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Abstract

Current multimodal sentiment analysis
frames sentiment score prediction as a
general Machine Learning task. How-
ever, what the sentiment score actually
represents has often been overlooked. As
a measurement of opinions and affective
states, a sentiment score generally con-
sists of two aspects: polarity and intensity.
We decompose sentiment scores into these
two aspects and study how they are con-
veyed through individual modalities and
combined multimodal models in a natu-
ralistic monologue setting. In particular,
we build unimodal and multimodal multi-
task learning models with sentiment score
prediction as the main task and polarity
and/or intensity classification as the auxil-
iary tasks. Our experiments show that sen-
timent analysis benefits from multi-task
learning, and individual modalities differ
when conveying the polarity and intensity
aspects of sentiment.

1 Introduction

Computational analysis of human multimodal lan-
guage is a growing research area in Natural Lan-
guage Processing (NLP). One important type of
information communicated through human multi-
modal language is sentiment. Current NLP stud-
ies often define sentiments using scores on a scale,
e.g., a 5-point Likert scale representing senti-
ments from strongly negative to strongly positive.
Previous work on multimodal sentiment analysis
has focused on identifying effective approaches
for sentiment score prediction (e.g., Zadeh et al.
(2018b)). However, in these studies sentiment
score prediction is typically represented as a re-
gression or classification task, without taking into
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account what the sentiment score means. As
a measurement of human opinions and affective
states, a sentiment score can often be decomposed
into two aspects: the polarity and intensity of the
sentiment. In this work, we study how individ-
ual modalities and multimodal information convey
these two aspects of sentiment.

More specifically, we conduct experiments on
the Carnegie Mellon University Multimodal Opin-
ion Sentiment Intensity (CMU-MOSI) database
(Zadeh et al., 2016). The CMU-MOSI database
is a widely used benchmark database for mul-
timodal sentiment analysis. It contains natural-
istic monologues expressing opinions on various
subjects. Sentiments are annotated as continu-
ous scores for each opinion segment in the CMU-
MOSI database, and data were collected over the
vocal, visual, and verbal modalities. We build uni-
modal and multimodal multi-task learning models
with sentiment score regression as the main task,
and polarity and/or intensity classification as the
auxiliary tasks. Our main research questions are:

1. Does sentiment score prediction benefit from

multi-task learning?

. Do individual modalities convey the polarity
and intensity of sentiment differently?

. Does multi-task learning influence unimodal
and multimodal sentiment analysis models in

different ways?

Our work contributes to our current understand-
ing of the intra-modal and inter-modal dynamics
of how sentiments are communicated in human
multimodal language. Moreover, our study pro-
vides detailed analysis on how multi-task learning
and modality fusion influences sentiment analysis.

2 Background

Sentiment is an important type of information con-
veyed in human language. Previous sentiment
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analysis studies in the field of NLP have mostly
been focused on the verbal modality (i.e., text).
For example, predicting the sentiment of Twit-
ter texts (Kouloumpis et al., 2011) or news ar-
ticles (Balahur et al., 2013). However, human
language is multimodal in, for instance, face-to-
face communication and online multimedia opin-
ion sharing. Understanding natural language used
in such scenarios is especially important for NLP
applications in Human-Computer/Robot Interac-
tion. Thus, in recent years there has been grow-
ing interest in multimodal sentiment analysis. The
three most widely studied modalities in current
multimodal sentiment analysis research are: vocal
(e.g., speech acoustics), visual (e.g., facial expres-
sions), and verbal (e.g., lexical content). These
are sometimes referred to as “the three Vs” of
communication (Mehrabian et al., 1971). Mul-
timodal sentiment analysis research focuses on
understanding how an individual modality con-
veys sentiment information (intra-modal dynam-
ics), and how they interact with each other (inter-
modal dynamics). It is a challenging research area
and state-of-the-art performance of automatic sen-
timent prediction has room for improvement com-
pared to human performance (Zadeh et al., 2018a).

While multimodal approaches to sentiment
analysis are relatively new in NLP, multimodal
emotion recognition has long been a focus of Af-
fective Computing. For example, De Silva and
Ng (2000) combined facial expressions and speech
acoustics to predict the Big-6 emotion categories
(Ekman, 1992). Emotions and sentiments are
closely related concepts in Psychology and Cog-
nitive Science research, and are often used in-
terchangeably. Munezero et al. (2014) identi-
fied the main differences between sentiments and
emotions to be that sentiments are more stable
and dispositional than emotions, and sentiments
are formed and directed toward a specific ob-
ject. However, when adopting the cognitive def-
inition of emotions which connects emotions to
stimuli in the environment (Ortony et al., 1990),
the boundary between emotions and sentiments
blurs. In particular, the circumplex model of emo-
tions proposed by Russell (1980) describes emo-
tions with two dimensions: Arousal which rep-
resents the level of excitement (active/inactive),
and Valence which represents the level of lik-
ing (positive/negative). In many sentiment anal-
ysis studies, sentiments are defined using Likert
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scales with varying numbers of steps. For ex-
ample, the Stanford Sentiment Treebank (Socher
etal., 2013) used a 7-point Likert scale to annotate
sentiments. Such sentiment annotation schemes
have two aspects: polarity (positive/negative val-
ues) and intensity (steps within the positive or neg-
ative range of values). This similarity suggests
connections between emotions defined in terms of
Valence and Arousal, and sentiments defined with
polarity and intensity, as shown in Table 1. How-
ever, while previous work on multimodal emo-
tion recognition often predicts Arousal and Va-
lence separately, most previous work on multi-
modal sentiment analysis generally predicts the
sentiment score as a single number. Thus, we are
motivated to study how the polarity and intensity
aspects of sentiments are each conveyed.

Aspect of the affect | Activeness | Liking
Emotion as by Arousal | Valence
Russell (1980)

Sentiment on Intensity | Polarity
a Likert scale

Table 1: Similarity between circumplex model of
emotion and Likert scale based sentiment.

In order to decompose sentiment scores into po-
larity and intensity and study how they are con-
veyed through different modalities, we include po-
larity and/or intensity classification as auxiliary
tasks to sentiment score prediction with multi-task
learning. One problem with Machine Learning
approaches for Affective Computing is model ro-
bustness. In multi-task learning, the model shares
representations between the main task and auxil-
iary tasks related to the main task, often enabling
the model to generalize better on the main task
(Ruder, 2017). Multiple auxiliary tasks have been
used in previous sentiment analysis and emotion
recognition studies. For example, Xia and Liu
(2017) used dimensional emotion regression as
an auxiliary task for categorical emotion classi-
fication, while Chen et al. (2017) used sentence
type classification (number of opinion targets ex-
pressed in a sentence) as an auxiliary task for ver-
bal sentiment analysis. To the best of our knowl-
edge, there has been no previous work applying
multi-task learning to the CMU-MOSI database.

In addition to how individual modalities convey
sentiment, another interesting topic in multimodal
sentiment analysis is how to combine information



from multiple modalities. There are three main
types of modality fusion strategies in current mul-
timodal Machine Learning research (BaltruSaitis
etal., 2018): early fusion which combines features
from different modalities, late fusion which com-
bines outputs of unimodal models, and hybrid fu-
sion which exploits the advantages of both early
and late fusion. We will study the performance of
these different modality fusion strategies for mul-
timodal sentiment analysis.

3 Methodology

3.1 The CMU-MOSI Database

The CMU-MOSI database contains 93 YouTube
opinion videos from 89 distinct speakers (Zadeh
et al., 2016). The videos are monologues on var-
ious topics recorded with various setups, lasting
from 2 to 5 minutes. 2199 opinion segments
were manually identified from the videos with
an average length of 4.2 seconds (approximately
154 minutes in total). An opinion segment is
the expression of opinion on a distinct subject,
and can be part of a spoken utterance or consist
of several consecutive utterances. Zadeh et al.
(2016) collected sentiment score annotations of
the opinion segments using Amazon Mechanical
Turk and each video clip was annotated by five
workers. For each opinion segment the sentiment
scores are annotated on a 7-point Likert scale,
i.e., strongly negative (-3), negative (-2), weakly
negative (—1), neutral (0), weakly positive (+1),
positive (+2), strongly positive (+3). The gold-
standard sentiment score annotations provided are
the average of all five workers.

Previous work on the CMU-MOSI database ex-
plored various approaches to improving perfor-
mance of sentiment score prediction (e.g., Zadeh
et al. (2018b)). The target sentiment annotations
can be continuous sentiment scores or discrete
sentiment classes (binary, 5-class, or 7-class senti-
ment classes). The Tensor Fusion Network model
of Zadeh et al. (2017) achieved the best perfor-
mance for continuous sentiment score regression
on the CMU-MOSI database using features from
all three modalities. The Pearson’s correlation co-
efficient between the automatic predictions of their
model and the gold-standard sentiment score an-
notations reached 0.70. In this work, we follow
the parameter settings and features used by Zadeh
et al. (2017) when predicting the sentiment scores.
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3.2 Multimodal Sentiment Analysis with
Multi-Task Learning

In this study, we apply multi-task learning to sen-
timent analysis using the CMU-MOSI database.
We consider predicting the gold-standard senti-
ment scores as the main task. Thus, the single-
task learning model is a regression model predict-
ing the sentiment score .S, of an opinion segment
o, which has a value within range [-3,+3]. To
perform multi-task learning, for each opinion seg-
ment, we transform the gold-standard sentiment
score .S, into binary polarity class P, and inten-
sity class I,:

Positi if S, >0
P, - osi 1\./e, 1 0 > )
Negative, if S, <0
Strong,  if [S,| > 2.5
Medium, if 1.5 < |S,| < 2.5
I, = . 2
Weak, if 0.5 <|S,| < 1.5
Neutral, if |S,| < 0.5

Unlike previous studies performing a 5-class
or 7-class classification experiment for sentiment
analysis, our definition of intensity classes uses the
absolute sentiment scores, thus separating the po-
larity and intensity information. For example, an
opinion segment o; with S,, = +3.0 will have P,,
= Positive and I,, = Strong, while an opinion seg-
ment o with S, = -2.75 will have P,, = Negative
and I, = Strong. Note that here we group the sen-
timent scores into discrete intensity classes. In the
future we plan to study the gain of preserving the
ordinal information between the intensity classes.

For each modality or fusion strategy we build
four models: single-task sentiment regression
model, bi-task sentiment regression model with
polarity classification as the auxiliary task, bi-task
sentiment regression model with intensity classi-
fication as the auxiliary task, and tri-task senti-
ment regression model with both polarity and in-
tensity classification as the auxiliary tasks. In the
bi-task and tri-task models, the main task loss is
assigned a weight of 1.0, while the auxiliary task
losses are assigned a weight of 0.5. Structures
of the single-task and multi-task learning models
only differ at the output layer: for sentiment score
regression the output is a single node with tanh ac-
tivation; for polarity classification the output is a
single node with sigmoid activation; for intensity



classification the output is 4 nodes with softmax
activation. The main task uses mean absolute er-
ror as the loss function, while polarity classifica-
tion uses binary cross-entropy as the loss function,
and intensity classification uses categorical cross-
entropy as the loss function. Following state-of-
the-art on the CMU-MOSI database (Zadeh et al.,
2017), during training we used Adam as the opti-
mization function with a learning rate of 0.0005.
We use the CMU Multimodal Data Software De-
velopment Kit (SDK) (Zadeh et al., 2018a) to
load and pre-process the CMU-MOSI database,
which splits the 2199 opinion segments into train-
ing (1283 segments), validation (229 segments),
and test (686 segments) sets.! We implement the
sentiment analysis models using the Keras deep
learning library (Chollet et al., 2015).

3.3 Multimodal Features

For the vocal modality, we use the COVAREP fea-
ture set provided by the SDK. These are 74 vocal
features including 12 Mel-frequency cepstral co-
efficients, pitch tracking and voiced/unvoiced seg-
menting features, glottal source parameters, peak
slope parameters, and maxima dispersion quo-
tients. The vocal features are extracted from the
audio recordings at a sampling rate of 100Hz. For
the visual modality, we use the FACET feature set
provided by the SDK. These are 46 visual features
including facial indicators of 9 types of emotion
(anger, contempt, disgust, fear, joy, sadness, sur-
prise, frustration, and confusion) and movements
of 20 facial action units. The visual features are
extracted from the speaker’s facial region in the
video recordings at a sampling rate of 30Hz. Fol-
lowing Zadeh et al. (2017), for the vocal and vi-
sual unimodal models, we apply a drop-out rate of
0.2 to the features and build a neural network with
three hidden layers of 32 ReLU activation units, as
shown in Figure 1.
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Figure 1: Visual/vocal unimodal tri-task model

For the verbal modality, we use the word em-

'Segment 13 of video 8qrpnFRGt2A is partially missing
and thus removed for the experiments.
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bedding features provided by the SDK, which are
300-dimensional GloVe word vectors. There are
26,295 words in total (3,107 unique words) in the
opinion segments of the CMU-MOSI database.
Following Zadeh et al. (2017), for the verbal uni-
modal model we build a neural network with one
layer of 128 Long Short-Term Memory (LSTM)
units and one layer of 64 ReLLU activation units, as
shown in Figure 2. Previous work has found that
context information is important for multimodal
sentiment analysis, and the use of LSTM allows
us to include history (Poria et al., 2017).

128 LSTM 64 ReLU

Sentiment
Regression

Word Vector
Polarity
Classification
OZ Intensity
Classification

Figure 2: Verbal unimodal tri-task model

Note that the visual and vocal features are ex-
tracted at the frame level, while the verbal features
are extracted at the word level. Before conduct-
ing all unimodal and multimodal experiments, we
aligned all the features to the word level using the
SDK. This down-samples the visual and vocal fea-
tures to the word level by computing the averaged
feature vectors for all frames within a word.

3.4 Modality Fusion Strategies

We test four fusion strategies here: Early Fusion
(EF), Tensor Fusion Network (TFN), Late Fusion
(LF), and Hierarchical Fusion (HF). EF and LF are
the most widely used fusion strategies in multi-
modal recognition studies and were shown to be
effective for multimodal sentiment analysis (Po-
ria et al., 2015). TFN achieved state-of-the-art
performance on the CMU-MOSI database (Zadeh
et al., 2017). HF is a form of hybrid fusion strat-
egy shown to be effective for multimodal emotion
recognition (Tian et al., 2016).

The structure of the EF model is shown in Fig-
ure 3. The feature vectors are simply concatenated
in the EF model. A drop-out rate of 0.2 is applied
to the combined feature vector. We then stack one
layer of 128 LSTM units and three layers of 32
ReLU units with an L2 regularizer weight of 0.01
on top of the multimodal inputs. To compare per-
formance of the fusion strategies, this same struc-
ture is applied to the multimodal inputs in all mul-
timodal models. In the TFN model, we compute



the Cartesian products (shown in Figure 4) of the
unimodal model top layers as the multimodal in-
puts. Unlike Zadeh et al. (2017), we did not add
the extra constant dimension with value 1 when
computing the 3-fold Cartesian space in order to
reduce the dimensionality of the multimodal in-
put. In the LF model, as shown in Figure 5, we
concatenate the unimodal model top layers as the
multimodal inputs. In the HF model, unimodal
information is used in a hierarchy where the top
layer of the lower unimodal model is concatenated
with the input layer of the higher unimodal model,
as shown in Figure 6. We use the vocal modality at
the bottom of the hierarchy while using the verbal
modality at the top in HF fusion. This is because
in previous studies (e.g., Zadeh et al. (2018a)) the
verbal modality was shown to be the most effec-
tive for unimodal sentiment analysis, while the vo-
cal modality was shown to be the least effective.

128 LSTM 32 ReLU 32 ReLU 32 ReLU

Sentiment
Regression
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Classification
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Figure 3: Structure of EF tri-task model
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Figure 4: Fusion strategy of the TFN model
(Zadeh et al., 2017)

4 Experiments and Results

Here we report our sentiment score prediction ex-
periments. In Tables 2 and 3, “S” is the single-
task learning model; “S+P” is the bi-task learn-
ing model with polarity classification as the aux-
illary task; “S+I” is the bi-task learning model
with intensity classification as the auxillary task;
“S+P+I” is the tri-task learning model. To evalu-
ate the performance of sentiment score prediction,
following previous work (Zadeh et al., 2018a), we

2Source code available at: https://github.com/
tianleimin/.
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Figure 5: Structure of LF tri-task model
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Figure 6: Structure of HF tri-task model

report both Pearson’s correlation coefficient (CC,
higher is better) and mean absolute error (MAE,
lower is better) between predictions and annota-
tions of sentiment scores on the test set. In each
row of Tables 2 and 3, the numbers in bold are
the best performance for each modality or fusion
strategy. To identify the significant differences in
results, we perform a two-sample Wilcoxon test on
the sentiment score predictions given by each pair
of models being compared and consider p < 0.05
as significant. We also include random prediction
as a baseline and the human performance reported
by Zadeh et al. (2017).

4.1 Unimodal Experiments

The results of unimodal sentiment prediction ex-
periments are shown in Table 2.3 The verbal mod-
els have the best performance here, which is con-
sistent with previous sentiment analysis studies
on multiple databases (e.g., Zadeh et al. (2018a)).
This suggests that lexical information remains the
most effective for sentiment analysis. On each
modality, the best performance is achieved by
a multi-task learning model. This answers our
first research question and suggests that sentiment
analysis can benefit from multi-task learning.

3All unimodal models have significantly different per-
formance. p = 0.009 for S+P and S+P+I Visual models,
p << 0.001 for Visual and Vocal S+I models.
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In multi-task learning, the main task gains addi-
tional information from the auxillary tasks. Com-
pared to the S model, the S+P model has increased
focus on the polarity of sentiment, while the S+I
model has increased focus on the intensity of sen-
timent. On the verbal modality, the S+P model
achieved the best performance, while on the vi-
sual modality the S+I model achieved the best per-
formance. This suggests that the verbal modal-
ity is weaker at communicating the polarity of
sentiment. Thus, verbal sentiment analysis ben-
efits more from including additional information
on polarity. On the contrary, the visual modal-
ity is weaker at communicating the intensity of
sentiment. Thus, visual sentiment analysis ben-
efits more from including additional information
on intensity. For the vocal modality, the S+P+I
model achieved the best performance, and the S+P
model yielded improved performance over that of
the S model. This suggests that the vocal modality
is weaker at communicating the polarity of senti-
ment. Thus, addressing our second research ques-
tion, the results suggest that individual modalities
differ when conveying each aspect of sentiment.

CcC S S+P S+I  S+P+I
Random - - - -
Vocal 0.125 0.149 0.119 0.153
Visual 0.092 0.109 0.116 0.106
Verbal 0.404 0455 0434 0417
Human | 0.820 - - -
MAE S S+P S+I  S+P+I
Random | 1.880 - - -
Vocal 1.456 1.471 1.444 1431
Visual 1442 1.439 1453 1.460
Verbal 1.196 1.156 1.181 1.206
Human | 0.710 - - -

Table 2: Unimodal sentiment analysis results on
the CMU-MOSI test set. Numbers in bold are the
best results on each modality.

4.2 Multimodal Experiments

The results of the multimodal experi-
ments are shown in Table 3. We find that
EF>HF>TFN>LE* The reason that the EF
model yields the best performance may be that it

“Performance of multimodal models are significantly dif-
ferent, except that the HF S and the TFN S+P model have
p = 0.287. p = 0.001 for EF S+P+I and HF S, p = 0.017
for TEN S+P and LF S.
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is the least complex. This is shown to be beneficial
for the small CMU-MOSI database (Poria et al.,
2015). Unlike Zadeh et al. (2017), here the EF
model outperforms the TFN model. However,
the TFN model achieved the best performance on
the training and validation sets. This indicates
that performance of the TFN model may be
limited by over-fitting. Compared to the feature
concatenation used in EF, the Cartesian product
used in TFN results in higher dimensionality
of the multimodal input vector,” which in turn
increases the complexity of the model. Similarly,
the HF model has worse performance than the
EF model here, unlike in Tian et al. (2016). This
may be due to the HF model having the deepest
structure with the most hidden layers, which
increases its complexity.

The performance of unimodal and multimodal
models are significantly different. In general, the
multimodal models have better performance than
the unimodal models.® Unlike unimodal models,
multimodal models benefit less from multi-task
learning. In fact, the HF and LF models have bet-
ter performance using single-task learning. For
the TFN models, only the S+P model outperforms
the S model, although the improvement is not sig-
nificant.” For the EF models, multi-task learning
results in better performance.® The reason that
EF benefits from multi-task learning may be that
it combines modalities without bias and individ-
ual features have more influence on the EF model.
Thus, the benefit of multi-task learning is pre-
served in EF. However, the other fusion strategies
(TEN, LF, HF) attempt to compensate one modal-
ity with information from other modalities, i.e., re-
lying more on other modalities when one modal-
ity is weaker at predicting an aspect of sentiment.
In Section 4.1 we showed that each modality has
different weaknesses when conveying the polarity
or intensity aspect of sentiment. The multimodal
models are able to overcome such weaknesses by
modality fusion. Thus, multi-task learning does
not yield additional improvement in these models.
Our observations answer our third research ques-
tion: multi-task learning influences unimodal and

>Dimension of the EF input is 420, for TFN is 65,536.

SExcept that the LF models often have worse performance
than the verbal S+P model. p << 0.001 for TFN S+P and
verbal S+P, p = 0.017 for verbal S+P and LF S.

’p = 0.105 for S TFN and S+P TFN.

8» = 0.888 for S EF and S+P EF, p = 0.029 for S EF
and S+I EF, p = 0.009 for S EF and S+P+I EF.



multimodal sentiment analysis differently.

CcC S S+P S+I  S+P+I
Random - - - -
EF 0471 0472 0476 0.482
TFEN 0.448 0461 0446 0.429
LF 0454 0413 0428 0.428
HF 0.469 0424 0458 0.432
Human | 0.820 - - -
MAE S S+P S+I  S+P+I
Random | 1.880 - - -
EF 1.197 1.181 1.193 1.172
TFEN 1.186 1.181 1.178 1.205
LF 1.179 1.211 1.204 1.201
HF 1.155 1.211 1.164 1.187
Human | 0.710 - - -

Table 3: Multimodal sentiment analysis results on
the CMU-MOSI test set. Numbers in bold are the
best results for each fusion strategy in each row.

5 Discussion

Our unimodal experiments in Section 4.1 show
that unimodal sentiment analysis benefits signifi-
cantly from multi-task learning. As suggested by
Wilson (2008), polarity and intensity can be con-
veyed through different units of language. We can
use one word such as extremely to express inten-
sity, while the polarity of a word and the polar-
ity of the opinion segment the word is in may be
opposite. Our work supports a fine-grained sen-
timent analysis. By including polarity and inten-
sity classification as the auxiliary tasks, we illus-
trate that individual modalities differ when con-
veying sentiment. In particular, the visual modal-
ity is weaker at conveying the intensity aspect of
sentiment, while the vocal and verbal modalities
are weaker at conveying the polarity aspect of sen-
timent. In previous emotion recognition studies
under the circumplex model of emotions (Rus-
sell, 1980), it was found that the visual modality
is typically weaker at conveying the Arousal di-
mension of emotion, while the vocal modality is
typically weaker at conveying the Valence dimen-
sion of emotion (e.g., Nicolaou et al. (2011)). The
similarities between the performance of different
communication modalities on conveying emotion
dimensions and on conveying different aspects of
sentiment indicate a connection between emotion
dimensions and sentiment. The different behav-
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iors of unimodal models in conveying the polarity
and intensity aspects of sentiment also explain the
improved performance achieved by modality fu-
sion in Section 4.2 and in various previous stud-
ies. By decomposing sentiment scores into po-
larity and intensity, our work provides detailed
understanding on how individual modalities and
multimodal information convey these two aspects
of sentiment.

We are aware that performance of our senti-
ment analysis models leaves room for improve-
ment compared to state-of-the-art on the CMU-
MOSI database. One reason may be that we did
not perform pre-training in this study. In the fu-
ture, we plan to explore more advanced learning
techniques and models, such as a Dynamic Fu-
sion Graph (Zadeh et al., 2018b), to improve per-
formance. We also plan to perform case studies
to provide detailed analysis on how the unimodal
models benefit from multi-task learning, and how
individual modalities compensate each other in the
multimodal models.

6 Conclusions

In this work, we decouple Likert scale sentiment
scores into two aspects: polarity and intensity, and
study the influence of including polarity and/or
intensity classification as auxiliary tasks to senti-
ment score regression. Our experiments showed
that all unimodal models and some multimodal
models benefit from multi-task learning. Our uni-
modal experiments indicated that each modality
conveys different aspects of sentiment differently.
In addition, we observed similar behaviors be-
tween how individual modalities convey the po-
larity and intensity aspects of sentiments and how
they convey the Valence and Arousal emotion di-
mensions. Such connections between sentiments
and emotions encourage researchers to obtain an
integrated view of sentiment analysis and emotion
recognition. Our multimodal experiments showed
that unlike unimodal models, multimodal models
benefit less from multi-task learning. This sug-
gests that one reason that modality fusion yields
improved performance in sentiment analysis is its
ability to combine the different strengths of indi-
vidual modalities on conveying sentiments.

Note that we only conducted experiments on the
CMU-MOSI database. In the future, we plan to
expand our study to multiple databases. More-
over, we are interested in including databases col-



lected on modalities beyond the three Vs. For ex-
ample, gestures or physiological signals. We also
plan to perform sentiment analysis and emotion
recognition in a multi-task learning setting to fur-
ther explore the relationship between sentiments
and emotions.
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