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Abstract

Code-switching is the fluent alternation
between two or more languages in con-
versation between bilinguals. Large pop-
ulations of speakers code-switch during
communication, but little effort has been
made to develop tools for code-switching,
including part-of-speech taggers. In this
paper, we propose an approach to POS
tagging of code-switched English-Spanish
data based on recurrent neural networks.
We test our model on known monolin-
gual benchmarks to demonstrate that our
neural POS tagging model is on par with
state-of-the-art methods. We next test
our code-switched methods on the Miami
Bangor corpus of English-Spanish conver-
sation, focusing on two types of experi-
ments: POS tagging alone, for which we
achieve 96.34% accuracy, and joint part-
of-speech and language ID tagging, which
achieves similar POS tagging accuracy
(96.39%) and very high language ID accu-
racy (98.78%). Finally, we show that our
proposed models outperform other state-
of-the-art code-switched taggers.

1 Introduction

Code-switching (CS) is the phenomenon by which
multilingual speakers switch between languages in
written or spoken communication. For example, a
English-Spanish speaker might say “El teacher me
dijo que Juanito is very good at math.” CS can
be observed in various linguistic levels: phono-
logical, morphological, lexical, and syntactic and
can be classified as intra-sentential (if the switch
occurs within the boundaries of a sentence or ut-
terance), or inter-sentential (if the switch occurs
between two sentences or utterances). The impor-

tance of developing NLP technologies for CS data
is immense. In the US alone there is an estimated
population of 56.6 million Hispanic people (US
Census Bureau, 2014), of which 40 million are na-
tive speakers (US Census Bureau, 2015). Most
of these speakers routinely code-switch. How-
ever, very little research has been done to develop
NLP approaches to CS language, due largely to
the lack of sufficient corpora of high-quality an-
notated data to train on. Yet CS presents serious
challenges to all language technologies, includ-
ing part-of-speech (POS) tagging, parsing, lan-
guage modeling, machine translation, and auto-
matic speech recognition, since techniques devel-
oped on one language quickly break down when
that language is mixed with another.

One of Artificial Intelligence’s ultimate goals is
to enable seamless natural language interactions
between artificial agents and human users. In or-
der to achieve that goal, it is imperative that users
be able to communicate with artificial agents as
they do with other humans. In addition to such real
time interactions, CS language is also pervasive
in social media (David, 2001; Danet and Herring,
2007; Cárdenas-Claros and Isharyanti, 2009). So,
any system which attempts to communicate with
these users or to mine their social media content
needs to deal with CS language.

POS tagging is a key component of any Natu-
ral Language Understanding system and one of the
first researchers employ to process data. As such,
it is crucial that POS taggers be able to process CS
content. Monolingual POS taggers stumble when
processing CS sentences due to out-of-vocabulary
words in one language, confusable words that exist
in both language lexicons, and differences in the
syntax of the two languages. For example, when
running monolingual English and Spanish taggers
on the CS English-Spanish shown in Figure 1, the
English tagger erroneously tagged most Spanish
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Words: Ella     lo        había leído when       she        was       in     third    grade
Translation: She      it         had      read        - - - - - -
Gold: PRON  PRON   AUX      VERB     SCONJ  PRON      VERB     ADP     ADJ     NOUN
EN Tagger: NOUN ADV NOUN VERB     ADV PRON      VERB     ADP     ADJ     NOUN
ES  Tagger: PRON  PRON   AUX      VERB     PROPN PROPN PROPN ADP       X PROPN
EN+ES Tagger: PRON  PRON   AUX      VERB     ADV PRON      VERB     ADV ADJ     NOUN
CS Tagger: PRON  PRON   AUX      VERB     SCONJ  PRON      VERB     ADP     ADJ     NOUN

Figure 1: Example of an English-Spanish code-switched sentence. The figure shows the original code-
switched sentence, English translations of each token, gold POS tags and the tagging output of an English
tagger, a Spanish tagger, a tagger trained on English and Spanish sentences, and a tagger trained on a
corpus of code-switched sentences, in that order. Errors made by each tagger are underlined.

tokens, and similarly the Spanish tagger mistagged
most English tokens. A tagger trained on monolin-
gual English and Spanish sentences (EN+ES tag-
ger) fared better, making only two mistakes: on
the word “when”, where the switch occurs (con-
fusing the subordinating conjunction for an ad-
verb), and the word “in” (which exists in both
vocabularies). A tagger trained on CS instances
of English-Spanish, however, was able to tag the
whole sentence correctly.

In this paper, we present a comprehensive study
of POS tagging for CS utterances that includes
the following: a) use of a state-of-the-art bi-
directional recurrent neural network b) use of a
large CS English-Spanish corpus annotated with
high-quality labels from the Universal POS tagset;
c) extensive analyses of the performance of our
taggers on monolingual and CS sentences; d)
study of the performance of a tagger trained on
the subset of the monolingual sentences of the CS
corpus (in-genre baseline); e) examination of the
effect of language identifiers both as feature inputs
and for joint language identification and POS tag-
ging; and f) comparison to state-of-the-art taggers
for code-switching on the same corpus.

2 Related Work

A variety of tasks have been studied in CS
data. For language identification (LID), Ros-
ner and Farrugia (2007) proposed a word-level
Hidden Markov Model and a character-level
Markov Model to revert to when a word is out-
of-vocabulary, and tested these on a corpus of
Maltese-English sentences, achieving 95% accu-
racy. Working on a Bengali-Hindi-English dataset
of Facebook posts, Barman et al. (2014) employed
classifiers using n-gram and contextual features to
obtain 95% accuracy.

In the first statistical approach to POS-tagging
on CS data, Solorio and Liu (2008) collected the

Spanglish corpus, a small set of 922 English-
Spanish sentences. They proposed several heuris-
tics to combine monolingual taggers with limited
success, achieving 86% accuracy when choosing
the output of a monolingual tagger based on the
dictionary language ID of each token. However,
an SVM trained on the output of the monolin-
gual taggers performed better than their oracle,
reaching 93.48% accuracy. On the same dataset,
Rodrigues (2013) compared the performance of a
POS-tagger trained on CS sentences with a dy-
namic model that switched between taggers based
on gold language identifiers; they found the lat-
ter to work better (89.96% and 90.45% respec-
tively). Note, however, that the monolingual tag-
gers from (Solorio and Liu, 2008) were trained on
other larger corpora, while all the models used in
(Rodrigues, 2013) were trained on the Spanglish
corpus.

Jamatia et al. (2015) used CS English-Hindi
Facebook and Twitter posts to train and test POS
taggers. They found a Conditional Random Field
model to perform best (71.6% accuracy), and a
combination of monolingual taggers similar to the
one in (Solorio and Liu, 2008) achieved 72.0%
accuracy. Again using Hindi-English Facebook
posts, Vyas et al. (2014) ran Hindi and English
monolingual taggers on monolingual chunks of
each sentence. Sequiera et al. (2015) tested al-
gorithms from (Solorio and Liu, 2008) and (Vyas
et al., 2014) on the Facebook dataset from (Vyas
et al., 2014) and the Facebook+Twitter dataset
from (Jamatia et al., 2015), and found that (Solorio
and Liu, 2008) yielded better results. Similarly,
Barman et al. (2016) compared the methods pro-
posed in (Solorio and Liu, 2008) and (Vyas et al.,
2014) on a subset of 1,239 code-mixed Facebook
posts from (Barman et al., 2014) and found that a
modified version of (Solorio and Liu, 2008) per-
formed best. They also experimented with per-
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forming joint POS and LID tagging using 2-level
factorial Conditional Random Field and achieved
statistically similar results.

AlGhamdi et al. (2016) tested seven differ-
ent POS tagging strategies for CS data: four
consisted of combinations of monolingual sys-
tems and the other three were integrated systems.
They tested them on MSA-Egyptian Arabic and
English-Spanish. The first three combined strate-
gies consisted of running monolingual POS tag-
gers and language ID taggers in different order
and combining the outputs in a single multilin-
gual prediction. The fourth approach involved
training an SVM on the output of the monolin-
gual taggers. The three integrated approaches
trained a supervised model on a) the Miami Ban-
gor corpus (which contains switched and mono-
lingual utterances), b) the union of two mono-
lingual corpora (Ancora-ES and Penn Treebank),
c) the union of the three corpora. The mono-
lingual approaches consistently underperformed
compared to the other strategies. The SVM ap-
proach consistently outperformed the integrated
approaches. However, this method was trained
on both monolingual and multilingual resources
– the Penn Treebank Data for the English model,
and the Ancora-ES dataset for the Spanish model.
In Section 6.4, we run experiments in similar
conditions to the integrated approaches from (Al-
Ghamdi et al., 2016), which we will compare to
our work. The main contributions of this paper
over this previous research on POS tagging for
CS data, are the following: a) Our tagger is a bi-
directional LSTM that achieves POS tagging ac-
curacy comparable to state-of-the-art taggers on
benchmark datasets like the Wall Street Journal
corpus and the Universal Dependencies corpora. It
is the first such model used to train code-switched
POS taggers; b) Our model can simultaneously
perform POS and LID tagging without loss of POS
tagging accuracy; c) We run experiments on the
Miami Bangor corpus of Spanish and English con-
versational speech. However, unlike (AlGhamdi
et al., 2016) which used POS tags obtained from
an automatic tagger and then mapped to a dep-
recated version of the Universal POS tagset, our
experiments are run on newly crowd-sourced Uni-
versal POS tags (Soto and Hirschberg, 2017),
which were obtained with high accuracy and inter-
annotator agreement.

3 A Model for Neural POS Tagging

For our experiments we use a bi-directional LSTM
network similar to the one proposed by Wang et al.
(2015) with the following set of features: 1) word
embeddings, 2) prefix and suffix embeddings of
one, two and three characters, and 3) four boolean
features that encode whether the word is all upper
case, all lower case, formatted as a title, or con-
tains any digits. In total, the input space consists
of seven embeddings and four boolean features.
For the embeddings, we compute word, prefix and
suffix lexicons, excluding tokens that appear less
than five times in the training set, and then assign a
unique integer to each token. We also reserve two
integers for the padding and out-of-lexicon sym-
bols.

We present two architectures for POS tagging
and one for joint POS and LID tagging. In the
most basic architecture the word, prefix and suffix
embeddings and the linear activation units are con-
catenated into a single layer. The second layer of
the network is a bidirectional LSTM. Finally, the
output layer is a softmax activation layer, whose i-
th output unit at time t represents the probability of
the wordwt being the part-of-speech POSi. We re-
fer to this model as Bi-LSTM POS Tagger for the
rest of the article and in our tables. For the second
model, given the multilingual nature of our experi-
ments, we modify the input space of our Bi-LSTM
tagger to make use of the language ID information
in our corpus. We add six more boolean features to
represent the language ID (one for each label) and
add six linear activation units in the first hidden
layer, which are then concatenated with the rest
of linear activation units and word embeddings in
the basic model. This model is referred to as Bi-
LSTM POS tagger + LID features.

Finally, our third model simultaneously tags
words with POS and LID labels. The architecture
of this model follows the Bi-LSTM POS architec-
ture very closely adding a second output layer with
softmax activations for LID prediction. Note that
the POS and LID output layers are independent
and are connected by their weight matrices to the
hidden layer, and both loss functions are given the
same weight. This model is referred to as joint
POS+LID tagger. We implemented our code using
the library for deep learning Keras (Chollet, 2015),
on a Tensorflow backend (Abadi et al., 2015).
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Corpus Split # Sents # Toks

WSJ
Train 38.2K 912.3K
Dev. 5.5K 131.7K
Test 5.5K 129.7K

UD-EN
Train 12.5K 204.6K
Dev. 2K 25.1K
Test 2K 25.1K

UD-ES
Train 14.2K 403.9K
Dev. 1.6K 43.5K
Test 274 8.4K
Full 42.9K 333.1K

Miami Train 38.7K 300.3K

Bangor Test 4.2K 32.8K
Train Inter-CS 36.0K 267.3K
Test Intra-CS 285 3.6K

Table 1: Datasets used for our experiments.

4 Datasets

Throughout our experiments we use three corpora
for different purposes. The Wall Street Journal
(WSJ) corpus is used to demonstrate that our pro-
posed Bi-LSTM POS tagger is on par with cur-
rent state-of-the-art English POS taggers. The
Universal Dependencies (UD) corpus is used to
train baseline monolingual POS taggers in English
and Spanish that we can use to test on our CS
data since both employ the Universal POS tagset
(Petrov et al., 2012). The Miami Bangor cor-
pus, which contains instances of inter- and intra-
sentential CS utterances in English and Spanish,
is used for training and testing CS models and
comparing these to monolingual models. Table
1 shows the number of sentences/utterances and
tokens in each dataset split. For the MB corpus,
Inter-CS refers to the subset of monolingual sen-
tences and Intra-CS refers to the subset of CS sen-
tences.

4.1 Wall Street Journal Corpus

The WSJ corpus (Marcus et al., 1999) is a mono-
lingual English news corpus comprised of 49208
sentences and over 1.1 million tokens. It is tagged
with the Treebank tagset (Santorini, 1990; Marcus
et al., 1993), which has a total of 45 tags. We use
the standard training, development and test splits
from (Collins, 2002) which span sections 0-18 19-
21 and 22-24 respectively.

4.2 Universal Dependency Corpora

Universal Dependencies (UD) is a project to de-
velop cross-linguistically consistent treebank an-
notations for many languages. The English UD
corpus (Silveira et al., 2014) is built from the En-
glish Web Treebank (Bies et al., 2012). The cor-

Split Full Train Test CS
EN 53.48 53.41 54.14 38.98
ES 27.78 27.86 27.04 46.12
PUNCT 15.71 15.76 15.55 12.26
AMBIG 2.27 2.25 2.49 2.06
MIXED 0.01 0.01 0.00 0.01
OTHER 0.76 0.76 0.79 0.60

Table 2: Language composition (%) of the MB
corpus.

pus contains data from web media sources, includ-
ing web logs, newsgroups, emails, reviews and Ya-
hoo! answers. The trees were automatically con-
verted into Stanford Dependencies and then hand-
corrected to Universal Dependencies. The corpus
contains 16,622 sentences and over 254K tokens.
The Spanish UD corpus (McDonald et al., 2013)
is built from the content head version of the Uni-
versal Dependency Treebank v2.0, to which sev-
eral token-level morphology features were added.
It is comprised of news blog data and has a total of
16,013 sentences and over 455k tokens.

4.3 Miami Bangor Corpus

The Miami Bangor (MB) corpus is a conver-
sational speech corpus recorded from bilingual
English-Spanish speakers living in Miami, FL.
It includes 56 conversations recorded from 84
speakers. The corpus consists of 242,475 words
(333,069 including punctuation tokens) and 35
hours of recorded conversation. The language
markers in the corpus were manually annotated.
Table 2 shows the language composition of the
corpus. The dominant language in this corpus
is English (53.48% of the tokens), followed by
Spanish (27.78%). The ambiguous label includes
words that are difficult to tag as either English or
Spanish due to lack of context (e.g. “no”). Since,
in the original corpus, punctuation tokens were
labeled as ambiguous, we created an additional
punctuation tag for our experiments. The mixed
category contains tokens that are formed by mor-
phemes and roots from both languages (e.g. “ri-
pear”) and the category ’Other’ untranscribed to-
kens. However, the composition of the subset of
CS sentences is different: Spanish becomes the
dominant language, comprising 46.12% of the to-
kens compared to 38.98% of the English tokens.

The utterances in the original MB corpus were
transcribed in the CHAT transcription and coding
format (MacWhinney, 2000), which allows anno-
tators to divide full utterances in chunks to repre-
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Full Train Test CS
#Switches(K) 4.2 3.8 0.4 4.2
Avg.#swts/utt 0.098 0.098 0.095 1.41
Swt.words(%) 1.26 1.27 1.22 11.00
Swt.utts(#) 2980 2695 285 2980
Swt.utts(%) 6.94 6.96 6.79 100
0 swt.(%) 93.06 93.04 93.21 0.00
1 swt.(%) 4.79 4.78 4.83 69.03
2 swt.(%) 1.71 1.73 1.55 24.62
Max#Swt. 8 8 7 8

Table 3: CS in the Miami Bangor Corpus. The top
subtable shows the number of switches, the aver-
age number of switches per utterances, the amount
of switched words (word after which a switch oc-
curs), and the amount of switched utterances in
each partition. The bottom subtable shows the per-
centage of utterances that contain n switches.

sent citations and other speech discourse phenom-
ena. However, working on full utterances is more
suitable in the context of POS tagging. Therefore,
following the guidelines in (MacWhinney, 2009),
we used the utterance linkers and utterance termi-
nators to reconstruct full utterances when possi-
ble. After this, the corpus had a total of 16013
sentences and 333K tokens.

The original MB corpus was automatically
glossed and tagged with POS tags using the
Bangor Autoglosser (Donnelly and Deuchar,
2011a,b). The autoglosser finds the gloss for each
token in the corpus and assigns the tag or group
of tags most common for that word in the anno-
tated language. However, here we use the Univer-
sal POS tags obtained by (Soto and Hirschberg,
2017). These tags were collected using crowd-
sourcing tasks and automatic labeling, with high
annotation accuracy and label recall. We split the
MB corpus into training and test. For the test split
we randomly drew 4,200 utterances. The train-
ing split is used for 4-fold cross-validation. Table
3 shows the degree of multilingualism in the MB
corpus and the two splits. In the full dataset, about
6.94% of the utterances contain intra-sentential
switches. Note that full dataset and its train and
test splits (columns 2 to 4) have very similar de-
grees of multilingualism according to the reported
measures, whereas the subset of intra-sentential
CS sentences (column 5) has a much higher rate
of switched tokens (11%, from 1.26%) and aver-
age number of switches per sentence (1.41, from
0.098). More than 93% of CS utterances contain
one or two switches; some contain up to eight
switches. For example, the following sentence

contains five switches (marked with ‘|’):“... y en |
summer | y en | fall | tengo que hacer | one class.”

5 Methodology

For the experiments involving the Bangor corpus,
we perform 4-fold cross-validation (CV) on the
training corpus to run grid search and obtain the
best learning rate and decay learning rate parame-
ter values. For the experiments on WSJ and UD,
we use the official development set. The perfor-
mance of the best parameter values is reported as
“Dev” accuracy. We then train a model using the
best parameter values on the full train set and ob-
tain predictions for the test set (reported as “Test”).
When pertinent we also report results on the sub-
set of intra-sentential CS utterances of the test set
(reported as “Intra-CS Test”).

During CV, each model is trained for a maxi-
mum number of 75 epochs using batches of 128
examples. We use early stopping to halt training
when the development POS accuracy has not im-
proved for the last three epochs, and keep only
the best performing model. However, when train-
ing the final model, we stop training after the
number of epochs that the best model trained for
during CV. The loss function used is categorical
cross-entropy and we use ADAM (Kingma and
Ba, 2015) with its default β1, β2 and ε parameter
values as the stochastic optimization method.

The word embeddings (Bengio et al., 2003) we
use are trained with the rest of the network during
training following the Keras implementation (Gal
and Ghahramani, 2016). The size of the embed-
ding layers is 128 for the word embeddings and
4, 8 and 16 for the prefix and suffix embeddings
of length 1, 2 and 3 respectively. The Bi-LSTM
hidden layer has 200 units for each direction.

Finally, we run McNemar’s test (McNemar,
1947) to show significant statistical difference be-
tween pairs of classifiers when the accuracy of the
classifiers is similar, and report statistical signifi-
cance for p-values smaller than 0.05.

6 Experiments & Results

In this section, we present our experiments using
the three Bi-LSTM models introduced in Section
3 and the datasets from Section 4. Our goal is
a) to show that the basic Bi-LSTM POS tagger
performs very well against known POS tagging
benchmarks; b) to obtain baseline performances
for monolingual taggers when tested on CS data;
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and c) to train and test the proposed models on CS
data and analyze their performance when trained
on different proportions of monolingual and CS
data.

6.1 WSJ results
We begin by evaluating the performance of the Bi-
LSTM POS tagger on the benchmark WSJ cor-
pus to show that it is on par with current state-
of-the-art English POS taggers. We train tag-
gers on three incremental feature sets to mea-
sure how much each feature adds. Using only
word embeddings we achieve 95.14% accuracy on
the test set; adding word features increases accu-
racy to 95.84%; and adding the prefix and suffix
embeddings further increases accuracy by up to
97.10%. This demonstrates that our tagger is on
par with current state-of-the-art systems which re-
port 97.78% (Ling et al., 2015), 97.45% (Andor
et al., 2016), 97.35% (Huang et al., 2012), 97.34%
(Moore, 2014) and 97.33% (Shen et al., 2007) ac-
curacy on their standard test set. Systems most
similar to our Bi-LSTM tagger with basic features
reported 97.20% in (Collobert et al., 2011) and
97.26% (Wang et al., 2015).

6.2 Universal tagset baseline
In the second set of experiments we train base-
line monolingual Spanish and English taggers on
the UD corpora: one monolingual Spanish and
one monolingual English tagger, and one tagger
trained on both corpora. The goal of these experi-
ments is to obtain taggers trained on the Universal
tagset that we can use to obtain a baseline perfor-
mance of monolingual taggers on the CS Bangor
corpus. The results are shown in Table 4. The ac-
curacy of the baseline UD taggers is slightly worse
than the WSJ taggers, probably due to the smaller
size of the UD datasets. The accuracy of the tag-
gers on their own test sets is 94.78% and 95.02%
for English and Spanish respectively. In compar-
ison, Stanford’s neural dependency parser (Dozat
et al., 2017) reports accuracy values of 95.11% and
96.59% respectively.

In order to approximate how a monolingual tag-
ger trained on established datasets performs on a
conversational CS dataset, we test the baseline UD
taggers on the MB test set and observe a dramatic
drop in accuracy, due perhaps to the difference in
genre (web blog data vs. transcribed conversation)
and the bilingual nature of the Miami corpus. Note
that, when training on both EN and ES UD, the

UD MB
Training Dev Test Test CS Test
UD EN 94.53 94.78 69.97 56.20
UD ES 96.20 95.02 45.13 55.32
UD EN&ES 94.88 94.25 88.17 87.18

Table 4: Bi-LSTM POS tagging accuracy (%) on
the Universal Dependency corpora. The left sub-
table shows the accuracy on the UD dev and test
sets. The right subtables shows the accuracy on
the MB test set and on the subset of CS utterances.

Training Task Dev Test CS Test

MB
Tagger 96.27 96.34 96.10
Tagger+LID 96.35 96.49 96.44
Joint Tagger 96.30 96.39 95.97

MB + UD
Tagger 96.34 96.47 95.99
Tagger+LID 96.40 96.63 96.44
Joint Tagger 96.39 96.61 96.35

MB Inter-CS
Tagger 96.24 96.03 95.27
Tagger+LID 96.26 96.16 95.55
Joint Tagger 96.25 96.11 95.22

Table 5: POS tagging accuracy (%) on the MB
corpus. Underlined font indicates best result in
test set by each training setting across different
tagging models. Bold results indicate best overall
result in that test set.

Bi-LSTM taggers reach 88.17% accuracy, from
only 69.97 and 45.13% by the monolingual tag-
gers. When looking at the multilingual subset of
sentences from the test set (CS Test in Table 4), we
observe that the English model decreases in accu-
racy further, whereas the Spanish tagger has better
performance. This is due to the CS sentences hav-
ing more Spanish than English.

6.3 Miami Bangor results

In the third set of experiments we train the three
proposed models (Bi-LSTM tagger, Bi-LSTM tag-
ger with LID features and joint POS and LID tag-
ger) on: a) the full MB corpus, b) the joint MB
and UD ES&EN corpora, and c) instances of inter-
sentential CS utterances from the MB corpus. The
LID features were obtained from the MB corpus
language tags. POS and LID accuracy results are
shown in Table 5 and Table 6 respectively.

When training on the full MB corpus (top sub-
table from table 5), the POS tagger achieves
96.34% accuracy, a significant improvement from
the 88.17% of the UD EN&ES. The improvement
holds up on the subset of CS utterances, achiev-
ing 96.10% accuracy. Adding the LID features im-
proves performance by 0.15 and 0.34 absolute per-
centage points. In both cases these differences are
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statistically significant (p = 0.03). Furthermore,
when running joint POS and LID tagging, we see
that tagging accuracy decreases slightly with re-
spect to the POS tagger with LID features. This re-
sult reaffirms the contribution of the LID features.
The difference in performance between the joint
tagger and the basic tagger is slightly higher but
not statistically significant (p ∼ 0.5), showing that
joint decoding does not harm overall performance.
The best POS tagging accuracy is always achieved
by the Bi-LSTM tagger with LID features on both
Test and CS Test; however, the joint Tagger is very
close at no more than 0.1 percentage points on
Test. When adding the UD corpora during train-
ing (middle subtable from Table 5) we see some
improvements for the three models (0.13, 0.14 and
0.22 absolute percentage points respectively), and
once again the difference in performance between
the basic tagger and the tagger with LID features
is statistically significant (p < 0.05).

We performed statistical tests to measure how
different the models trained on MB are from the
models trained on MB+UD and found that the ad-
dition of more monolingual data only makes a dif-
ference for the joint tagger (p < 0.01) when look-
ing at the performance on the Test set. On the CS
test set, these models achieve about the same per-
formance in POS tagging with a slight decrease
for the basic tagger (-0.11 points, not significant)
and a slight increase in accuracy for the joint tag-
ger (0.38 percentage points, again not significant).
Thus, it is clear that our model is able to learn
from a few CS examples – even when many more
monolingual sentences, from a different genre, are
added to the train set.

Finally, we trained models on the subset of
monolingual English and Spanish sentences from
the MB training set to measure how a model
trained on the same genre would be able to gener-
alize on unseen intra-sentential CS sentences (bot-
tom subtable from Table 5, marked as Inter-CS).
This model would be closer to an in-genre inter-
sentential CS tagger, tested on intra-sentential CS.
Compared to the models trained on UD EN&ES,
this model performs much better: 96.03% com-
pared to 88.17% on the MB test set. This is mainly
due to the fact that the UD corpus is not conversa-
tional speech. When comparing this result to the
taggers trained on the full MB corpus, it can be
seen that these new models achieved the lowest
test accuracy across all models, probably due to

Training Dev Test CS Test
MB 98.82 98.78 98.01
MB + UD EN&ES 98.60 98.49 97.93
MB Inter-CS Subset 98.53 97.99 90.25

Table 6: LID tagging accuracy by the Bi-LSTM
joint POS+LID Tagger on the MB corpus.

the lack of bilingual examples in their training set.
The difference in performance is more pronounced
on the subset of CS utterances. Again, we ran sta-
tistical tests to compare these three new taggers to
the taggers trained on the full MB corpus, and we
found that their differences were statistically sig-
nificant in the three cases (p < 0.001).

With respect to the LID accuracy of the joint
Tagger, the best model is the one trained on the
MB corpus, followed very closely by the model
trained on MB and UD data. In both cases, the
test set accuracy is above 98.49%. The accuracy
on the CS test subset is sightly lower at 98.01%
and 97.93%. The monolingual Bangor tagger sees
a decrease in test accuracy (97.99%) and a bigger
drop, down to 90.25%, on the CS subset. All the
differences in performance between every pair of
the three LID taggers are statistically significant
(p < 10−5).

6.4 Comparison to Previous Work

We compare the performance of our models to
the Integrated and Combined models proposed in
(AlGhamdi et al., 2016). In that paper, POS tag-
ging results are reported on the MB corpus, but
using a preliminary mapping to the first iteration
of the Universal tagset (12 tags, as opposed to
the current 17); furthermore, the train and test
splits were different. Therefore, we decided to
replicate their experiments using our data con-
figuration and compare them to our own classi-
fiers. With respect to their “Integrated” models,
INT3:AllMonoData+CSD is comparable to our
POS Tagger trained on the full MB set and UD
EN&ES (ours at 96.47% compared to 92.33%);
INT2:AllMono is comparable to our POS Tagger
trained on UD EN&ES (ours at 88.17% compared
to 84.47%) and INT1:CSD is comparable to our
POS Tagger trained on Bangor (ours at 96.34%
versus 92.71%). For their “Combined” models,
COMB4:MonoLT-SVM trained two monolingual
taggers on the UD-EN and UD-ES corpora and
then a SVM on top from the output of the tag-
gers on the MB corpus. We do not perform system
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EN ES EN&ES Bangor
OOV 40.9 32.7 10.7 7.9
SAcc. 2.5 4.2 21.8 60.7
WAcc. 56.2 55.3 87.2 96.1
CSFAcc. 10.9 12.6 57.5 84.2
CSFWAcc. 12.6 16.1 63.3 86.7
AvgMinDistCSF 4.0 5.4 3.9 3.5
%ErrorsInCSF 26.9 24.3 32.5 36.9

Table 7: Out-of-vocabulary (OOV) rate, sen-
tence (Sacc) and word accuracy (Wacc) at the
sentence level, fragment (CSFAcc) and word ac-
curacy (CSFWacc) at the fragment level, aver-
age minimum distance from tagging error to CSF
(AvgMinDistCSF), and percentage of errors that
occur within a CSF (%ErrorsInCSF).

combination in this paper, but in terms of data, this
model would be most similar to our POS tagger
trained on Miami and EN&ES UD, in which we
reached 96.47% compared to their 92.20%. Fur-
thermore, we note that our joint POS+LID tagger
also has better POS accuracy than its counterparts
Integrated systems from (AlGhamdi et al., 2016)
in addition to performing LID tagging.

7 Error Analysis

In this section we aim to analyze the performance
of the POS taggers on the CS sentences of the Ban-
gor test set and more specifically, on the CS frag-
ments (CSF) of those test sentences. We define a
CSF as the minimum contiguous span of words
where a CS occurs. Most often a CSF will be
two words long, spanning a Spanish token and an
English one or vice versa, but it is also possible
for fragments to be longer than that, given that a
Mixed or Ambiguous token could occur within a
fragment. The average CSF length in the Bangor
test set is 2.16. We compare the performance of
the UD-EN, UD-ES, UD-EN&ES and the Bangor-
trained taggers on the Bangor CS Test set to under-
stand the difference in errors made by monolin-
gual and CS taggers. Table 7 shows the following
measures: OOV rate, POS tagging accuracy at the
sentence and word level, POS tagging accuracy in
CS fragments at the fragment and word level, the
average distance from a POS tagging error to the
nearest CSF (AvgMinDistCSF) and the percentage
of POS tagging errors that occur within the bound-
aries of a CS utterance (%ErrorsInCSF). All mea-
sures are computed on the CS subset of test sen-
tences of the Bangor corpus using the basic POS
taggers trained on UD-EN, UD-ES, UD EN&ES

and the Bangor corpus. In the table, we see that the
multilingual models have much lower OOV rates,
which translates into much higher sentence-level
and word-level POS tagging accuracy. The CS
Bangor-trained model fares much better than the
UD EN&ES model in terms of word-level accu-
racy (96.1 versus 87.2%), especially when look-
ing at the sentence-level accuracy (60.7 versus
21.8%), because the Bangor model is able to deal
with code-switches. When looking at the tagging
accuracy on the CS utterances the relative gains at
the word level are even larger. This demonstrates
that training on CS sentences is an important fac-
tor to achieving high-performing POS tagging ac-
curacy.

It can also be seen from the table that, as the
models achieve CS tagging accuracy, tagging er-
rors are still concentrated near or within CSFs –
for the UD EN&ES and Bangor models, Avg-
MinDistCSF and %ErrorsInCS decrease as the
CSF-level accuracies increase. This shows that
even as the models improve at tagging CS frag-
ments, CS fragments still remain the most chal-
lenging aspect of the task.

8 Conclusions

In this paper, we have presented a neural model
for POS tagging and language identification on
CS data. The neural network is a state-of-the-
art bidirectional LSTM with prefix, suffix and
word embeddings and four boolean features. We
used the Miami Bangor corpus to train and test
models and showed that: a) monolingual taggers
trained on benchmark training sets perform poorly
on the test set of the CS corpus, b) our CS mod-
els achieve high POS accuracy when trained and
tested on CS sentences, c) expanding the fea-
ture set to include language ID as input features
yielded the best performing models, d) a joint
POS and language ID tagger performs compara-
bly to the POS tagger and its LID accuracy is
higher than 98%, and e) a model trained on in-
stances of in-genre inter-sentential CS performs
much better than the monolingual baselines, but
yielded worse test results than the model trained
on instances of inter-sentential and intra-sentential
code-switching. Furthermore, we compared to our
results to the previous state-of-the-art POS tagger
for this corpus and showed that our classifiers out-
perform them in every configuration.
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