L is a
set of pairs

π(w) =
{(
fk[w], tk

)}
k∈T (w)

(7)

where fk[w`] ∈ A+
L is an inflected form, tk ∈ TL

is its morphological tag and T (w) is the respec-
tive set of paradigm slots. Lemmatization consists
of predicting the lemma w for an inflected form
fk[w`] in π(w).

4 Experimental Setup

In this section, we will describe our experiments,
including data, baselines, and hyperparameters.

4.1 Data
POS. The data for our POS tagging main task
comes from the Universal Dependencies (UD) 2.0
collection (Nivre et al., 2007). We use the pro-
vided train/dev/test splits.

Since we use the official datasets from the SIG-
MORPHON 2017 shared task on universal mor-
phological reinflection (Cotterell et al., 2017) for
the lemmatization auxiliary task, we limit our-
selves to the languages featured there. We simu-
late a low-resource setting by reducing all training

sets to 478 tokens. Among our languages, this is
the size of the smallest training set in UD 2.0.

Lemmatization. For the lemmatization auxil-
iary task, we make use of the word-lemma pairs in
the training sets released for the SIGMORPHON
2017 shared task (Cotterell et al., 2017), which are
subsets of the UniMorph data. In particular, there
are three settings with different training sets per
language: low (100 examples), medium (1,000 ex-
amples) and high (10,000 examples).

Word autoencoding. For the word autoencod-
ing task, we use the inflected forms from the SIG-
MORPHON 2017 shared task dataset for each re-
spective setting. Due to identical forms for differ-
ent slot in the morphological paradigm of some
lemmas, we might have duplicate examples in
those datasets.

Random string autoencoding. For the random
string autoencoding auxiliary task, we generate
random character sequences to be used as training
instances for our model’s encoder-decoder part. In
order to have the same amount of unique char-
acters as with the other two auxiliary tasks, we
use the character sets from the SIGMORPHON
shared task vocabulary for each respective setting.
We then uniformly draw characters from these sets
and form strings of random lengths between 3 and
20 characters.

4.2 Baselines

TreeTagger. Since low-resource settings like the
one considered here are known to be challeng-
ing for neural models, we employ TreeTagger
(Schmid, 1995), a non-neural Markov model tag-
ger, as our first baseline.

MarMoT. Our second non-neural baseline is
the state-of-the-art tagger MarMoT (Müller et al.,
2013), which is based on conditional random
fields (CRFs, Lafferty et al. (2001)).

Single-task hierarchical LSTM. We compare
all our results to a single-task baseline model,
which corresponds largely to the architecture used
by Plank et al. (2016) for POS tagging. We mod-
ify their original code by adding character dropout
with a coefficient of 0.25 to improve regulariza-
tion and make the baseline more comparable to
and competitive with our models.
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Multi-task baseline. We further compare to a
multi-task architecture which jointly learns to pre-
dict the POS tag and the log-frequency of a word
as suggested by Plank et al. (2016). The intuition
described by the original authors is that the auxil-
iary loss, being predictive of word frequency, can
improve the representations of rare words. Note
that this baseline can easily be combined with our
architecture. We leave the exploration of such a
combination for future work.

4.3 Hyperparameters

For all networks, we use 300-dimensional char-
acter embeddings, 64-dimensional word embed-
dings and 100-dimensional LSTM hidden states.
Encoder and decoder LSTMs have 1 hidden layer
each. For training, we use ADAM (Kingma and
Ba, 2014), as well as word dropout and character
dropout, each with a coefficient of 0.25 (Kiper-
wasser and Goldberg, 2016). Gaussian noise is
added to the concatenation of the last states of the
character LSTMs for POS tagging. All models
are trained using early stopping, with a minimum
number of 75 (single-task and low), 30 (medium)
or 20 (high) epochs and a maximum number of
300 epochs, which is never reached. We stop train-
ing if we obtain no improvement for 10 consecu-
tive epochs. The best model on the development
set is used for testing.

5 Results

The test results for all languages and settings are
presented in Table 1.

Our first observation is that using 100 words of
auxiliary task data seems to be sufficient, as we do
not see consistent gains from adding more auxil-
iary task instances. This might be related to the
very limited amount of POS tagging data we as-
sume available; a too low main-auxiliary task data
ratio probably inhibits further gains.

Second, we find that lemmatization and word
autoencoding on average over all languages bring
similar gains, differences are only between 0.0013
(medium) and 0.0021 (high) absolute accuracy.
Comparing word and random string autoencoding,
two observations can be made: in the low setting,
differences are small, while random string autoen-
coding is the only task which performs worse in
the high compared to the low setting. So the gap
between the two autoencoding tasks grows big-
ger for larger auxiliary task data. This might be

explained by random string autoencoding being
helpful in order to get clearer distinctions between
characters; however, this might as well destroy the
model’s ability to pick up on beneficial similari-
ties.

Our third observation is that lemmatization and
word autoencoding consistently outperform the
auxiliary task of predicting log-frequencies as sug-
gested in Plank et al. (2016) with up to 0.0081
(POS+AE, low/high) higher absolute accuracy;
random string autoencoding performs 0.0079 bet-
ter in the low setting. We may thus conclude
that, in our setting, auxiliary tasks with additional
character-level supervision are more beneficial.

Fourth, both non-neural baselines outperform
the single-task neural model. Adding auxiliary
tasks leads to a higher performance (averaged over
languages) than TreeTagger. MarMoT is the over-
all best performing model. However, for some
individual languages, the neural model obtains
higher accuracies, e.g., for Bulgarian, Dutch, or
Romanian. In particular, our approach is stronger
for languages with templatic morphology, e.g.,
Arabic, Hebrew, or Turkish. This emphasizes the
importance of neural approaches for the task.

Finally, we look at differences between auxil-
iary tasks for individual languages. Here, we no-
tice that autoencoders often outperform lemmati-
zation for agglutinative languages. An explanation
for this might be that agglutinative morphology is
harder to learn, and the chance of overfitting on a
small sample is therefore higher.

6 Analysis

6.1 Error Analysis

Table 2 lists the F1-scores of our models across
POS tags, compared to the single-task baseline.

Our first observation is that the decrease in per-
formance from training on more random strings,
is relatively equal across tags, with the exception
of DET, PUNCT and X; tokens that consist of
very few, fixed characters. We also note that all
our models with character-level supervision get
worse at predicting numerals. In contrast, ADP,
AUX, CCONJ and PUNCT always benefit from a
character-based auxiliary task. Generally, the POS
taggers trained on small amounts of data are chal-
lenged by rare syntactic categories such as inter-
jections and the miscellaneous category X.
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high medium low baselines
language POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS TreeTagger MarMoT

Lemma AE AE-Random Lemma AE AE-Random Lemma AE AE-Random LogFrequ
arabic .6900(.01) .6862(.01) .6747(.01) .6638(.02) .6737(.01) .6635(.00) .6735(.01) .6680(.01) .6731(.01) .6583(.02) .6545(.01) .6047(.00) .6398(.00)
basque .5925(.01) .6231(.01) .5866(.01) .6088(.01) .6291(.01) .6170(.01) .6332(.01) .6262(.01) .6363(.00) .6058(.01) .6217(.02) .6143(.00) .6862(.00)
bulgarian .6139(.01) .6344(.01) .5954(.01) .6239(.01) .6343(.00) .6153(.02) .6267(.01) .6410(.01) .6431(.01) .6431(.01) .6272(.01) .6208(.00) .6067(.00)
catalan .7104(.01) .7139(.01) .7051(.00) .7175(.01) .7212(.01) .7116(.01) .7279(.01) .7352(.01) .7232(.01) .7024(.01) .7197(.01) .7525(.00) .7824(.00)
czech .6227(.01) .6063(.01) .5574(.02) .5923(.01) .5953(.00) .5742(.01) .6131(.02) .6048(.00) .6003(.01) .5784(.01) .5897(.02) .6417(.00) .6720(.00)
danish .6368(.00) .6322(.01) .6137(.01) .6431(.01) .6434(.00) .6307(.01) .6375(.01) .6378(.00) .6378(.00) .6431(.01) .6346(.03) .6346(.00) .6703(.00)
dutch .5901(.01) .5835(.01) .5533(.01) .5837(.00) .5778(.00) .5689(.01) .5810(.01) .5807(.00) .5812(.01) .5559(.01) .5724(.01) .5406(.00) .5866(.00)
english .5784(.01) .5723(.01) .5183(.01) .5747(.01) .5658(.01) .5423(.00) .5585(.03) .5836(.01) .5857(.00) .5751(.02) .5822(.02) .6019(.00) .6507(.00)
estonian .5386(.01) .5456(.01) .5224(.01) .5438(.01) .5323(.01) .5173(.01) .5384(.01) .5474(.01) .5333(.02) .5388(.01) .5391(.02) .5632(.00) .5851(.00)
finnish .5748(.01) .5678(.01) .5403(.02) .5599(.01) .5632(.01) .5468(.01) .5637(.01) .5616(.01) .5634(.00) .5424(.01) .5525(.01) .5602(.00) .5743(.00)
french .6922(.01) .6898(.01) .6720(.00) .6855(.01) .6874(.00) .6876(.01) .7048(.00) .6981(.00) .6924(.01) .6858(.01) .6826(.01) .5931(.00) .7084(.00)
german .6804(.01) .6742(.00) .5739(.02) .6887(.00) .6639(.01) .6190(.01) .6768(.01) .6830(.01) .6687(.01) .6895(.01) .6711(.01) .5912(.00) .7370(.00)
hebrew .6764(.00) .6838(.00) .6827(.01) .6734(.01) .6781(.00) .6672(.00) .6761(.01) .6825(.00) .6796(.01) .6776(.01) .6655(.01) .6147(.00) .6705(.00)
hindi .5954(.01) .6062(.01) .5874(.01) .5914(.01) .5984(.01) .5839(.01) .5989(.01) .6046(.01) .6001(.01) .5992(.01) .5791(.02) .5784(.00) .5943(.00)
hungarian .5820(.01) .5853(.01) .5647(.01) .5811(.01) .5836(.01) .5712(.01) .5907(.01) .5897(.01) .5991(.00) .5824(.01) .5825(.02) .6352(.00) .6651(.00)
irish .6800(.01) .6715(.01) .6573(.00) .6741(.00) .6649(.00) .6593(.01) .6735(.00) .6743(.00) .6790(.00) .6724(.01) .6699(.00) .6511(.00) .6729(.00)
italian .7150(.00) .7123(.01) .6992(.00) .7105(.00) .7032(.00) .7012(.00) .7012(.01) .7054(.01) .7053(.00) .7076(.01) .6902(.02) .6959(.00) .7280(.00)
latin .5950(.00) .5853(.01) .5633(.01) .6026(.01) .5953(.00) .5863(.00) .5998(.01) .6068(.01) .5992(.01) .6069(.00) .6046(.01) .6234(.00) .6312(.00)
latvian .5446(.01) .5557(.01) .5288(.01) .5406(.01) .5453(.01) .5303(.01) .5344(.01) .5356(.01) .5408(.01) .5382(.00) .5300(.01) .5984(.00) .5773(.00)
lithuanian .5347(.01) .5292(.02) .4936(.01) .5123(.01) .5192(.01) .5213(.01) .5230(.01) .5313(.01) .5327(.01) .5238(.01) .4721(.01) .5783(.00) .5840(.00)
n.-bokmaal .5388(.00) .5399(.01) .5048(.01) .5352(.01) .5368(.01) .5280(.01) .5365(.01) .5400(.01) .5437(.01) .5300(.01) .5016(.02) .5737(.00) .5658(.00)
n.-nynorsk .6172(.01) .6223(.01) .6043(.01) .6200(.01) .6228(.01) .6167(.01) .6256(.01) .6263(.01) .6232(.01) .6238(.01) .6130(.01) .6142(.00) .6168(.00)
persian .7419(.01) .7438(.01) .7287(.01) .7312(.01) .7277(.01) .7330(.00) .7332(.00) .7352(.00) .7340(.00) .7278(.01) .7116(.01) .7339(.00) .7539(.00)
polish .6407(.00) .6423(.01) .5960(.01) .6314(.01) .6243(.01) .6162(.01) .6448(.00) .6460(.01) .6400(.01) .6243(.01) .6489(.01) .6712(.00) .6700(.00)
portuguese .6886(.00) .6865(.00) .6597(.01) .6786(.01) .6775(.01) .6692(.01) .6784(.00) .6815(.00) .6920(.01) .6482(.03) .6408(.02) .6377(.00) .7135(.00)
romanian .6029(.01) .6156(.01) .5956(.01) .6028(.01) .6117(.01) .5969(.00) .6027(.01) .6135(.01) .6145(.01) .6062(.01) .6051(.00) .5993(.00) .5740(.00)
russian .6807(.01) .6817(.01) .6283(.00) .6860(.02) .6607(.01) .6504(.01) .6752(.01) .6661(.01) .6661(.01) .6644(.01) .6241(.05) .6105(.00) .7281(.00)
slovak .6169(.01) .6327(.01) .5835(.01) .6274(.01) .6203(.01) .6337(.02) .6585(.01) .6378(.01) .6443(.01) .6536(.02) .6264(.02) .6642(.00) .6672(.00)
slovene .6364(.00) .6414(.00) .6093(.01) .6343(.01) .6223(.01) .6070(.01) .6358(.00) .6375(.01) .6350(.01) .6105(.01) .5922(.02) .6561(.00) .6046(.00)
spanish .6962(.00) .6891(.01) .6624(.02) .6844(.01) .6797(.01) .6659(.01) .6818(.01) .6939(.01) .6900(.01) .6917(.01) .6724(.01) .6933(.00) .7578(.00)
swedish .6127(.01) .6261(.01) .5909(.01) .6254(.00) .6262(.00) .6194(.01) .6193(.01) .6254(.01) .6254(.00) .6274(.01) .6117(.02) .6290(.00) .6304(.00)
turkish .6067(.01) .6007(.01) .5725(.01) .5846(.01) .5879(.00) .5792(.01) .6042(.01) .6003(.01) .6040(.01) .6087(.01) .5891(.01) .6107(.00) .6025(.00)
ukrainian .5910(.01) .5946(.00) .5755(.00) .5826(.01) .5750(.00) .5668(.01) .5878(.02) .5895(.01) .5894(.01) .5869(.02) .5932(.01) .5297(.00) .6125(.00)
urdu .6589(.01) .6697(.01) .6335(.00) .6572(.01) .6599(.00) .6465(.01) .6578(.01) .6526(.01) .6600(.01) .6395(.02) .6096(.03) .5229(.00) .6776(.00)
average .6286( - ) .6307( - ) .6010( - ) .6251( - ) .6238( - ) .6131( - ) .6287( - ) .6307( - ) .6305( - ) .6226( - ) .6141( - ) .6188( - ) .6529( - )

Table 1: Averaged accuracies and standard deviations over 5 training runs on UD 2.0 test sets, with 478
tokens of POS-annotated data and varying amounts of data for the auxiliary task (low, medium and high).
Best result for each language in bold. Autoencoding and lemmatization are on par across the board, and
with 100 training sentences (low), random autoencoding is also competitive.

6.2 Why does Random String Autoencoding
Help?

In the low setting, i.e., when using only 100
auxiliary task examples, autoencoding, especially
of random strings, works better than or equally
well as lemmatization for highly agglutinative lan-
guages such as Basque, Finnish, Hungarian, and
Turkish. Further, while random string autoencod-
ing is in general less efficient than autoencoding
or lemmatization, it performs on par with these
auxiliary tasks in the set-up with least auxiliary
task data. However, this raises the question why
random string autoencoding does work at all for
a POS tagging main task. We offer two potential
explanations:

General properties of the auxiliary tasks. Bin-
gel and Søgaard (2017) showed that multi-task
learning is more likely to be helpful when the aux-
iliary loss does not plateau earlier than the main
loss. Figure 2 presents the loss curves for one
model for each of four randomly selected lan-
guages (the corresponding plots for the remaining

languages look similar). They show exactly the
patterns found to be predictive of multi-task learn-
ing gains by Bingel and Søgaard (2017), who offer
the explanation that when the auxiliary loss does
not plateau before the target task, it can help the
model out of local minima during training.

Preventing character collisions. A random
string autoencoder needs to memorize the input
string. This means encoding which characters are
at what position in the input sequence. Jointly
learning a random string autoencoder thus forces
a model to make it easy to differentiate between
characters, pushing them apart in vector space.
See Table 3 for the average character distances
and Table 4 for the minimum character distances
across languages for our three systems (low set-
ting) and our single-task baseline. For each sys-
tem, the score is obtained by first calculating the
average distance between all characters or, respec-
tively, finding the minimum distance between any
two characters for each language, and then com-
puting the average across all languages.
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high medium low
Tag ∆ Lemma ∆ AE ∆ AE- ∆ Lemma ∆ AE ∆ AE- ∆ Lemma ∆ AE ∆ AE- POS

Rand. Rand. Rand.
ADJ -0.0090 0.0083 -0.0555 -0.0167 -0.0017 -0.0290 0.0139 0.0145 0.0045 0.4756
ADP 0.0308 0.0288 0.0042 0.0440 0.0345 0.0205 0.0356 0.0313 0.0293 0.7687
ADV -0.0008 -0.0133 -0.0426 -0.0180 -0.0108 -0.0233 0.0166 0.0209 0.0193 0.2958
AUX 0.0610 0.0537 0.0203 0.0479 0.0264 0.0102 0.0250 0.0423 0.0300 0.6172
CCONJ 0.0849 0.0511 0.0400 0.0579 0.0449 0.0512 0.0646 0.0560 0.0606 0.7594
CONJ 0.0230 -0.0588 -0.0316 -0.0342 0.0674 0.1477 -0.0128 -0.1287 -0.0294 0.6617
DET 0.0227 0.0234 0.0048 0.0178 0.0210 -0.0151 0.0063 0.0046 -0.0037 0.6938
INTJ -0.0204 -0.0072 -0.0022 -0.0229 -0.0133 -0.0086 -0.0217 -0.0115 -0.0166 0.0806
NOUN 0.0015 0.0127 -0.0226 -0.0009 0.0072 -0.0055 0.0099 0.0147 0.0076 0.5457
NUM -0.0537 -0.0777 -0.1332 -0.1389 -0.1626 -0.1372 -0.0830 -0.0633 -0.0885 0.5965
PART 0.0313 0.0195 -0.0252 0.0089 -0.0280 -0.0558 -0.0221 -0.0046 -0.0013 0.6719
PRON 0.0532 0.0389 -0.0084 0.0435 0.0297 -0.0059 0.0346 0.0391 0.0368 0.5189
PROPN -0.0374 -0.0529 -0.1133 -0.0682 -0.0503 -0.0684 -0.0318 -0.0197 -0.0249 0.4271
PUNCT 0.0342 0.0204 0.0192 0.0188 0.0187 0.0186 0.0199 0.0185 0.0142 0.9299
SCONJ 0.0243 0.0346 0.0000 0.0288 0.0116 -0.0073 0.0205 0.0102 0.0166 0.5708
SYM -0.0495 -0.1380 -0.0482 -0.0590 0.0394 0.0072 0.1261 0.1738 0.1496 0.6437
VERB 0.0334 0.0397 -0.0268 0.0314 0.0234 0.0000 0.0416 0.0224 0.0378 0.4370
X 0.0829 0.0754 0.0262 0.0194 0.0175 0.0092 0.0126 0.0023 0.0019 0.1322

Table 2: F-score deltas between the neural single-task baseline (POS) and our multi-task systems.

System Average Distance
low medium high

POS+Lemmatization 0.928 0.976 0.964
POS+AE 0.923 0.965 0.960
POS+AE-Random 0.913 0.956 0.996
POS 0.881

Table 3: Average character embedding distances,
averaged over all languages.

System Minimum Distance
low medium high

POS+Lemmatization 0.031 0.027 0.074
POS+AE 0.032 0.031 0.092
POS+AE-Random 0.033 0.032 0.104
POS 0.018

Table 4: Minimum character embedding dis-
tances, averaged over all languages.

In small sample regimes, pushing individual
characters further apart is a potential advantage,
since character collisions can be hurtful at infer-
ence time. We note how this is analogous to fea-
ture swamping of covariate features, as described
in Sutton et al. (2006). Sutton et al. (2006) use a
group lasso regularizer to prevent feature swamp-
ing. In the same way, we could also detect dis-
tributionally similar characters and use a group
lasso regularizer to prevent covariate characters to
swamp each other. However, this effect can po-
tentially also hurt performance if done in an un-
informed way. We intuit that this makes it also
impossible for the model to learn useful similari-
ties between characters (random string autoencod-

ing in the high setting has a minimum distance
of 0.104 compared to 0.018 for the single-task
model). This might explain the performance gap
between random string encoding and the other two
auxiliary tasks for the high setting.

7 Related Work

POS tagging. POS tagging and other NLP se-
quence labeling tasks have been successfully ap-
proached using bidirectional LSTMs (Wang et al.,
2015; Plank et al., 2016; Yang et al., 2016). Al-
though previous work using such architectures of-
ten relies on massive datasets, Plank et al. (2016)
show that bi-LSTMs in particular are not as re-
liant on large amounts of data in a sequence la-
beling scenario as previously assumed. Further-
more, their model is also a multi-task model, be-
ing trained jointly on predicting the POS and the
log-frequency of a word. Their architecture ob-
tained state-of-the-art results for POS tagging in
several languages. Hence, in the low-resource set-
ting considered here, we build upon the architec-
ture developed by Plank et al. (2016), and extend
it to a multi-task architecture involving sequence-
to-sequence learning. Note though that in contrast
to our setup, their tasks are both sequence-labeling
tasks and using the same input for both tasks.

The same holds true for the multi-task model
by Rei (2017), which is used to investigate how an
additional language modeling objective could im-
prove performance for sequence labeling without
any need for additional training data. He reported



8

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

POS, main task
POS+AE-Random, main task
POS+AE-Random, aux. task
POS+Lemmatization, main task
POS+Lemmatization, aux. task
POS+AE, main task
POS+AE, aux. task
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(c) Hindi
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(d) Swedish

Figure 2: Learning curve plots for four randomly selected languages, low setting.

gains for all investigated tasks, including POS. Fi-
nally, Gillick et al. (2016) present a multi-lingual
model based on ideas from multi-task training,
with each language constituting a separate task.

Multi-task learning in NLP. Neural networks
make multi-task learning via (hard) parameter
sharing particularly easy; thus, different task com-
binations have been investigated exhaustively. For
sequence labeling, many combinations of tasks
have been explored, e.g. by Søgaard and Gold-
berg (2016); Martı́nez Alonso and Plank (2017);
Bjerva et al. (2016); Bjerva (2017a,b); Augenstein
and Søgaard (2018). An analysis of task combina-
tions is performed by Bingel and Søgaard (2017).
Ruder et al. (2017) present a more flexible archi-
tecture, which learns what to share between the
main and auxiliary tasks. Augenstein et al. (2017)
combine multi-task learning with semi-supervised
learning for strongly related tasks with different
output spaces.

However, work on combining sequence label-
ing main tasks and sequence-to-sequence auxiliary

tasks is harder to find. Dai and Le (2015) pretrain
an LSTM as part of a sequence autoencoder on
unlabeled data to obtain better performance on a
sequence classification task. However, they report
poor results for joint training. We obtain different
results: even simple sequence-to-sequence tasks
can indeed be beneficial for the sequence labeling
task of low-resource POS tagging. This might be
due to differences in the architectures or tasks.

Cross-lingual learning. Even though we do not
employ cross-lingual learning in this work, we
consider it highly relevant for low-resource set-
tings and, thus, want to mention some impor-
tant work here. Cross-lingual approaches have
been used for a large variety of tasks, e.g., auto-
matic speech recognition (Huang et al., 2013), en-
tity recognition (Wang and Manning, 2014), lan-
guage modeling (Tsvetkov et al., 2016), or pars-
ing (Cohen et al., 2011; Søgaard, 2011; Naseem
et al., 2012; Ammar et al., 2016). In the realm
of sequence-to-sequence models, most work has
been done for machine translation (Dong et al.,
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2015; Zoph and Knight, 2016; Ha et al., 2016;
Johnson et al., 2017). Another example is a
character-based approach by Kann et al. (2017) for
morphological generation.

8 Conclusion

We explored multi-task setups for training ro-
bust POS taggers for low-resource languages from
small amounts of annotated data. In order to add
additional character-level supervision into a hier-
archical recurrent neural model, we introduced a
novel network architecture. We considered dif-
ferent available types of external resources (word-
lemma pairs, unlabeled corpora, or none) and em-
ployed corresponding auxiliary tasks (lemmatiza-
tion, word autoencoding, or the artificial task of
random string autoencoding) as well as varying
amounts of auxiliary task data. While we did not
find a systematic superior performance of mod-
els which were trained with lemmatization as an
auxiliary task, the results confirmed our hypothe-
sis that additional subword-level supervision im-
proves POS taggers for resource-poor languages.
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Željko Agić, Dirk Hovy, and Anders Søgaard. 2015.
If all you have is a bit of the bible: Learning pos
taggers for truly low-resource languages. In ACL-
IJCNLP.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In SIGMORPHON.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. TACL, 4:431–444.

Isabelle Augenstein, Sebastian Ruder, and Anders
Søgaard. 2017. Multi-task learning of keyphrase
boundary detection. In ACL.

Isabelle Augenstein and Anders Søgaard. 2018. Multi-
task learning of pairwise sequence classification
tasks over disparate label spaces. In NAACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
EMNLP.

Chris Biemann. 2012. Unsupervised part-of-speech
tagging. In Structure Discovery in Natural Lan-
guage, pages 113–144. Springer.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In EACL.

Johannes Bjerva. 2017a. One Model to Rule them all:
Multitask and Multilingual Modelling for Lexical
Analysis. Ph.D. thesis, University of Groningen.

Johannes Bjerva. 2017b. Will my auxiliary tagging
task help? Estimating auxiliary tasks effectivity in
multi-task learning. In NoDaLiDa.

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016.
Semantic tagging with deep residual networks. In
COLING.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In SSST.

Shay B Cohen, Dipanjan Das, and Noah A Smith.
2011. Unsupervised structure prediction with non-
parallel multilingual guidance. In EMNLP.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In EMNLP-CoNLL.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. arXiv:1604.05529.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In ACL.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks.
arXiv:1705.08142.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to German. In
SIGDAT.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In ACL-
HLT.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Charles Sutton, Michael Sindelar, and Andrew McCal-
lum. 2006. Reducing weight undertraining in struc-
tured discriminative learning. In NAACL.
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