GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic
Using Neural Networks

Mohammed Attia
Google Inc.
New York City
NY, 10011
attia@google.com

Younes Samih
Dept. of Computational Linguistics
Heinrich Heine University,
Diisseldorf, Germany
samih@phil.hhu.de

Wolfgang Maier
Independent Researcher
Tiibingen, Germany
wolfgang.maier@gmail.com

Abstract

This paper describes our system submis-
sion to the CALCS 2018 shared task
on named entity recognition on code-
switched data for the language variant pair
of Modern Standard Arabic and Egyp-
tian dialectal Arabic. We build a a Deep
Neural Network that combines word and
character-based representations in convo-
lutional and recurrent networks with a
CRF layer. The model is augmented
with stacked layers of enriched informa-
tion such pre-trained embeddings, Brown
clusters and named entity gazetteers. Our
system is ranked second among those par-
ticipating in the shared task achieving an
FB1 average of 70.09%.

1 Introduction

The CALCS 2018 shared task (Aguilar et al.,
2018) is about performing named entity recogni-
tion (NER) on Modern Standard Arabic (MSA)
- Egyptian Arabic (EGY) code-switched tweets.
Unlike previous shared tasks on code-switching,
the data provided contains no code-switching an-
notation. Only nine categories of named enti-
ties are annotated using BIO tagging. While this
makes the task a “pure” NER task, the difficulty
is to design a model which can cope with the
noise introduced by code-switching, challenging
old systems tailored around MSA.

NER is a well-studied sequence labeling prob-
lem. Earlier work has applied standard supervised
learning techniques to the problem, such as Hid-

98

den Markov Models (HMM) (Bikel et al., 1999),
Maximum-Entropy Model (ME) (Bender et al.,
2003; Curran and Clark, 2003; Finkel et al., 2005),
Support Vector Machines (SVM) (Takeuchi and
Collier, 2002), and Conditional Random Fields
(CRF) (McCallum and Li, 2003). Standard data
sets came from the English MUC-6 (Sundheim,
1995) and the multilingual CoNLL-02 (Tjong
Kim Sang, 2002) and 03 (Tjong Kim Sang and
De Meulder, 2003) shared tasks.

More recent work relies on neural networks. A
number of architecture variants have proven to be
effective (Huang et al., 2015; Lample et al., 2016;
Chiu and Nichols, 2016; Ma and Hovy, 2016;
Reimers and Gurevych, 2017). What they have
in common is that they use a bidirectional LSTM
(bi-LSTM) over vector representations of the input
words in order model their left and right contexts.
On top of the bi-LSTM, they use a CRF layer
to take the final tagging decisions. Other than a
softmax layer which would treat tagging decisions
independently, the CRF is able to model the lin-
ear dependencies between labels. This is essential
for NER, where for instance, B-LOCATION can-
not be followed by I-PERSON. The architectures
differ in their way of obtaining a vector represen-
tation for the input words. For instance, in Lam-
ple et al. (2016), each word embedding is obtained
as a concatenation of the output of a bidirectional
LSTM (bi-LSTM) over its characters and a pre-
trained word vector. Ma and Hovy (2016) use con-
volutions over character embeddings with max-
pooling for obtaining morphological features from
the character level, similar to Chiu and Nichols
(2016).
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Our system also relies on the bi-LSTM-CREF ar-
chitecture. As input representation, we use both
word embeddings and a character-level represen-
tation based on CNNs. Our system additionally
employs a Brown Cluster representation, oversam-
pling, and NE gazetteers.

The remainder of the paper is structured as fol-
lows in the following section, we provide a short
decription of the task and the data set. Sect. 3 de-
scribes our system in detail. Sect. 4 presents our
experiments, and Sect. 5 concludes the paper.

2 Task and Data Description

The shared task posed the problem of performing
named-entity recognition on code-switched data
given nine categories, namely PERSON, LOCA-
TION, ORGANIZATION, GROUP, TITLE, PROD-
UCT, EVENT, TIME, OTHER.

The training set contains 10,100 tweets and
204,286 tokens, with an average tweet length of
20.2 tokens and 91.5 characters. 11.3% of all to-
kens are labeled as named entities. The most fre-
quent category is PERSON with 4.3% of all to-
kens, followed by LOCATION (2.2%), GROUP and
ORGANIZATION (1.3% each), as well as TITLE
(1%). All other categories cover less than 1% of
all tokens each, the least frequent category being
OTHER (0.06%).

The validation set contains 1,122 tweets and
22,742 tokens, and exhibits similar average tweets
lengths, as well as a similar distribution of labels.

3 System Description

We used a DNN model which is mainly suited
for sequence tagging. It is a variant of the
bi-LSTM-CRF architecture proposed by Ma and
Hovy (2016); Lample et al. (2016); Huang et al.
(2015)." Tt combines a double representation of
the input words by using word embeddings and a
character-based representation (with CNNs). The
input sequence is processed with bi-LSTMs, and
the output layer is a linear chain CRF. The model
uses the following.

Word-level embeddings allow the learning algo-
rithms to use large unlabeled data to generalize be-
yond the seen training data. We explore randomly
initialized embeddings based on the seen training
data and pre-trained embedding.

'Our implementation is mostly inspired by the work of
Reimers and Gurevych (2017).
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We train our word embeddings using word2vec
(Mikolov et al., 2013) on a corpus we crawled
from the web with total size of 383,261,475
words, consisting of dialectal texts from Facebook
posts (8,241,244), Twitter tweets (2,813,016),
user comments on the news (95,241,480), and
MSA texts of news articles (from Al-Jazeera and
Al-Ahram) of 276,965,735 words.

Character-level CNNs have proven effective for
various NLP tasks due to their ability to extract
sub-word information (ex. prefixes or suffixes)
and to encode character-level representations of
words (Collobert et al., 2011; Chiu and Nichols,
2016; dos Santos and Guimaraes, 2015).

Bi-LSTM Recurrent neural networks (RNN)
are well suited for modeling sequential data,
achieving ground-breaking results in many NLP
tasks (e.g., machine translation).

Bi-LSTMs (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997) are capable of
learning long-term dependencies and maintaining
contextual features from both past and future
states while avoiding the vanishing/exploding
gradients problem. They consist of two separate
bidirectional hidden layers that feed forward to
the same output layer.

CRF is used jointly with bi-LSTMs to avoid
the output label independence assumptions of
bi-LSTMs and to impose sequence labeling
constraints as in Lample et al. (2016).

Brown clusters (BC) Brown clustering is an
unsupervised learning method where words are
grouped based on the contexts in which they
appear (Brown et al., 1992). The assumption is
that words that behave in similar ways tend to
appear in similar contexts and hence belong to
the same cluster. BCs can be learned from large
unlabeled texts and have been shown to improve
POS tagging (Owoputi et al., 2013; Stratos and
Collins, 2015). We test the effectiveness of using
Brown clusters in the context of named entity
recognition in a DNN model. We train BCs
on our crawled code-switched corpus of 380
million words (mentioned above) with 100 Brown
Clusters.

Named Entity Gazetteers We use a large collec-
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Figure 1: DNN Architecture.

tion of named entity gazetteers of 40,719 unique
names from Attia et al. (2010), who collected
named entities from the Arabic Wikipedia, and
Benajiba et al. (2007), who annotated a corpus as
part of a named entity recognition system.

The architecture of our model is shown in
Figure 1. For each word in the sequence, the
CNN computes the character-level representation
with character embeddings as inputs. Then the
character-level representation vector is concate-
nated with both word embeddings vector and
feature embedding vectors (Brown Clusters and
Gazetteers) to feed into the bi-LSTM layer. Fi-
nally, an affine transformation followed by a CRF
is applied over the hidden representation of the bi-
LSTM to obtain the probability distribution over
all the named entity labels. Training is performed
using stochastic gradient descent with momentum
of 0.9 and batch size equal to 150. We employ
dropout (Hinton et al., 2012) and early-stopping
(Caruana et al., 2000) (with patience of 35) to mit-
igate overfitting. We use the hyper-parameters de-
tailed in Table 1.

The only preprocessing operation we conducted
on the data was to convert it into Buckwalter
transliteration (a character-to-character mapping)
in order to avoid the complexity of dealing with
UTF-8 characters.
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Layer Hyper-Parameters ~ Value
window size 4
Characters CNN number of filters 40
Bi-LSTM state size 100
Dropout dropout rate 0.5
Word Emb. dimension 300
Characters Emb.  dimension 100
Clustering Emb.  dimension 100
Gazetteer Emb. dimension 2
batch size 150

Table 1: Parameter fine-tuning

4 Experiments

We conduct five experiments with different layers
stacked on top of each other, making use of word
embeddings, character representation, and other
features. The experiments are as follows:

Experiments f-score | f-score macro
Baseline 95.70 66.49
Word+Chars 96.06 69.60
Word+Chars 96.92 72.38
+Embed

Word+Chars 96.99 72.30
+Embed+BC

Word+Chars 96.92 73.05
+Embed+BC+0S

Word+Chars 97.33 77.97
+Embed+BC

+0OS+GZ

Results on - 70.09
Test set

Table 2: DNN experiments and Results

Baseline. We use word representations only
with randomly-initialized embeddings. It is to be
mentioned that the shared task baseline for the
test set is 62.71%.

Word+Chars. We add character representa-
tions in a one-dimensional CNN layer.

Word+Chars+Embed. We use pre-trained
embeddings for words trained on a corpus of about
380 million words (described above) consisting of
dialectal Egyptian and MSA data.

Word+Chars+Embed+BC. We add Brown
Clusters (BC) to the network.



Word+Chars+Embed+BC+0OS. We add
oversampling (OS) to the network. We conduct
oversampling by heuristically making 10-fold
repetitions of sentences containing minority
labels, in this case all classes other than the “O”
label.

Word+Chars+Embed+BC+GZ. We further
add a new layer for the named entity gazetteer
(G2).

Label Total | % of data | Accuracy %
O 20031 88.08 99.20
B-PER 705 3.10 92.34
I-PER 408 1.79 89.71
B-LOC 358 1.57 88.83
I-LOC 116 0.51 79.31
B-GROUP 191 0.84 81.68
I-GROUP 112 0.49 76.79
B-ORG 149 0.66 79.19
I-ORG 114 0.50 80.70
B-TITLE 115 0.51 69.57
I-TITLE 143 0.63 81.12
B-PROD 55 0.24 76.36
I-PROD 26 0.11 61.54
B-EVENT 69 0.30 43.48
I-EVENT 52 0.23 51.92
B-TIME 61 0.27 85.25
I-TIME 18 0.08 38.89
B-OTHER 17 0.07 82.35
I-OTHER 2 0.01 50.00

Table 3: Results breakdown on the validation set

The results in Table 2 are reported on the vali-
dation set (except for the last row), and they show
that the DNN model is incrementally improving
by adding more features and external resources.
The best result is obtained with the aggregation of
all features.

Table 3 shows a breakdown of our system per-
formance (in terms of accuracy) on the validation
set. It also shows the number of instances and
the ratio percentage for each label. As the table
shows, the category “other” accounts for 88% of
the entire data, while all other tags combined make
up the remaining 12% which shows an imbalance
in the representation of the other categories. Our
system performs best with ‘B-PER’, ‘I-PER’, ‘B-
LOC’ and ‘B-TIME’.

Our system is ranked second among those par-
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ticipating in the shared task achieving an FB1 av-
erage of 70.09% with the first scoring 71.62%,
which is a difference of about 1.5% absolute.

5 Conclusion

We have presented a description of our system par-
ticipating in the Shared Task on “Named Entity
Recognition on Code-switched Data”. We build
a deep neural network with multiple layers for ac-
commodating various features, such as pre-trained
word embeddings, Brown Clustering and named
entity gazetteers. We have not relied on any lin-
guistic rules, morphological analyzers or PoS tag-
gers. We also make the different layers as optional
plug-ins, which makes our system more adaptable
and scalable for languages that do not have similar
external resources.
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