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Abstract

During the last decade, the applications
of signal processing have drastically im-
proved with deep learning. However ar-
eas of affecting computing such as emo-
tional speech synthesis or emotion recog-
nition from spoken language remains chal-
lenging. In this paper, we investigate the
use of a neural Automatic Speech Recog-
nition (ASR) as a feature extractor for
emotion recognition. We show that these
features outperform the eGeMAPS fea-
ture set to predict the valence and arousal
emotional dimensions, which means that
the audio-to-text mapping learned by the
ASR system contains information related
to the emotional dimensions in sponta-
neous speech. We also examine the re-
lationship between first layers (closer to
speech) and last layers (closer to text) of
the ASR and valence/arousal.

1 Introduction

With the advent of deep learning, areas of signal
processing have been drasctically improved. In the
field of speech synthesis, Wavenet (Van Den Oord
et al., 2016), a deep neural network for generat-
ing raw audio waveforms, outperforms all previ-
ous approaches in terms of naturalness. One of
the remaining challenges in speech synthesis is to
control its emotional dimension (happiness, sad-
ness, amusement, etc.). The work described here
is part of a larger project to control as accurately
as possible, the emotional state of a sentence being
synthesized. For this, we present here exploratory
work regarding the analysis of the relationship be-
tween the emotional states and the modalities used
to express them in speech.

Indeed one of the main problems to develop

48

such a system is the amount of good quality data
(naturalistic emotional speech of synthesis qual-
ity, i.e. containing no noise of any sorts). This
is why we are considering solutions such as syn-
thesis by analysis and transfer learning (Pan and
Yang, 2010).

Arousal and valence (Russell, 1980) are among
the most, if not the most used dimensions for
quantizing emotions. Valence represents the posi-
tivity of the emotion whereas arousal represents its
activation. Since they represent emotional states,
these dimensions are linked to several modalities
that we use to express emotions (audio, text, facial
expressions, etc.).

It has recently been shown that for emotion
recognition, deep learning based systems learn
features that outperform handcrafted features (Tri-
georgis et al., 2016) (Martinez et al., 2013) (Kim
et al., 2017a,b). The use of context and different
modalities has also been studied with deep learn-
ing models. Poria et al. (2017) focus on the con-
textual information among utterances in a video
while Zadeh et al. (2017, 2018) develop specific
architectures to fuse information coming from dif-
ferent modalities.

In this work, with the goal to study the re-
lationship between valence/arousal, and differ-
ent modalities, we propose to use the internal
representation of a speech-to-text system. An
Automatic Speech Recognition (ASR) system or
speech-to-text system, learns a mapping between
two modalities: an audio speech signal and its
corresponding transcription. We hypothesize that
such a system must also be learning representa-
tions of emotional expressions since these are con-
tained intrinsically in both speech (variation or the
pitch, the energy, etc.) and text (semantic of the
words).

In fact, we show here that the activations of cer-
tain neurons in an ASR system, are useful to esti-
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mate the arousal and valence dimensions of an au-
dio speech signal. In other words, transfer learning
is leveraged by using features learned for an auto-
matic speech recognition (ASR) task to estimate
valence and arousal. The advantage of our method
is that it allows combining the use of large datasets
of speech with transcriptions with limited datasets
annotated in emotional dimensions.

An example of transfer learning is the work of
Radford et al. (2017). They trained a multiplica-
tive LTSM (Krause et al., 2016) to predict next
character based on the previous ones to design a
text generator system. The dataset used to train
their model was the Amazon review dataset pre-
sented in McAuley et al. (2015). Then, they used
the representation learned by the model to pre-
dict sentiment also available in the dataset, and
achieved state of the art prediction.

In this paper, we show that the activations of
a deep learning-based ASR system trained on a
large database can be used as features for the esti-
mation of arousal and valence values. The features
would therefore be extracted from both the audio
and text modalities which the ASR system learned
to map.

2 ASR-based Features for Emotion
Prediction Via Regression

Our goal is to study the relationship between
valence/arousal, and audio/text modalities thanks
to an ASR system. The main idea is that the
ASR system that models the mapping between
audio and text might learn a representation of
emotional expression. So, for our analyses, we
use an ASR system as a feature extractor which
feeds a linear regression algorithm to estimate the
arousal/valence values. This section describes the
whole system. First we present the ASR system
used as a feature extractor. We then briefly present
the data used and present first results on the data
analysis.

2.1 ASR system

The ASR system used is implemented in (Namju
and Kyubyong, 2016) and pre-trained on the
VCTK dataset (Veaux et al., 2017) containing 44
hours of speech uttered by 109 native speakers of
English.

Its architecture consists of a dilated convolution
of blocks. Each block is a gated constitutional unit
(GCU) with a skip (residual) connection. In other
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words a Wavenet-like architecture (Van Den Oord
etal., 2016). There are 15 layers and 128 GCUs in
each layer: 1920 GCUs in total.

To lighten the computational cost, the audio sig-
nal is compressed in 20 Mel-Frequency Cepstral
Coefficients (MFCCs) and then fed into the sys-
tem.

2.2 Dataset Used
IEMOCAP Dataset

The ”interactive emotional dyadic motion cap-
ture database” (IEMOCAP) dataset (Busso et al.,
2008) is used in this paper. It consists of audio-
visual recordings of 5 sessions of dialogues be-
tween male and female subjects. In total it con-
tains 10 speakers and a total of 12 hours of data.
The data is segmented in utterances. Each utter-
ance is transcribed and annotated by category of
emotions (Ekman, 1992) and a value for emotional
dimensions (Russell, 1980) (valence, arousal and
dominance) between 1 and 5 representing the di-
mension’s intensity.

In this work, we only use the audio and text
modalities as well as the valence and arousal an-
notations.

Data Analysis and Neural Features

We investigate the relationship between the activa-
tion output of the ASR-based system’s GCUs and
the valence/arousal values by studying the corre-
lations between them. For every utterance and for
each speaker of the IEMOCAP dataset, we com-
pute the mean activation of the GCUs of the ASR.
The Pearson correlation coefficient is then calcu-
lated between the mean activation outputs and the
values of valence/arousal of all utterances of the
speaker. In the rest of the paper, we will refer to
the mean activation of the GCUs as neural fea-
tures. As an example, the results concerning the
female speaker of session 2 is summarized in a
heat map represented in Figure 1

Each row of the heat map corresponds to a layer
of GCUs. The color is mapped with the Pearson
correlation coefficient value.

One can see that correlations exist for both
arousal and valence. This suggests that the ASR-
based system learns a certain representation of the
emotional dimensions.

2.3 Structure of the system

The system is illustrated in Figure 2. As previ-
ously mentioned, the ASR system is used as a fea-
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Figure 1: Pearson correlation coefficient between
the neural features and valence (up) and arousal
(down) - Female speaker of session 2
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Figure 2: Block diagram of the system

ture extractor. First we compute the 20 MFCCs
of the utterances of the IEMOCAP dataset with li-
brosa python library (McFee et al., 2015). These
are passed through the ASR to compute the corre-
sponding neural features.

A feature selection is applied on the neural fea-
tures to keep 100 among the 1920 features for
dimensionality reduction purpose. The selection
is done using the scikit-learn python library (Pe-
dregosa et al., 2011) with the Fisher score.

Finally a linear regression is trained to estimate
the valence/arousal values from the neural features
using the IEMOCAP data. The linear regression
is done using scikit-learn. The training is done
by minimizing the Mean Squared Error (MSE) be-
tween predictions and labels.

3 Experiments and Results

In this section, we detail the experiments that we
carried out. The first one is the evaluation of the
neural features in terms of MSE and its compari-
son with a linear regression of the eGeMAPS fea-
ture set (Eyben et al., 2016). In the second one, we
investigate the relationship between the audio and
text and modalities and the emotional dimensions.

3.1 First experiment: Linear regression

In this first experiment, we investigate the perfor-
mance of a linear regression to predict arousal and
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valence using the neural features. We compare this
with a linear regression using the eGeMAPS fea-
ture set.

The eGeMAPS feature set is a selection of
acoustic features that provide a common baseline
for evaluation in researches to avoid differences
of feature set and implementations. Indeed, they
also provide their implementation with openS-
MILE toolkit (Eyben et al., 2010) that we used in
this work.

The features were selected based on their abil-
ity to represent affective physiological nuances in
voice production, their proven performance in for-
mer research work as well as the possibility to ex-
tract them automatically, and their theoretical sig-
nificance.

The result of this selection is a set of 18
Low-level descriptors (LLDs) related to fre-
quency (pitch, formants etc.), energy (loudness,
Harmonics-to-Noise Ratio, etc.) and spectral bal-
ance (spectral slopes, ratios between formant ener-
gies, etc.). Then several functionals such as stan-
dard deviation and mean are applied to these LLDs
to have the final features.

The results obtained from the linear regression
in terms of MSE are compared to the annotations
for each of the arousal and valence values (be-
tween 1 and 5) in Table 1.

Arousal Valence
Mean | Variance | Mean | Variance

Neural features | 0.259 0.020 0.660 0.118
eGeMAPS set | 0.267 0.034 0.697 0.135

Table 1: MSE on the prediction of valence and
arousal.

We perform a leave-one-speaker-out evaluation
scheme with both feature sets for cross-validation.
In other words, each validation set in constituted
with the utterances corresponding to one speaker
and the corresponding training set with the other
speakers. We train a model with each training set
and evaluate it on the validation set in terms of
MSE. The table contains the mean and standard
deviation of the MSEs.

It is clear from this table that the neural fea-
tures outperform the eGeMAPS in this experi-
ment. This confirms the fact that the ASR system
learns representations of emotional dimensions in
spontaneous speech.



3.2 Second experiment: Influence of
modalities

During the data exploration, we noticed that, for
some speakers, the layers closer to the speech in-
put were more correlated to arousal and the ones
closer to the text output to valence. An example
is shown in Figure 3. We present, in this section,
preliminary studies regarding this matter.
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Figure 3: Pearson correlation coefficient between
the neural features and valence (up) and arousal
(down) - Female speaker of session 1

In order to analyze this phenomenon as pre-
cisely as possible, we only considered the utter-
ances from the IEMOCAP database for which the
valence/arousal annotators were consistent with
each other, leaving us with 7532 utterances in total
instead of 10039.

Then we performed linear regression with 4 dif-
ferent sets of feature to study their influence. For
the first set, we select the 100 best features among
the 3 first layers of the neural ASR in terms of
Fisher score using scikit-learn. For the second set,
we apply the same selection to the 3 last layers.
The third set selection is applied among all neural
features. The last set is the eGeMAPS feature set.

The results are summarized in Figure 2. As
expected, the results show, that for the speakers
considered, the layers closer to the audio modal-
ity outperform the ones closer to the text modality
in the ASR architecture for arousal prediction and
vice versa for the valence prediction. On this we
build a hypothesis that the arousal-related features
learned are more related to the audio modality than
the text and vice versa for the valence-related fea-
tures. This hypothesis will be further explored in
future work.

4 Conclusions and Future work

In this paper, we show that features learned
by a deep learning-based system trained for
the Automatic Speech Recognition task can be
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Arousal Valence
Mean | Variance | Mean | Variance
First layers 0.325 0.069 0.714 0.114
Last layers 0.357 0.038 0.661 0.089
All 0.296 0.044 0.621 0.099
eGeMAPS set | 0.328 0.064 0.683 0.124

Table 2: Means and variances of the MSE on the
prediction of valence and arousal.

used for emotion recognition and outperform the
eGeMAPS feature set, the state of the art hand-
crafted features for emotion recognition. Then
we investigate the correlation of the emotional di-
mensions arousal and valence with the modalities
of audio and text of the speech. We show that
for some speakers, arousal is more correlated to
neural features extracted from layers closer to the
speech modality and valence to the ones closer to
the text modality.

To improve the system, we plan to perform an
end-to-end training including the average opera-
tion. Another avenue to explore is to replace the
average over time by a max-pooling over time
which according to Aldeneh and Provost (2017)
select the frames that are emotionally salient.

Then an analysis of the underlying activation
evolutions could be done to see if it is possible
to extract a frame-by-frame description of valence
and arousal without having to annotate a database
frame-by-frame.

Concerning the second experiment, we intend to
investigate why these correlation patterns are only
visible for some speakers and not others and the
relationship between the arousal/valence and au-
dio/text. We thereby hope to better understand the
way multidimensional representations of emotions
can be used to control the expressiveness in syn-
thesized speech.
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