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Abstract

In this paper, we detail our work
on comparing different word-level lan-
guage identification systems for code-
switched Hindi-English data and a stan-
dard Spanish-English dataset. In this
regard, we build a new code-switched
dataset for Hindi-English. To understand
the code-switching patterns in these lan-
guage pairs, we investigate different code-
switching metrics. We find that the CRF
model outperforms the neural network
based models by a margin of 2-5 percent-
age points for Spanish-English and 3-5
percentage points for Hindi-English.

1 Introduction

Code-switching occurs when a person switches
between two or more languages in a single
instance of spoken or written communication
(Gumperz, 1982; Myers-Scotton, 1997). Code-
switching instances are prevalent in modern in-
formal communications between multilingual in-
dividuals specially, in social media platforms such
as Facebook and Twitter. Given this prevalence
of code-switching, there is value in automatic pro-
cessing and understanding of such data. Language
identification at the word level is the first step
in computational modeling of code-switched data.
Language identification is important for a wide
variety of end user applications such as informa-
tion extraction systems, voice assistant interfaces,
machine translation, as well as for tools to assist
language assessment in bilingual children (Gupta
et al., 2014; Chandu et al., 2017; Roy et al., 2013).
Language detection, in addition, enables sociolin-
guistics and pragmatic studies of code-switching
behavior.

Code-switching in speech is well studied in

linguistics, psycholinguistic and sociolinguistics
(Sankoff, 1970; Lipski, 1978; Poplack, 1980;
Gumperz, 1982; Auer, 1984; Myers-Scotton,
1997, 2002). The alternation of languages across
sentence boundaries is known as code-switching
and the alternation within a sentence is known as
code-mixing. In this paper we will refer to both
instances as code-switching and differentiate be-
tween the types of code switching when neces-
sary. Table 1 shows examples of code-switching
for Hindi-English and Spanish-English.

Example 1
Good morning sirji, aaj ka weather kaisa hai?
(Good morning sir, How is the weather today?)
Example 2
Styling day trabajando con @username
vestuario para #ElFactorX y soy hoy chofer.
I will get you there in pieces im a Safe Driver.
(Styling day working with @username
wardrobe for #ElFactorX and today I am a driver.
I will get you there in pieces im a Safe Driver.)

Table 1: Example 1 shows code-switching be-
tween Hindi-English and Example 2 between
Spanish-English (Molina et al., 2016).

Word level language identification of code-
switched text is inherently difficult. First, a sin-
gle code-switched instance can have mixing at
the sentence or clause level, the word level, and
even at the sub-word level (e.g. sir-ji, chapathi-
s). Second, the typology of the languages involved
in switching and their inter-relatedness further in-
crease the task complexity. For example, a shared
Latin influence on Spanish and English results in
lexical relatedness (Smith, 2001; August et al.,
2002), making Spanish-English language identifi-
cation harder than Hindi-English. Third, in spite
of the fact that Hindi has a native script (De-
vanagari), most of the Hindi social media text is
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transliterated. Transliteration is conversion of a
text from one script to another. In the case of
Hindi, text is converted from native, Devanagari
to Roman script. Due to lack of standardization
in transliteration, a single Hindi word can have
multiple surface forms (e.g. Humara, Hamara,
Hamaaraa etc.). Some Hindi words can take the
same surface form as an English word. The words
’hi’ (an auxiliary verb), ’is’ (this), and ’us’ (that)
are some examples. Finally, the characteristics of
social media text such as non-standard spelling,
contractions, and not strictly adhering to the gram-
mar of the language adds to the list of challenges.

In this work, we make three contributions. First,
we build a new code-switched dataset for Hindi-
English (HIN-ENG) language pair from Facebook
public pages and Twitter. Second, we investi-
gate different code-switching metrics for Hindi-
English and a standard Spanish-English (SPA-
ENG) dataset. Third, we compare a traditional
machine learning model - conditional random field
(CRF), and two recurrent neural network (RNN)
based systems, for word-level language identifica-
tion of the above language pairs. In contrast to
the CRF model, the RNN-based systems do not in-
volve language specific resources or sophisticated
feature engineering. We test these models, first for
each of the language pairs individually, and then
for a corpus with both the language pairs com-
bined.

Among the language identification systems, the
CRF model outperforms both the RNN-based sys-
tems across language pairs. When both the lan-
guage pairs are combined, the result from the best
performing model (CRF) is 25% points higher
than the baseline system. The RNN-based mod-
els also give reasonable results.

2 Related Work

Over the last decade several researchers have ex-
plored word-level language identification for dif-
ferent language pairs and dialect varieties. The
FIRE shared task series - (Roy et al., 2013; Choud-
hury et al., 2014; Sequiera et al., 2015b) focuses
on language identification of code-mixed search
queries in English and Indian languages for in-
formation retrieval. We use a larger set of labels
compared to these tasks. The First and Second
Shared Task on Language Identification in Code-
Switched Data (Solorio et al., 2014; Molina et al.,
2016) show the necessity for automatic process-

ing of code-switched text and report comparison
of different language identification systems. The
best system from the second iteration of these
shared tasks uses a logistic regression model and
reports a token-level F1-score of 97.3% for SPA-
ENG. Our results are competitive with this score.
Das and Gambäck (2014) use a dictionary based
method and SVM model with various features for
Hindi-English and Bengali-English. Their system
achieves an F1-score of 79% for Hindi-English.
Barman et al. (2014) create a new dataset and
study code mixing between the three languages -
English, Hindi, and Bengali using CRF and SVM
models. In another work, Gella et al. (2014) build
a language detection system for synthetically cre-
ated code-mixed dataset for 28 languages. Similar
to some of the works in the above mentioned pa-
pers, we model the language detection task as a
sequence labeling problem and explore combina-
tions of several features using the CRF model, but
we use a larger set of labels. We obtain signif-
icantly higher performance for the Hindi-English
language pair than Das and Gambäck (2014).

Along with the traditional machine learning ap-
proach, some researchers have also used mod-
els based on artificial neural networks. Chang
and Lin (2014) use an RNN architecture with
pre-trained word2vec embeddings for SPA-ENG
and the Nepali-English datasets from the First
Shared Task on Language Identification in Code-
Switched Data. Samih et al. (2016) build an
LSTM based neural network architecture for SPA-
ENG and MSA-DA datasets from the Second
Shared Task on Language Identification in Code-
Switched Data. Their model combines word
and character representations initialized with pre-
trained word2vec embeddings. We replicate their
model with softmax output layer for SPA-ENG
and run similar experiments for HIN-ENG, as well
as with both the corpora combined. Our result for
SPA-ENG match that of Samih et al. (2016).

3 Data

We use the SPA-ENG dataset from the EMNLP
Code-Switching Workshop 2016. This data is col-
lected from Twitter, based on the geographical ar-
eas with strong presence of Spanish and English
bilingual speakers - California, Texas, Miami, and
New York (Solorio et al., 2014; Molina et al.,
2016). The labels used are summarized in Table
2. The hashtags are treated as a word and are la-
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Label Description HIN-ENG (%) SPA-ENG (%)
lang1 English words only 57.764 38.258
lang2 Hindi/Spanish words only 20.418 40.579

ne Proper names 6.582 1.935
other Symbols, usernames, emoticons 14.807 18.952
mixed Words partially in both the languages 0.04 0.018

ambiguous Can’t determine whether English or Hindi/Spanish 0.009 0.137
fw Words is not English neither Hindi/Spanish 0.369 0.01
unk Unrecognizable word 0.012 0.11

Table 2: A brief description of the labels and label distribution for HIN-ENG and SPA-ENG datasets.

beled accordingly.
Corpus Creation for Hindi-English. For the
HIN-ENG corpus, we consider Facebook pages
of prominent public figures from India. Hindi-
English bilingual users are highly active in these
pages (Bali et al., 2014). We crawl posts and their
comments from the Facebook public pages of var-
ious sports-persons, political figures, and movie
stars. We also crawl random tweets from geo-
graphical locations Mumbai and Delhi using the
Twitter API. From the crawled posts, we remove
the posts in native scripts, and remove duplicate
and promotional posts. We filter the posts con-
taining URLs and those with less than 3 words.

Language Pair Tweets Tokens Unique
Pair (Posts) Tokens (%)

SPA-ENG 25,130 294,261 35,153 (11.95)
HIN-ENG 7,421 146,722 23,998 (16.36)

Table 3: Corpus statistics for the language pairs.
Token ratio is the percentage of the total tokens
that are unique. A higher token ratio implies a
richer corpus vocabulary.

We follow EMNLP 2016 shared task annota-
tion guidelines and use a semi-automatic approach
to annotate the data. The labels are reviewed
and corrected with the help of in-lab annotators.
The inter-annotator agreement score over approx-
imately 4, 000 tokens is 0.935. A portion of
the Facebook dataset is annotated using the En-
glish lexicon and Hindi transliterated pairs.1,2 We
use pattern matching rules to label punctuations,
emoticons, and usernames. These labels are then
corrected manually for ne, fw, mixed, ambiguous,
and unk labels. We also make use of two exist-
ing datasets - Facebook dataset from ICON2016
POS tagging shared task and the dataset from (Se-

1http://wortschatz.uni-leipzig.de/en/download
2http://cse.iitkgp.ac.in/resgrp/cnerg/qa/fire13translit/

quiera et al., 2015a).3 We manually map the la-
bels of these data sets to labels in Table 2. We
train a character n-gram based CRF model using
the above mentioned three datasets (see Section
5.2) and predict the labels for all the posts crawled
from Facebook and the random tweets from Twit-
ter. From these, we identify the posts predicted as
code-switched, correct the labels where necessary,
and add them to the final dataset. The F1-weighted
score for this model is close to 96 percent.

4 Code-Switching Analysis

In this section we provide some descriptive statis-
tics about the corpora to understand the language
distribution and language-relatedness. Table 4
shows the language distribution at post (tweet)
level. The SPA-ENG dataset has a balanced dis-
tribution where as, in the HIN-ENG dataset ma-
jority of the instances are in English. The be-
low statistics show that both the datasets have a
good amount of code-switched instances to train
and test the language identification systems. Ta-

Language CS lang1 lang2 other
Pairs Instances

HIN-ENG 43.62 51.77 4.02 0.60
SPA-ENG 34.75 33.53 28.94 2.77

Table 4: Post-level language distribution in the
datasets. Column 5 corresponds to the instances
that do not have any words with language tags.
lang1: ENG, lang2: HIN/SPA.

ble 2 presents the label-wise token distribution for
the datasets. For HIN-ENG, majority of the words
(58%) are in English, 20% are in Hindi, and 7%
are named-entities. The SPA-ENG dataset in com-
parison has a balanced distribution of the two lan-
guages with 38% of the words in English, 41% in

3http://amitavadas.com/Code-Mixing.html
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Figure 1: Vocabulary overlap for labels lang1, lang2, and ne for HIN-ENG and SPAN-ENG.

Spanish, and 2% are named-entities. The higher
instances of the named-entities in the HIN-ENG
dataset is a result of the way the data is sourced.

Figure 1 shows the overlap between the to-
kens belonging to lang1, lang2, and ne. These
overlaps introduce ambiguity for the automatic la-
beling task. Around 2.5% of the Hindi words in
HIN-ENG share the same spelling as some En-
glish words because of transliteration of Hindi text
to Roman script. In comparison, there is a 6%
overlap between Spanish and English words in the
SPA-ENG dataset (e.g. no, a, final). This indi-
cates higher degree of lexical relatedness between
Spanish and English as compared to Hindi and En-
glish. The overlap between language words and
named-entities is due to words such as university
and united. These words can be part of names of
organizations, movie titles or song titles and can
also be used as language constructs in either of the
languages.

Figure 2: Plot of character n-grams overlap be-
tween the languages in the datasets, for n =
2, 3, 4, 5 and 6.

In another analysis, we explore the similarity
in character n-gram profiles of the languages in-
volved (Maharjan et al., 2015). A higher simi-

larity in the character n-grams increases the dif-
ficulty of the task. We generate character n-grams
of length 2 to 6 from the language vocabularies
of each corpora. We show the plot of the charac-
ter n-gram overlaps for HIN-ENG and SPA-ENG
in Figure 2. As expected, the overlap decreases
rapidly with increase in n-gram length. The SPA-
ENG n-gram overlap is higher than that of HIN-
ENG for all n-gram lengths. This trend is consis-
tent with the results in Figure 1. To further un-
derstand the complexity involved, for an n-gram
occurring in both the languages, we calculate the
probability of that n-gram being a part of an En-
glish word in the corpus. A probability closer to
50% indicates higher ambiguity in classifying that
n-gram. We find that a significant fraction (25%)
of these shared n-grams, averaged over all n-gram
lengths, appear in the range 40%-60%.

5 Code-Switching Metrics

The code-switching behavior can be different de-
pending on the medium of communication, con-
text of language use, topic, authors (or speakers),
and the languages being mixed among other fac-
tors. We compute 3 different metrics to under-
stand code-switching patterns in our datasets, as
well as to rationalize the performance of the lan-
guage identification models.
M-Index: Multilingual index is a word-count-
based measure that quantifies the inequality of the
language tags distribution in a corpus of at least
two languages (Barnett et al., 2000). Equation (1)
defines the M-Index as:

M − Index =
1−

∑
p2j

(k − 1)
∑

p2j
(1)

where k is the total number of languages and pj is
the total number of words in the language j over
the total number of words in the corpus. The value
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ranges between 0 and 1 where, a value of 0 corre-
sponds to a monolingual corpus and 1 corresponds
to a corpus with equal number of tokens from each
language.
Integration Index: Integration Index is the ap-
proximate probability that any given token in the
corpus is a switch point (Guzman et al., 2016;
Guzmán et al., 2017). Given a corpus composed
of tokens tagged by language {lj} where i ranges
from 1 to n−1, the size of the corpus. The I-index
is computed as follows:

I − Index =
1

n− 1

∑
1≤i=j−1≤n−1

S(li, lj) (2)

where S(li, lj) = 1 if li 6= lj and 0 otherwise. For
a corpus with n tokens, there are n − 1 possible
switch points. It quantifies the frequency of code-
switching in a corpus.
Code-Mixing Index: At the utterance level, this is
computed by finding the most frequent language
in the utterance and then counting the frequency of
the words belonging to all other languages present
(Gambäck and Das, 2014). It is calculated using:

CMI =

∑n
i=1(wi)−max(wi)

n− u
(3)

where
∑n

i=1(wi) is the sum over number of words
for all N languages in the utterance, max(wi) is
the highest number of words present from any lan-
guage, n is the total number of tokens, and u is the
number of language independent tokens. Here, we
consider the labels lang1, lang2, and fw as lan-
guage words and the rest as other. The range of
CMI value is [0, 100). If an utterance has language
independent tokens or only monolingual tokens,
then the corresponding CMI value is 0. A higher
value of CMI indicates higher level of mixing be-
tween the languages. CMI-all is an average over
all utterances in the corpus and CMI-mixed is an
average over only code-switched instances.

Language M-Index CMI-all CMI-Mixed I-Index
Pairs

HIN-ENG 0.582 8.564 22.229 0.070
SPA-ENG 0.998 7.685 22.114 0.058

Table 5: CS Metrics for the datasets.

SPA-ENG has higher M-Index (Table 5) value
indicating a balanced ratio of words from the
two languages. This is consistent with the dis-
tribution of language words in the datasets (Ta-
ble 2). The differences in CMI-all between

HIN-ENG and SPA-ENG is about 0.9 percentage
points and 0.1 percentage points for CMI-mixed.
The higher difference for CMI-all could be be-
cause of the higher percentage of code-switched
instances (9%) in HIN-ENG as compared to SPA-
ENG (Table 4). Considering CMI-mixed and
I-Index metrics together, it is evident that HIN-
ENG has more language mixing and higher num-
ber of code-switching points than SPA-ENG. This
is because HIN-ENG has more instances that have
multiple word insertions. In SPA-ENG, instances
with word insertion at more than one place in an
utterance are less frequent. We also observe that
a larger majority of code-switching happens be-
tween language words in HIN-ENG (76%) than in
SPA-ENG (69%). For example, a number of Hindi
word insertions are due to the use of the honorary
article ji with an address form (Sir/Madam). In
general, observing more code-switching in HIN-
ENG is due to the fact that code-switching be-
tween Hindi and English is very widespread in In-
dia (Parshad et al., 2016; Bali et al., 2014).

6 Language Identification Models

We provide below a brief description of each of
the models used.
CRF: Language identification is a sequence label-
ing task where the label of a token in a sequence
is correlated with the labels of its neighboring to-
kens. So we use CRF - a sequence labeling model
to capture the structure in the data. We explore dif-
ferent language independent features such as char-
acter n-grams, word unigram, morphological fea-
tures, affixes, and contextual information for the
language pairs. For each word, we generate char-
acter n-grams of length 1 to 5 and filter them based
on a minimum threshold frequency of 5. To cap-
ture the morphological information of the tokens,
we use binary features - is digit, is special charac-
ter, is all capital, is title case, begins with @ char-
acter, has accent character (for SPA-ENG only)
and has apostrophe.
We also use language dependent resources like
lexicons and monolingual parts-of-speech (POS)
taggers. For HIN-ENG, we use three different
lexicons - Leipzig corpus for English, FIRE 2013
transliterated Hindi word pairs, and lexically nor-
malized dictionary from Han et al. (2012) and
the output of Twitter POS tagger and CRF++
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based Hindi POS tagger.4,5 For SPA-ENG, we
use Leipzig corpus Spanish along with the other
two lexicons mentioned above and the output from
monolingual TreeTaggers for Spanish and En-
glish.6

Bidirectional LSTM: Long Short Term Memory
networks (LSTMs) (Hochreiter and Schmidhuber,
1997) are a variation of recurrent neural networks
(RNNs), that address the vanishing gradient issue
(Hochreiter, 1998) by extending RNNs with mem-
ory cells. A shortcoming of LSTM is that only the

Figure 3: Bidirectional LSTM Model.

previous history in a sequence can be utilized. In
a sequence labeling task like language identifica-
tion, it is helpful to use the future context given in
the sequence. Bidirectional LSTM (BLSTM) net-
works can access both the preceding and succeed-
ing contexts by involving two separate hidden lay-
ers. These networks can capture the long distance
relations in the sequence efficiently, in both di-
rections. We build an end-to-end sequence model
with a single BLSTM layer layer (Figure 3).
Word-Character LSTM: This model is a replica-
tion of the model proposed by Samih et al. (2016)
(Figure 4). The input layer in this model has word
and character embeddings. The latter are used to
capture morphological features of a word. We use
two LSTMs to learn fixed-dimensional represen-
tations from the embedding layers. At the out-
put layer, we apply a softmax over the concate-
nated word and character vectors to obtain the to-
ken label. Unlike the BLSTM model, here current
token and the neighboring tokens are considered
to predict the label for the current token. We re-
place the emoticons in the dataset with a place-

4http://www.cs.cmu.edu/ ark/TweetNLP/
5http://nltr.org/snltr-software/
6http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/

holder character to reduce the vocabulary size and
as a result reduce the dimension of character em-
beddings. This decreases the number of train-
able model parameters and thereby mitigates over-
fitting to some extent.

Figure 4: Word-Character LSTM Model. The in-
put layer of word-char LSTM is initialized with
fastText word embeddings.

7 Experiments and Results

For CRF, we run experiments with different com-
binations of hand-crafted features discussed in the
previous section. We run three different sets of
experiments- with no contextual information, and
with surrounding words of context window sizes 1
and 2. Table 6 and Table 7 shows results from
these experiments.

For the RNN-based systems, we use pre-trained
fastText word embeddings.7 We learn the embed-
dings using a large monolingual corpus for each of
the languages and a smaller code-switched corpus
for the language pairs. The rationale for using a
large monolingual data is that it is readily available
and that it can account for the different contexts in
which words appear in different languages - thus
providing an accurate separation between the lan-
guages. We train three separate sets of embed-
dings each for SPA-ENG, HIN-ENG, and SPA-
ENG + HIN-ENG. The embeddings for SPA-ENG
are trained by combining a portion of English Gi-
gaword corpus (Graff et al., 2003) and Spanish
Gigaword corpus (Graff, 2006), and a subset of
tweets from Samih et al. (2016). For HIN-ENG,
we combine a portion of English Gigaword cor-
pus, transliterated Hindi monolingual corpus, and
Facebook posts that contain code-switching. All

7https://fasttext.cc/
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Experiments Context-0 Context-1 Context-2
Baseline 85.02 - -
Word + 1 to 5 char
n-grams (1) 96.89 96.79 96.77
(1) + word form (2) 96.95 96.77 96.78
(2) + affixes (3) 96.96 96.84 96.84
(3) + lexicons (4) 97.07 97.03 97.12
(4) + POS tags 97.05 97.16 97.11
(4) + Univ POS tags 97.1 97.15 97.12

Table 6: Token-level F1-weighted score of the CRF model for different feature combinations for HIN-
ENG.

Experiments Context-0 Context-1 Context-2
Baseline 83.17 - -
Word + 1 to 5
char n-grams (1) 97.02 96.81 96.82
(1) + word form (2) 97.21 97.09 97.01
(2) + affixes (3) 97.17 97.07 97.06
(3) + lexicons (4) 97.31 97.19 97.16
(4) + POS tags 97.24 97.19 97.17
(4) + Univ POS tags 97.25 97.19 97.21

Table 7: Token-level F1-weighted score of the CRF model for different feature combinations for SPA-
ENG.

these corpora are used to train the embeddings for
SPA-ENG + HIN-ENG. This helps to capture the
word usage in the context of each language and
eliminates the ambiguity for the words that have
same surface form in multiple languages. We train
300-dimension embedding vectors using fastText
skip-gram model for 250 epochs with a learning
rate of 0.001 and a minimum word count thresh-
old of 5.

For BLSTM model, we initialize the embedding
layer with the pre-trained fastText word embed-
dings and feed the output sequence from this layer
to the BLSTM layer. At the output layer a soft-
max activation function is applied over the hid-
den representation learned in the BLSTM layer.
For word-char model, we initialize the word em-
bedding matrix with fastText embeddings and use
random initialization for character embedding ma-
trix. We train both the RNN-based models by
optimizing the cross entropy objective function
with Adam (Kingma and Ba, 2014) optimizer. We
use dropout masks after BLSTM layer in BLSTM
model, LSTM layers in word-char model, and
embedding layer in each model to mitigate over-
fitting. The reported BLSTM model and word-

char models have hidden units of size 80 and 100
respectively in the LSTM layers. For word-char
model, for each token we try a neighboring token
window size of 1, 2, and 3. The context window
size of 2 gives better results and is reported here.

System SPA-ENG HIN-ENG SPA-ENG +
HIN-ENG

Baseline 83.17 85.02 71.49
CRF (Context-2) 97.06 96.84 96.37
BLSTM 92.22 93.9 88.7
Word-char LSTM 95.46 92.19 90.1

Table 8: Token-level F1-weighted score for lan-
guage identification systems.

Multiple Language Pair Experiment. We use
the models described in Section 6 in an experi-
ment to identify the labels for a dataset with multi-
ple language pairs. This dataset has both Spanish-
English and Hindi-English language pairs (SPA-
ENG + HIN-ENG). To account for the third lan-
guage, we use an additional label - lang3 (HIN).
Except for the pre-trained word embeddings, the
models do not involve any language dependent
feature engineering, and are easy to scale for mul-
tiple language pairs. As the word embeddings are
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HIN-ENG SPA-ENG
Transitions Weights Transitions Weights
unk→ unk 9.511 fw→ fw 4.731

fw→ fw 5.800 ne→ ne 2.798
ambiguous→ ambiguous 4.630 lang2→ lang2 1.464

lang2→ lang2 2.872 lang2→ ne 1.005
ne→ ne 2.824 lang1→ ne 0.915

other→ other 1.905 lang2→ mixed 0.833
lang1→ lang1 1.535 lang1→ lang1 0.707
other→ lang1 0.801 lang2→ ambiguous 0.625
lang1→ other 0.573 other→ other 0.483
lang1→ mixed 0.353 other→ mixed 0.427

Table 9: The top 10 most likely transitions learned by the best CRF model for HIN-ENG and SPA-ENG
datasets.

trained mostly on monolingual data, this depen-
dency does not constrain the systems.

7.1 Results and Evaluation

We use a simple lexicon-based model as baseline
for our language identification systems. We use
F1-weighted scores for model evaluations to ac-
count for the imbalance in label distributions (Ta-
ble 2). All the models improve the performance
over the respective baseline models by 7 to 25 per-
centage points. For CRF, which is the best per-
forming model across language pairs, the current
word and its character n-grams are the most im-
portant features. Adding POS tags does not im-
prove these results by much. This could be be-
cause the POS taggers are optimized for monolin-
gual data and their output for the code-switched
data contains noise. Using contextual informa-
tion improves the results for HIN-ENG, but not
for SPA-ENG. In Table 8 we compare the RNN-

Language Pair System lang1 lang2 ne
HIN-ENG BLSTM 0.96 0.94 0.77

Word-char LSTM 0.95 0.85 0.76
CRF (Context-2) 0.98 0.96 0.85

SPA-ENG BLSTM 0.89 0.95 0.32
Word-char LSTM 0.89 0.97 0.40
CRF (Context-2) 0.94 0.98 0.57

Table 10: Token-level F1-score of majority labels - lang1,
lang2 and ne for the models.

based models and the CRF model. We consider
the performance of the CRF model using only the
language independent features with a context size
of 2 for a fair comparison. Among the RNN-based
systems, while the results are competitive overall,
there is no single system that performs the best

across language pairs. The BLSTM system per-
forms better for HIN-ENG, while word-char sys-
tem performs better for SPA-ENG. The BLSTM
model captures long distance dependencies in a
sequence and this is in line with the observation
made above with the CRF model- more context
helps for HIN-ENG. It is also consistent with the
code-switching patterns discussed in Section 5.
A majority of code-switched tweets in SPA-ENG
have a single instance of word insertion and these
are being miss-labeled by the models. The overall
better results for SPA-ENG are because of a larger
training data used.8 The baseline results for SPA-
ENG + HIN-ENG is relatively low as compared
to the individual language pairs. This shows that
simultaneously identifying language for multiple
language pair is harder. We obtain reasonable re-
sults for these initial experiments with all the mod-
els.

To understand these results better, we look at the
label-wise F1-score for lang1, lang2 and ne (Table
10). The F1-scores for CRF is better across the la-
bels and the difference is significantly high for ne.
The F1-score ne is relatively high for HIN-ENG,
which can be attributed to the fact that around
58% of the named-entities in the test set appear
in the training set. This overlap is only 17% for
SPA-ENG. So, infrequent named-entities seems to
be hardest to accurately label. In addition, the
RNN-based models are more sensitive to amount
of training samples.

Further, we examine the transitions learned by

8The F1-score drops by 10 percentage points for the re-
ported experiments with the training dataset that is half in
size, while maintaining the post-level language distribution.
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our best CRF model for each of the language pairs
(Table 9). For both language pairs, the transitions
between the same languages are more likely than
switching. But we also observe that the transitions
from lang1 to lang2 and vice-versa rank higher for
HIN-ENG than SPA-ENG. This is because there
are fewer code-switching points in SPA-ENG as
compared to HIN-ENG in these datasets.

(a) BLSTM Model

(b) Word-char LSTM Model

Figure 5: Projection of word representations
learned by the neural networks model for HIN-
ENG + SPA-ENG. We reduce the word vector di-
mensions using PCA. The mapping of labels to
colors: lang1 - red, lang2 - green, lang3 - blue, ne
- black, other - orange, ambiguous - purple, mixed
- purple, fw - yellow, unk - yellow.

We also visualize the feature representations
learned by the RNN-based models by projecting
the word embeddings for a randomly selected sub-
set of words from the development datasets for
SPA-ENG + HIN-ENG (Figure 5). The word-
char model gives a clearer separation between the

three languages, the words belonging to the la-
bels other and ne. While the BLSTM model also
provides clear separation between the language
words, there is an overlap with the tokens from
other. These results show that these models can
be scaled to detect code-switching in multiple lan-
guage pairs without any additional feature engi-
neering.

8 Conclusions

The complexity of language identification of code-
switched data depends on the data source, code-
switching behavior, and the typology and relation
between the languages involved. We find that the
code-switching metrics complement each other
in explaining the code-switching patterns across
language pairs. The analysis of code-switching
metrics shows that in our datasets Hindi-English
speakers tend to switch languages more often than
Spanish-English speakers. In future, it would
be interesting to explore and compare the code-
switching behavior of data from different sources
such as movie scripts, song lyrics, and chat con-
versations across different language pairs.

We successfully use two different deep learning
architectures without involving sophisticated fea-
ture engineering for the task and obtain competi-
tive results. However a traditional CRF model per-
forms better than the deep learning models for the
language pairs considered. This is probably due to
the amount of training data we have. The results
show that word embeddings are able to capture the
language separation well. Scaling these systems
to identify languages in datasets with many lan-
guage pairs and datasets with switching between
more than two languages is a potential future di-
rection to explore.
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