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Introduction

Code-switching (CS) is the phenomenon by which multilingual speakers switch back and forth
between their common languages in written or spoken communication. CS is pervasive in informal
text communications such as news groups, tweets, blogs, and other social media of multilingual
communities. Such genres are increasingly being studied as rich sources of social, commercial and
political information. Apart from the informal genre challenge associated with such data within a single
language processing scenario, the CS phenomenon adds another significant layer of complexity to the
processing of the data. Efficiently and robustly processing CS data presents a new frontier for our
NLP algorithms on all levels. The goal of this workshop is to bring together researchers interested in
exploring these new frontiers, discussing state of the art research in CS, and identifying the next steps in
this fascinating research area.

The workshop program includes exciting papers discussing new approaches for CS data and the
development of linguistic resources needed to process and study CS. We received a total of 16 regular
workshop submissions of which we accepted 11 for publication, five of them as workshop talks and six
as posters.

Another component of the workshop is the First Shared Task on Named Entity Recognition (NER) of
CS Data. The shared task focused on social media and included two language pairs: Modern Standard
Arabic-Dialectal Arabic and English-Spanish. We had a total of 9 participants from which we received
8 submissions on English-Spanish and 6 submissions on Modern Standard Arabic-Dialectal Arabic.
We received papers from all these submissions. All shared task systems will be presented during the
workshop poster session and two of them will also present a talk. We would like to thank all authors
who submitted their contributions to this workshop and all shared task participants for taking on the
challenge of NER in code-switched data. We also thank the program committee members for their help
in providing meaningful reviews. Lastly, we thank the ACL 2018 organizers for the opportunity to put
together this workshop and Amazon for their generous sponsorship.

See you all in Melbourne, Australia at ACL 2018!

Workshop co-chairs,
Gustavo Aguilar
Fahad AlGhamdi
Victor Soto

Thamar Solorio
Mona Diab

Julia Hirschberg

iii






Workshop Co-Chairs:

Gustavo Aguilar, University of Houston

Fahad AlGhamdi, George Washington University
Victor Soto, Columbia University

Thamar Solorio, University of Houston

Mona Diab, George Washington University

Julia Hirschberg, Columbia University

Shared Task Co-Chairs:

Gustavo Aguilar, University of Houston
Fahad AlGhamdi, George Washington University

Publications Chair:

Victor Soto, Columbia University

Program Committee:

Kalika Bali, Microsoft Research India

Elabbas Benmamoun, Duke University

Alan W. Black, Carnegie Mellon University

Agnes Bolonyia, NC State University

Barbara Bullock, University of Texas at Austin

Ozlem Cetinoglu, Universitit Stuttgart

Monojit Choudhury, Microsoft Research India

Suzanne Dikker, New York University

Bjorn Gambick, Norwegian Universities of Science and Technology
Constantine Lignos, University of Southern California Information Sciences Institute
Mitchell P. Marcus, University of Pennsylvania

Cecilia Montes-Alcala, Georgia Institute of Technology
Raymond Mooney, University of Texas at Austin

Borja Navarro Colorado, Universidad de Alicante
Younes Samih, Heinrich Heine - Universitit Diisseldorf
Yves Scherrer, University of Helsinki

Chilin Shih, University of Illinois at Urbana-Champaign
David Suendermann, Educational Testing Service
Jacqueline Toribio, University of Texas at Austin

David Vilares, Universidad de Corufia

Emre Yilmaz, CLS/CLST, Radboud University Nijmegen

Invited Speakers:

Pascale Fung, Hong Kong University of Science & Technology
Melinda Fricke, University of Pittsburgh






Table of Contents

Joint Part-of-Speech and Language ID Tagging for Code-Switched Data
Victor Soto and Julia Hirschberg . ... i e 1

Phone Merging For Code-Switched Speech Recognition
Sunit Sivasankaran, Brij Mohan Lal Srivastava, Sunayana Sitaram, Kalika Bali and Monojit Choud-

Improving Neural Network Performance by Injecting Background Knowledge: Detecting Code-switching
and Borrowing in Algerian texts
Wafia Adouane, Jean-Philippe Bernardy and Simon Dobnik................ .. ... ... ... ... 20

Code-Mixed Question Answering Challenge: Crowd-sourcing Data and Techniques
Khyathi Chandu, Ekaterina Loginova, Vishal Gupta, Josef van Genabith, Giinter Neuman, Manoj
Chinnakotla, Eric Nyberg and Alan W. Black........ ... i 29

Transliteration Better than Translation? Answering Code-mixed Questions over a Knowledge Base
Vishal Gupta, Manoj Chinnakotla and Manish Shrivastava................. ... ... ... .. 39

Language Identification and Analysis of Code-Switched Social Media Text
Deepthi Mave, Suraj Maharjan and Thamar Solorio ............. ..., 51

Code-Switching Language Modeling using Syntax-Aware Multi-Task Learning
Genta Indra Winata, Andrea Madotto, Chien-Sheng Wu and Pascale Fung.................... 62

Predicting the presence of a Matrix Language in code-switching
Barbara Bullock, Wally Guzman, Jacqueline Serigos, Vivek Sharath and Almeida Jacqueline Toribio
68

Automatic Detection of Code-switching Style from Acoustics
SaiKrishna Rallabandi, Sunayana Sitaram and Alan W. Black ............... ... .. .. ... ... 76

Accommodation of Conversational Code-Choice
Anshul Bawa, Monojit Choudhury and Kalika Bali............ ... ... ..o oL, 82

Language Informed Modeling of Code-Switched Text
Khyathi Chandu, Thomas Manzini, Sumeet Singh and Alan W. Black........................ 92

GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neural Networks
Mohammed Attia, Younes Samih and Wolfgang Maier .............. ... . ... ... ii.n. 98

Simple Features for Strong Performance on Named Entity Recognition in Code-Switched Twitter Data
Devanshu Jain, Maria Kustikova, Mayank Darbari, Rishabh Gupta and Stephen Mayhew ... .. 103

Bilingual Character Representation for Efficiently Addressing Out-of-Vocabulary Words in Code-Switching
Named Entity Recognition
Genta Indra Winata, Chien-Sheng Wu, Andrea Madotto and Pascale Fung................... 110

Named Entity Recognition on Code-Switched Data Using Conditional Random Fields
Utpal Kumar Sikdar, Biswanath Barik and Bjorn Gambick .............. ... ... . ... ..., 115

vii



The University of Texas System Submission for the Code-Switching Workshop Shared Task 2018
Florian Janke, Tongrui Li, Eric Rincén, Gualberto Guzmén, Barbara Bullock and Almeida Jacque-
HNe TOrIDIO . . o oo e 120

Tackling Code-Switched NER: Participation of CMU
Parvathy Geetha, Khyathi Chandu and Alan W. Black ............... ... ... ... ... . ... 126

Multilingual Named Entity Recognition on Spanish-English Code-switched Tweets using Support Vector
Machines
Daniel Claeser, Samantha Kent and Dennis Felske ............ ... ..o o i 132

Named Entity Recognition on Code-Switched Data: Overview of the CALCS 2018 Shared Task
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona Diab, Julia Hirschberg and Thamar Solorio
138

IIT (BHU) Submission for the ACL Shared Task on Named Entity Recognition on Code-switched Data
Shashwat Trivedi, Harsh Rangwani and Anil Kumar Singh................................. 148

Code-Switched Named Entity Recognition with Embedding Attention
Changhan Wang, Kyunghyun Cho and Douwe Kiela...................................... 154

viii



Workshop Program

Thursday, July 19, 2018

09:00-10:30

9:00-9:05

9:05-9:50

9:50-10:10

10:10-10:30

10:30-11:00

11:00-12:00

11:00-11:20

11:20-11:40

11:40-12:00

Session 1 Invited Talk and Oral Presentations

Opening Remarks
Thamar Solorio

Invited Talk: Learning to Codeswitch
Pascale Fung

Joint Part-of-Speech and Language ID Tagging for Code-Switched Data
Victor Soto and Julia Hirschberg

Phone Merging For Code-Switched Speech Recognition
Sunit Sivasankaran, Brij Mohan Lal Srivastava, Sunayana Sitaram, Kalika Bali and
Monojit Choudhury

Coffee Break

Session 2 Oral Presentations

Improving Neural Network Performance by Injecting Background Knowledge: De-
tecting Code-switching and Borrowing in Algerian texts
Wafia Adouane, Jean-Philippe Bernardy and Simon Dobnik

Code-Mixed Question Answering Challenge: Crowd-sourcing Data and Techniques
Khyathi Chandu, Ekaterina Loginova, Vishal Gupta, Josef van Genabith, Giinter
Neuman, Manoj Chinnakotla, Eric Nyberg and Alan W. Black

Transliteration Better than Translation? Answering Code-mixed Questions over a

Knowledge Base
Vishal Gupta, Manoj Chinnakotla and Manish Shrivastava

X



Thursday, July 19, 2018 (continued)

12:00-13:30

13:30-14:15

13:30-14:15

14:15-15:30

Lunch Break

Session 3 Invited Talk

Invited Talk: Variation in Codeswitched Language: a Psycholinguistic Approach to
What, When, and Why
Melinda Fricke

Session 4 Poster Session

Language Ildentification and Analysis of Code-Switched Social Media Text
Deepthi Mave, Suraj Maharjan and Thamar Solorio

Code-Switching Language Modeling using Syntax-Aware Multi-Task Learning
Genta Indra Winata, Andrea Madotto, Chien-Sheng Wu and Pascale Fung

Predicting the presence of a Matrix Language in code-switching
Barbara Bullock, Wally Guzman, Jacqueline Serigos, Vivek Sharath and Almeida
Jacqueline Toribio

Automatic Detection of Code-switching Style from Acoustics
SaiKrishna Rallabandi, Sunayana Sitaram and Alan W. Black

Accommodation of Conversational Code-Choice
Anshul Bawa, Monojit Choudhury and Kalika Bali

Language Informed Modeling of Code-Switched Text
Khyathi Chandu, Thomas Manzini, Sumeet Singh and Alan W. Black

GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neu-
ral Networks
Mohammed Attia, Younes Samih and Wolfgang Maier

Simple Features for Strong Performance on Named Entity Recognition in Code-
Switched Twitter Data

Devanshu Jain, Maria Kustikova, Mayank Darbari, Rishabh Gupta and Stephen
Mayhew



Thursday, July 19, 2018 (continued)

15:30-16:00

16:00-17:00

16:00-16:10

16:10-16:30

16:30-16:50

16:50-17:00

Bilingual Character Representation for Efficiently Addressing Out-of-Vocabulary
Words in Code-Switching Named Entity Recognition
Genta Indra Winata, Chien-Sheng Wu, Andrea Madotto and Pascale Fung

Named Entity Recognition on Code-Switched Data Using Conditional Random
Fields
Utpal Kumar Sikdar, Biswanath Barik and Bjorn Gambick

The University of Texas System Submission for the Code-Switching Workshop
Shared Task 2018

Florian Janke, Tongrui Li, Eric Rincén, Gualberto Guzmdn, Barbara Bullock and
Almeida Jacqueline Toribio

Tackling Code-Switched NER: Participation of CMU
Parvathy Geetha, Khyathi Chandu and Alan W. Black

Multilingual Named Entity Recognition on Spanish-English Code-switched Tweets
using Support Vector Machines
Daniel Claeser, Samantha Kent and Dennis Felske

Coffee Break

Session 5 Shared Task Talks

Named Entity Recognition on Code-Switched Data: Overview of the CALCS 2018
Shared Task

Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona Diab, Julia Hirschberg and
Thamar Solorio

IIT (BHU) Submission for the ACL Shared Task on Named Entity Recognition on
Code-switched Data
Shashwat Trivedi, Harsh Rangwani and Anil Kumar Singh

Code-Switched Named Entity Recognition with Embedding Attention
Changhan Wang, Kyunghyun Cho and Douwe Kiela

Closing Remarks
Victor Soto

X1






Joint Part-of-Speech and Language ID Tagging for Code-Switched Data

Victor Soto
Department of Computer Science
Columbia University
New York, NY 10027
vsoto@cs.columbia.edu

Abstract

Code-switching is the fluent alternation
between two or more languages in con-
versation between bilinguals. Large pop-
ulations of speakers code-switch during
communication, but little effort has been
made to develop tools for code-switching,
including part-of-speech taggers. In this
paper, we propose an approach to POS
tagging of code-switched English-Spanish
data based on recurrent neural networks.
We test our model on known monolin-
gual benchmarks to demonstrate that our
neural POS tagging model is on par with
state-of-the-art methods. We next test
our code-switched methods on the Miami
Bangor corpus of English-Spanish conver-
sation, focusing on two types of experi-
ments: POS tagging alone, for which we
achieve 96.34% accuracy, and joint part-
of-speech and language ID tagging, which
achieves similar POS tagging accuracy
(96.39%) and very high language ID accu-
racy (98.78%). Finally, we show that our
proposed models outperform other state-
of-the-art code-switched taggers.

1 Introduction

Code-switching (CS) is the phenomenon by which
multilingual speakers switch between languages in
written or spoken communication. For example, a
English-Spanish speaker might say “El teacher me
dijo que Juanito is very good at math.” CS can
be observed in various linguistic levels: phono-
logical, morphological, lexical, and syntactic and
can be classified as intra-sentential (if the switch
occurs within the boundaries of a sentence or ut-
terance), or inter-sentential (if the switch occurs
between two sentences or utterances). The impor-

1

Julia Hirschberg
Department of Computer Science
Columbia University
New York, NY 10027
julia@cs.columbia.edu

tance of developing NLP technologies for CS data
is immense. In the US alone there is an estimated
population of 56.6 million Hispanic people (US
Census Bureau, 2014), of which 40 million are na-
tive speakers (US Census Bureau, 2015). Most
of these speakers routinely code-switch. How-
ever, very little research has been done to develop
NLP approaches to CS language, due largely to
the lack of sufficient corpora of high-quality an-
notated data to train on. Yet CS presents serious
challenges to all language technologies, includ-
ing part-of-speech (POS) tagging, parsing, lan-
guage modeling, machine translation, and auto-
matic speech recognition, since techniques devel-
oped on one language quickly break down when
that language is mixed with another.

One of Atrtificial Intelligence’s ultimate goals is
to enable seamless natural language interactions
between artificial agents and human users. In or-
der to achieve that goal, it is imperative that users
be able to communicate with artificial agents as
they do with other humans. In addition to such real
time interactions, CS language is also pervasive
in social media (David, 2001; Danet and Herring,
2007; Cardenas-Claros and Isharyanti, 2009). So,
any system which attempts to communicate with
these users or to mine their social media content
needs to deal with CS language.

POS tagging is a key component of any Natu-
ral Language Understanding system and one of the
first researchers employ to process data. As such,
it is crucial that POS taggers be able to process CS
content. Monolingual POS taggers stumble when
processing CS sentences due to out-of-vocabulary
words in one language, confusable words that exist
in both language lexicons, and differences in the
syntax of the two languages. For example, when
running monolingual English and Spanish taggers
on the CS English-Spanish shown in Figure 1, the
English tagger erroneously tagged most Spanish

Proceedings of The Third Workshop on Computational Approaches to Code-Switching, pages 1-10
Melbourne, Australia, July 19, 2018. (©)2018 Association for Computational Linguistics



Words: Ella lo habia leido
Translation:  She it had  read
Gold: PRON PRON AUX VERB
EN Tagger: NOUN ADV NOUN VERB
ES Tagger: PRON PRON AUX VERB
EN+ES Tagger: PRON PRON AUX VERB
CS Tagger: PRON PRON AUX VERB

when  she was in third grade
SCONJ PRON VERB ADP ADJ NOUN
ADV PRON VERB ADP ADJ NOUN
PROPN PROPN PROPN ADP X  PROPN
ADV  PRON VERB ADV ADJ NOUN
SCONJ PRON VERB ADP ADJ NOUN

Figure 1: Example of an English-Spanish code-switched sentence. The figure shows the original code-
switched sentence, English translations of each token, gold POS tags and the tagging output of an English
tagger, a Spanish tagger, a tagger trained on English and Spanish sentences, and a tagger trained on a
corpus of code-switched sentences, in that order. Errors made by each tagger are underlined.

tokens, and similarly the Spanish tagger mistagged
most English tokens. A tagger trained on monolin-
gual English and Spanish sentences (EN+ES tag-
ger) fared better, making only two mistakes: on
the word “when”, where the switch occurs (con-
fusing the subordinating conjunction for an ad-
verb), and the word “in” (which exists in both
vocabularies). A tagger trained on CS instances
of English-Spanish, however, was able to tag the
whole sentence correctly.

In this paper, we present a comprehensive study
of POS tagging for CS utterances that includes
the following: a) use of a state-of-the-art bi-
directional recurrent neural network b) use of a
large CS English-Spanish corpus annotated with
high-quality labels from the Universal POS tagset;
¢) extensive analyses of the performance of our
taggers on monolingual and CS sentences; d)
study of the performance of a tagger trained on
the subset of the monolingual sentences of the CS
corpus (in-genre baseline); e) examination of the
effect of language identifiers both as feature inputs
and for joint language identification and POS tag-
ging; and f) comparison to state-of-the-art taggers
for code-switching on the same corpus.

2 Related Work

A variety of tasks have been studied in CS
data. For language identification (LID), Ros-
ner and Farrugia (2007) proposed a word-level
Hidden Markov Model and a character-level
Markov Model to revert to when a word is out-
of-vocabulary, and tested these on a corpus of
Maltese-English sentences, achieving 95% accu-
racy. Working on a Bengali-Hindi-English dataset
of Facebook posts, Barman et al. (2014) employed
classifiers using n-gram and contextual features to
obtain 95% accuracy.

In the first statistical approach to POS-tagging
on CS data, Solorio and Liu (2008) collected the

Spanglish corpus, a small set of 922 English-
Spanish sentences. They proposed several heuris-
tics to combine monolingual taggers with limited
success, achieving 86% accuracy when choosing
the output of a monolingual tagger based on the
dictionary language ID of each token. However,
an SVM trained on the output of the monolin-
gual taggers performed better than their oracle,
reaching 93.48% accuracy. On the same dataset,
Rodrigues (2013) compared the performance of a
POS-tagger trained on CS sentences with a dy-
namic model that switched between taggers based
on gold language identifiers; they found the lat-
ter to work better (89.96% and 90.45% respec-
tively). Note, however, that the monolingual tag-
gers from (Solorio and Liu, 2008) were trained on
other larger corpora, while all the models used in
(Rodrigues, 2013) were trained on the Spanglish
corpus.

Jamatia et al. (2015) used CS English-Hindi
Facebook and Twitter posts to train and test POS
taggers. They found a Conditional Random Field
model to perform best (71.6% accuracy), and a
combination of monolingual taggers similar to the
one in (Solorio and Liu, 2008) achieved 72.0%
accuracy. Again using Hindi-English Facebook
posts, Vyas et al. (2014) ran Hindi and English
monolingual taggers on monolingual chunks of
each sentence. Sequiera et al. (2015) tested al-
gorithms from (Solorio and Liu, 2008) and (Vyas
et al., 2014) on the Facebook dataset from (Vyas
et al.,, 2014) and the Facebook+Twitter dataset
from (Jamatia et al., 2015), and found that (Solorio
and Liu, 2008) yielded better results. Similarly,
Barman et al. (2016) compared the methods pro-
posed in (Solorio and Liu, 2008) and (Vyas et al.,
2014) on a subset of 1,239 code-mixed Facebook
posts from (Barman et al., 2014) and found that a
modified version of (Solorio and Liu, 2008) per-
formed best. They also experimented with per-



forming joint POS and LID tagging using 2-level
factorial Conditional Random Field and achieved
statistically similar results.

AlGhamdi et al. (2016) tested seven differ-
ent POS tagging strategies for CS data: four
consisted of combinations of monolingual sys-
tems and the other three were integrated systems.
They tested them on MSA-Egyptian Arabic and
English-Spanish. The first three combined strate-
gies consisted of running monolingual POS tag-
gers and language ID taggers in different order
and combining the outputs in a single multilin-
gual prediction. The fourth approach involved
training an SVM on the output of the monolin-
gual taggers. The three integrated approaches
trained a supervised model on a) the Miami Ban-
gor corpus (which contains switched and mono-
lingual utterances), b) the union of two mono-
lingual corpora (Ancora-ES and Penn Treebank),
c) the union of the three corpora. The mono-
lingual approaches consistently underperformed
compared to the other strategies. The SVM ap-
proach consistently outperformed the integrated
approaches. However, this method was trained
on both monolingual and multilingual resources
— the Penn Treebank Data for the English model,
and the Ancora-ES dataset for the Spanish model.
In Section 6.4, we run experiments in similar
conditions to the integrated approaches from (Al-
Ghamdi et al., 2016), which we will compare to
our work. The main contributions of this paper
over this previous research on POS tagging for
CS data, are the following: a) Our tagger is a bi-
directional LSTM that achieves POS tagging ac-
curacy comparable to state-of-the-art taggers on
benchmark datasets like the Wall Street Journal
corpus and the Universal Dependencies corpora. It
is the first such model used to train code-switched
POS taggers; b) Our model can simultaneously
perform POS and LID tagging without loss of POS
tagging accuracy; ¢) We run experiments on the
Miami Bangor corpus of Spanish and English con-
versational speech. However, unlike (AlGhamdi
et al., 2016) which used POS tags obtained from
an automatic tagger and then mapped to a dep-
recated version of the Universal POS tagset, our
experiments are run on newly crowd-sourced Uni-
versal POS tags (Soto and Hirschberg, 2017),
which were obtained with high accuracy and inter-
annotator agreement.

3 A Model for Neural POS Tagging

For our experiments we use a bi-directional LSTM
network similar to the one proposed by Wang et al.
(2015) with the following set of features: 1) word
embeddings, 2) prefix and suffix embeddings of
one, two and three characters, and 3) four boolean
features that encode whether the word is all upper
case, all lower case, formatted as a title, or con-
tains any digits. In total, the input space consists
of seven embeddings and four boolean features.
For the embeddings, we compute word, prefix and
suffix lexicons, excluding tokens that appear less
than five times in the training set, and then assign a
unique integer to each token. We also reserve two
integers for the padding and out-of-lexicon sym-
bols.

We present two architectures for POS tagging
and one for joint POS and LID tagging. In the
most basic architecture the word, prefix and suffix
embeddings and the linear activation units are con-
catenated into a single layer. The second layer of
the network is a bidirectional LSTM. Finally, the
output layer is a softmax activation layer, whose i-
th output unit at time ¢ represents the probability of
the word wy being the part-of-speech POS;. We re-
fer to this model as Bi-LSTM POS Tagger for the
rest of the article and in our tables. For the second
model, given the multilingual nature of our experi-
ments, we modify the input space of our Bi-LSTM
tagger to make use of the language ID information
in our corpus. We add six more boolean features to
represent the language ID (one for each label) and
add six linear activation units in the first hidden
layer, which are then concatenated with the rest
of linear activation units and word embeddings in
the basic model. This model is referred to as Bi-
LSTM POS tagger + LID features.

Finally, our third model simultaneously tags
words with POS and LID labels. The architecture
of this model follows the Bi-LSTM POS architec-
ture very closely adding a second output layer with
softmax activations for LID prediction. Note that
the POS and LID output layers are independent
and are connected by their weight matrices to the
hidden layer, and both loss functions are given the
same weight. This model is referred to as joint
POS+LID tagger. We implemented our code using
the library for deep learning Keras (Chollet, 2015),
on a Tensorflow backend (Abadi et al., 2015).



Corpus | Split # Sents | # Toks
Train 38.2K | 912.3K
WSJ Dev. 5.5K 131.7K
Test 5.5K 129.7K
Train 12.5K | 204.6K
UD-EN | Dev. 2K 25.1K
Test 2K 25.1K
Train 142K | 403.9K
UD-ES | Dev. 1.6K 43.5K
Test 274 8.4K
Full 429K | 333.1K
Miami Train 38.7K | 300.3K
Bangor TesF 42K 32.8K
Train Inter-CS 36.0K | 267.3K
Test Intra-CS 285 3.6K

Table 1: Datasets used for our experiments.

4 Datasets

Throughout our experiments we use three corpora
for different purposes. The Wall Street Journal
(WSJ) corpus is used to demonstrate that our pro-
posed Bi-LSTM POS tagger is on par with cur-
rent state-of-the-art English POS taggers. The
Universal Dependencies (UD) corpus is used to
train baseline monolingual POS taggers in English
and Spanish that we can use to test on our CS
data since both employ the Universal POS tagset
(Petrov et al., 2012). The Miami Bangor cor-
pus, which contains instances of inter- and intra-
sentential CS utterances in English and Spanish,
is used for training and testing CS models and
comparing these to monolingual models. Table
1 shows the number of sentences/utterances and
tokens in each dataset split. For the MB corpus,
Inter-CS refers to the subset of monolingual sen-
tences and Intra-CS refers to the subset of CS sen-
tences.

4.1 Wall Street Journal Corpus

The WSJ corpus (Marcus et al., 1999) is a mono-
lingual English news corpus comprised of 49208
sentences and over 1.1 million tokens. It is tagged
with the Treebank tagset (Santorini, 1990; Marcus
et al., 1993), which has a total of 45 tags. We use
the standard training, development and test splits
from (Collins, 2002) which span sections 0-18 19-
21 and 22-24 respectively.

4.2 Universal Dependency Corpora

Universal Dependencies (UD) is a project to de-
velop cross-linguistically consistent treebank an-
notations for many languages. The English UD
corpus (Silveira et al., 2014) is built from the En-
glish Web Treebank (Bies et al., 2012). The cor-

Split Full | Train | Test CS

EN 53.48 | 53.41 | 54.14 || 38.98
ES 27.78 | 27.86 | 27.04 || 46.12
PUNCT | 15.71 | 15.76 | 1555 || 12.26

AMBIG | 227 2.25 2.49 2.06
MIXED | 0.01 0.01 0.00 0.01
OTHER | 0.76 0.76 0.79 0.60

Table 2: Language composition (%) of the MB
corpus.

pus contains data from web media sources, includ-
ing web logs, newsgroups, emails, reviews and Ya-
hoo! answers. The trees were automatically con-
verted into Stanford Dependencies and then hand-
corrected to Universal Dependencies. The corpus
contains 16,622 sentences and over 254K tokens.
The Spanish UD corpus (McDonald et al., 2013)
is built from the content head version of the Uni-
versal Dependency Treebank v2.0, to which sev-
eral token-level morphology features were added.
It is comprised of news blog data and has a total of
16,013 sentences and over 455k tokens.

4.3 Miami Bangor Corpus

The Miami Bangor (MB) corpus is a conver-
sational speech corpus recorded from bilingual
English-Spanish speakers living in Miami, FL.
It includes 56 conversations recorded from 84
speakers. The corpus consists of 242,475 words
(333,069 including punctuation tokens) and 35
hours of recorded conversation. The language
markers in the corpus were manually annotated.
Table 2 shows the language composition of the
corpus. The dominant language in this corpus
is English (53.48% of the tokens), followed by
Spanish (27.78%). The ambiguous label includes
words that are difficult to tag as either English or
Spanish due to lack of context (e.g. “no”). Since,
in the original corpus, punctuation tokens were
labeled as ambiguous, we created an additional
punctuation tag for our experiments. The mixed
category contains tokens that are formed by mor-
phemes and roots from both languages (e.g. “ri-
pear”) and the category ’Other’ untranscribed to-
kens. However, the composition of the subset of
CS sentences is different: Spanish becomes the
dominant language, comprising 46.12% of the to-
kens compared to 38.98% of the English tokens.
The utterances in the original MB corpus were
transcribed in the CHAT transcription and coding
format (MacWhinney, 2000), which allows anno-
tators to divide full utterances in chunks to repre-



Full Train Test CS
#Switches(K) 4.2 3.8 0.4 4.2
Avg.#swts/utt | 0.098 | 0.098 | 0.095 1.41
Swt.words(%) 1.26 1.27 1.22 11.00
Swt.utts(#) 2980 | 2695 285 2980
Swt.utts(%) 6.94 6.96 6.79 100
0 swt.(%) 93.06 | 93.04 | 93.21 0.00
1 swt.(%) 4.79 4.78 4.83 69.03
2 swt.(%) 1.71 1.73 1.55 24.62
Max#Swt. 8 8 7 8

Table 3: CS in the Miami Bangor Corpus. The top
subtable shows the number of switches, the aver-
age number of switches per utterances, the amount
of switched words (word after which a switch oc-
curs), and the amount of switched utterances in
each partition. The bottom subtable shows the per-
centage of utterances that contain n switches.

sent citations and other speech discourse phenom-
ena. However, working on full utterances is more
suitable in the context of POS tagging. Therefore,
following the guidelines in (MacWhinney, 2009),
we used the utterance linkers and utterance termi-
nators to reconstruct full utterances when possi-
ble. After this, the corpus had a total of 16013
sentences and 333K tokens.

The original MB corpus was automatically
glossed and tagged with POS tags using the
Bangor Autoglosser (Donnelly and Deuchar,
2011a,b). The autoglosser finds the gloss for each
token in the corpus and assigns the tag or group
of tags most common for that word in the anno-
tated language. However, here we use the Univer-
sal POS tags obtained by (Soto and Hirschberg,
2017). These tags were collected using crowd-
sourcing tasks and automatic labeling, with high
annotation accuracy and label recall. We split the
MB corpus into training and test. For the test split
we randomly drew 4,200 utterances. The train-
ing split is used for 4-fold cross-validation. Table
3 shows the degree of multilingualism in the MB
corpus and the two splits. In the full dataset, about
6.94% of the utterances contain intra-sentential
switches. Note that full dataset and its train and
test splits (columns 2 to 4) have very similar de-
grees of multilingualism according to the reported
measures, whereas the subset of intra-sentential
CS sentences (column 5) has a much higher rate
of switched tokens (11%, from 1.26%) and aver-
age number of switches per sentence (1.41, from
0.098). More than 93% of CS utterances contain
one or two switches; some contain up to eight
switches. For example, the following sentence

contains five switches (marked with |*):“... y en
summer |y en | fall | tengo que hacer | one class.”

S Methodology

For the experiments involving the Bangor corpus,
we perform 4-fold cross-validation (CV) on the
training corpus to run grid search and obtain the
best learning rate and decay learning rate parame-
ter values. For the experiments on WSJ and UD,
we use the official development set. The perfor-
mance of the best parameter values is reported as
“Dev” accuracy. We then train a model using the
best parameter values on the full train set and ob-
tain predictions for the test set (reported as “Test”).
When pertinent we also report results on the sub-
set of intra-sentential CS utterances of the test set
(reported as “Intra-CS Test”).

During CV, each model is trained for a maxi-
mum number of 75 epochs using batches of 128
examples. We use early stopping to halt training
when the development POS accuracy has not im-
proved for the last three epochs, and keep only
the best performing model. However, when train-
ing the final model, we stop training after the
number of epochs that the best model trained for
during CV. The loss function used is categorical
cross-entropy and we use ADAM (Kingma and
Ba, 2015) with its default 3, 52 and € parameter
values as the stochastic optimization method.

The word embeddings (Bengio et al., 2003) we
use are trained with the rest of the network during
training following the Keras implementation (Gal
and Ghahramani, 2016). The size of the embed-
ding layers is 128 for the word embeddings and
4, 8 and 16 for the prefix and suffix embeddings
of length 1, 2 and 3 respectively. The Bi-LSTM
hidden layer has 200 units for each direction.

Finally, we run McNemar’s test (McNemar,
1947) to show significant statistical difference be-
tween pairs of classifiers when the accuracy of the
classifiers is similar, and report statistical signifi-
cance for p-values smaller than 0.05.

6 Experiments & Results

In this section, we present our experiments using
the three Bi-LSTM models introduced in Section
3 and the datasets from Section 4. Our goal is
a) to show that the basic Bi-LSTM POS tagger
performs very well against known POS tagging
benchmarks; b) to obtain baseline performances
for monolingual taggers when tested on CS data;



and c) to train and test the proposed models on CS
data and analyze their performance when trained
on different proportions of monolingual and CS
data.

6.1 WS] results

We begin by evaluating the performance of the Bi-
LSTM POS tagger on the benchmark WSJ cor-
pus to show that it is on par with current state-
of-the-art English POS taggers. We train tag-
gers on three incremental feature sets to mea-
sure how much each feature adds. Using only
word embeddings we achieve 95.14% accuracy on
the test set; adding word features increases accu-
racy to 95.84%; and adding the prefix and suffix
embeddings further increases accuracy by up to
97.10%. This demonstrates that our tagger is on
par with current state-of-the-art systems which re-
port 97.78% (Ling et al., 2015), 97.45% (Andor
etal., 2016), 97.35% (Huang et al., 2012), 97.34%
(Moore, 2014) and 97.33% (Shen et al., 2007) ac-
curacy on their standard test set. Systems most
similar to our Bi-LSTM tagger with basic features
reported 97.20% in (Collobert et al., 2011) and
97.26% (Wang et al., 2015).

6.2 Universal tagset baseline

In the second set of experiments we train base-
line monolingual Spanish and English taggers on
the UD corpora: one monolingual Spanish and
one monolingual English tagger, and one tagger
trained on both corpora. The goal of these experi-
ments is to obtain taggers trained on the Universal
tagset that we can use to obtain a baseline perfor-
mance of monolingual taggers on the CS Bangor
corpus. The results are shown in Table 4. The ac-
curacy of the baseline UD taggers is slightly worse
than the WSJ taggers, probably due to the smaller
size of the UD datasets. The accuracy of the tag-
gers on their own test sets is 94.78% and 95.02%
for English and Spanish respectively. In compar-
ison, Stanford’s neural dependency parser (Dozat
etal., 2017) reports accuracy values of 95.11% and
96.59% respectively.

In order to approximate how a monolingual tag-
ger trained on established datasets performs on a
conversational CS dataset, we test the baseline UD
taggers on the MB test set and observe a dramatic
drop in accuracy, due perhaps to the difference in
genre (web blog data vs. transcribed conversation)
and the bilingual nature of the Miami corpus. Note
that, when training on both EN and ES UD, the

UD MB
Training Dev Test Test | CS Test
UD EN 94.53 | 94.78 || 69.97 | 56.20
UD ES 96.20 | 95.02 || 45.13 | 55.32
UD EN&ES | 94.88 | 94.25 || 88.17 87.18

Table 4: Bi-LSTM POS tagging accuracy (%) on
the Universal Dependency corpora. The left sub-
table shows the accuracy on the UD dev and test
sets. The right subtables shows the accuracy on
the MB test set and on the subset of CS utterances.

Training Task Dev Test | CS Test
Tagger 96.27 | 96.34 96.10
MB Tagger+LID | 96.35 | 96.49 96.44
Joint Tagger | 96.30 | 96.39 95.97
Tagger 96.34 | 96.47 95.99
MB + UD Tagger+LID | 96.40 | 96.63 | 96.44
Joint Tagger | 96.39 | 96.61 96.35
Tagger 96.24 | 96.03 95.27
MB Inter-CS | Tagger+LID | 96.26 | 96.16 95.55
Joint Tagger | 96.25 | 96.11 95.22

Table 5: POS tagging accuracy (%) on the MB
corpus. Underlined font indicates best result in
test set by each training setting across different
tagging models. Bold results indicate best overall
result in that test set.

Bi-LSTM taggers reach 88.17% accuracy, from
only 69.97 and 45.13% by the monolingual tag-
gers. When looking at the multilingual subset of
sentences from the test set (CS Test in Table 4), we
observe that the English model decreases in accu-
racy further, whereas the Spanish tagger has better
performance. This is due to the CS sentences hav-
ing more Spanish than English.

6.3 Miami Bangor results

In the third set of experiments we train the three
proposed models (Bi-LSTM tagger, Bi-LSTM tag-
ger with LID features and joint POS and LID tag-
ger) on: a) the full MB corpus, b) the joint MB
and UD ES&EN corpora, and c) instances of inter-
sentential CS utterances from the MB corpus. The
LID features were obtained from the MB corpus
language tags. POS and LID accuracy results are
shown in Table 5 and Table 6 respectively.

When training on the full MB corpus (top sub-
table from table 5), the POS tagger achieves
96.34% accuracy, a significant improvement from
the 88.17% of the UD EN&ES. The improvement
holds up on the subset of CS utterances, achiev-
ing 96.10% accuracy. Adding the LID features im-
proves performance by 0.15 and 0.34 absolute per-
centage points. In both cases these differences are



statistically significant (p = 0.03). Furthermore,
when running joint POS and LID tagging, we see
that tagging accuracy decreases slightly with re-
spect to the POS tagger with LID features. This re-
sult reaffirms the contribution of the LID features.
The difference in performance between the joint
tagger and the basic tagger is slightly higher but
not statistically significant (p ~ 0.5), showing that
joint decoding does not harm overall performance.
The best POS tagging accuracy is always achieved
by the Bi-LSTM tagger with LID features on both
Test and CS Test; however, the joint Tagger is very
close at no more than 0.1 percentage points on
Test. When adding the UD corpora during train-
ing (middle subtable from Table 5) we see some
improvements for the three models (0.13, 0.14 and
0.22 absolute percentage points respectively), and
once again the difference in performance between
the basic tagger and the tagger with LID features
is statistically significant (p < 0.05).

We performed statistical tests to measure how
different the models trained on MB are from the
models trained on MB+UD and found that the ad-
dition of more monolingual data only makes a dif-
ference for the joint tagger (p < 0.01) when look-
ing at the performance on the Test set. On the CS
test set, these models achieve about the same per-
formance in POS tagging with a slight decrease
for the basic tagger (-0.11 points, not significant)
and a slight increase in accuracy for the joint tag-
ger (0.38 percentage points, again not significant).
Thus, it is clear that our model is able to learn
from a few CS examples — even when many more
monolingual sentences, from a different genre, are
added to the train set.

Finally, we trained models on the subset of
monolingual English and Spanish sentences from
the MB training set to measure how a model
trained on the same genre would be able to gener-
alize on unseen intra-sentential CS sentences (bot-
tom subtable from Table 5, marked as Inter-CS).
This model would be closer to an in-genre inter-
sentential CS tagger, tested on intra-sentential CS.
Compared to the models trained on UD EN&ES,
this model performs much better: 96.03% com-
pared to 88.17% on the MB test set. This is mainly
due to the fact that the UD corpus is not conversa-
tional speech. When comparing this result to the
taggers trained on the full MB corpus, it can be
seen that these new models achieved the lowest
test accuracy across all models, probably due to

Training Dev Test | CS Test
MB 98.82 | 98.78 | 98.01
MB + UD EN&ES 98.60 | 98.49 | 97.93
MB Inter-CS Subset | 98.53 | 97.99 | 90.25

Table 6: LID tagging accuracy by the Bi-LSTM
joint POS+LID Tagger on the MB corpus.

the lack of bilingual examples in their training set.
The difference in performance is more pronounced
on the subset of CS utterances. Again, we ran sta-
tistical tests to compare these three new taggers to
the taggers trained on the full MB corpus, and we
found that their differences were statistically sig-
nificant in the three cases (p < 0.001).

With respect to the LID accuracy of the joint
Tagger, the best model is the one trained on the
MB corpus, followed very closely by the model
trained on MB and UD data. In both cases, the
test set accuracy is above 98.49%. The accuracy
on the CS test subset is sightly lower at 98.01%
and 97.93%. The monolingual Bangor tagger sees
a decrease in test accuracy (97.99%) and a bigger
drop, down to 90.25%, on the CS subset. All the
differences in performance between every pair of
the three LID taggers are statistically significant
(p < 107°).

6.4 Comparison to Previous Work

We compare the performance of our models to
the Integrated and Combined models proposed in
(AlGhamdi et al., 2016). In that paper, POS tag-
ging results are reported on the MB corpus, but
using a preliminary mapping to the first iteration
of the Universal tagset (12 tags, as opposed to
the current 17); furthermore, the train and test
splits were different. Therefore, we decided to
replicate their experiments using our data con-
figuration and compare them to our own classi-
fiers. With respect to their “Integrated” models,
INT3:AllMonoData+CSD is comparable to our
POS Tagger trained on the full MB set and UD
EN&ES (ours at 96.47% compared to 92.33%);
INT2:AllMono is comparable to our POS Tagger
trained on UD EN&ES (ours at 88.17% compared
to 84.47%) and INT1:CSD is comparable to our
POS Tagger trained on Bangor (ours at 96.34%
versus 92.71%). For their “Combined” models,
COMB4:MonoLT-SVM trained two monolingual
taggers on the UD-EN and UD-ES corpora and
then a SVM on top from the output of the tag-
gers on the MB corpus. We do not perform system



EN ES | EN&ES | Bangor
[e]6)Y 409 | 32.7 10.7 7.9
SAcc. 2.5 4.2 21.8 60.7
WACc. 56.2 | 553 87.2 96.1
CSFAcc. 109 | 12.6 57.5 84.2
CSFWAcc. 12.6 | 16.1 63.3 86.7
AvgMinDistCSF | 4.0 54 3.9 35
%ErrorsInCSF 269 | 243 32,5 36.9

Table 7: Out-of-vocabulary (OOV) rate, sen-
tence (Sacc) and word accuracy (Wacc) at the
sentence level, fragment (CSFAcc) and word ac-
curacy (CSFWacc) at the fragment level, aver-
age minimum distance from tagging error to CSF
(AvgMinDistCSF), and percentage of errors that
occur within a CSF (%ErrorsInCSF).

combination in this paper, but in terms of data, this
model would be most similar to our POS tagger
trained on Miami and EN&ES UD, in which we
reached 96.47% compared to their 92.20%. Fur-
thermore, we note that our joint POS+LID tagger
also has better POS accuracy than its counterparts
Integrated systems from (AlGhamdi et al., 2016)
in addition to performing LID tagging.

7 Error Analysis

In this section we aim to analyze the performance
of the POS taggers on the CS sentences of the Ban-
gor test set and more specifically, on the CS frag-
ments (CSF) of those test sentences. We define a
CSF as the minimum contiguous span of words
where a CS occurs. Most often a CSF will be
two words long, spanning a Spanish token and an
English one or vice versa, but it is also possible
for fragments to be longer than that, given that a
Mixed or Ambiguous token could occur within a
fragment. The average CSF length in the Bangor
test set is 2.16. We compare the performance of
the UD-EN, UD-ES, UD-EN&ES and the Bangor-
trained taggers on the Bangor CS Test set to under-
stand the difference in errors made by monolin-
gual and CS taggers. Table 7 shows the following
measures: OOV rate, POS tagging accuracy at the
sentence and word level, POS tagging accuracy in
CS fragments at the fragment and word level, the
average distance from a POS tagging error to the
nearest CSF (AvgMinDistCSF) and the percentage
of POS tagging errors that occur within the bound-
aries of a CS utterance (%ErrorsInCSF). All mea-
sures are computed on the CS subset of test sen-
tences of the Bangor corpus using the basic POS
taggers trained on UD-EN, UD-ES, UD EN&ES

and the Bangor corpus. In the table, we see that the
multilingual models have much lower OOV rates,
which translates into much higher sentence-level
and word-level POS tagging accuracy. The CS
Bangor-trained model fares much better than the
UD EN&ES model in terms of word-level accu-
racy (96.1 versus 87.2%), especially when look-
ing at the sentence-level accuracy (60.7 versus
21.8%), because the Bangor model is able to deal
with code-switches. When looking at the tagging
accuracy on the CS utterances the relative gains at
the word level are even larger. This demonstrates
that training on CS sentences is an important fac-
tor to achieving high-performing POS tagging ac-
curacy.

It can also be seen from the table that, as the
models achieve CS tagging accuracy, tagging er-
rors are still concentrated near or within CSFs —
for the UD EN&ES and Bangor models, Avg-
MinDistCSF and %ErrorsInCS decrease as the
CSF-level accuracies increase. This shows that
even as the models improve at tagging CS frag-
ments, CS fragments still remain the most chal-
lenging aspect of the task.

8 Conclusions

In this paper, we have presented a neural model
for POS tagging and language identification on
CS data. The neural network is a state-of-the-
art bidirectional LSTM with prefix, suffix and
word embeddings and four boolean features. We
used the Miami Bangor corpus to train and test
models and showed that: a) monolingual taggers
trained on benchmark training sets perform poorly
on the test set of the CS corpus, b) our CS mod-
els achieve high POS accuracy when trained and
tested on CS sentences, c¢) expanding the fea-
ture set to include language ID as input features
yielded the best performing models, d) a joint
POS and language ID tagger performs compara-
bly to the POS tagger and its LID accuracy is
higher than 98%, and e) a model trained on in-
stances of in-genre inter-sentential CS performs
much better than the monolingual baselines, but
yielded worse test results than the model trained
on instances of inter-sentential and intra-sentential
code-switching. Furthermore, we compared to our
results to the previous state-of-the-art POS tagger
for this corpus and showed that our classifiers out-
perform them in every configuration.
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Abstract

Speakers in multilingual communities of-
ten switch between or mix multiple lan-
guages in the same conversation. Auto-
matic Speech Recognition (ASR) of code-
switched speech faces many challenges in-
cluding the influence of phones of differ-
ent languages on each other. This pa-
per shows evidence that phone sharing
between languages improves the Acous-
tic Model performance for Hindi-English
code-switched speech. We compare base-
line system built with separate phones for
Hindi and English with systems where the
phones were manually merged based on
linguistic knowledge. Encouraged by the
improved ASR performance after manu-
ally merging the phones, we further in-
vestigate multiple data-driven methods to
identify phones to be merged across the
languages. We show detailed analysis of
automatic phone merging in this language
pair and the impact it has on individual
phone accuracies and WER. Though the
best performance gain of 1.2% WER was
observed with manually merged phones,
we show experimentally that the manual
phone merge is not optimal.

1 Introduction

Multilingual speakers tend to alternate between
several languages within a conversation. This phe-
nomenon is referred to as code-switching (CS).
Automatic Speech Recognition for CS speech is
challenging. Code-switched speech recognition
present challenges in acoustic, language and pro-
nunciation modeling of speech. Acoustic Mod-
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els (AMs) need to model phones in a mixed lan-
guage setting, where co-articulation effects from
one language may influence the other. Moreover,
language models needs to be capable of predict-
ing code-switch points between the two languages.
The vocabulary size may be double of what is
present in monolingual systems. Accents and na-
tive language influence may pose challenges to
pronunciation models. Another major challenge in
building code-switched ASR is the lack of data for
different language-pairs. To curb the issue of con-
textual data availability per phone, we study the
effect of manual merging and two automatic merg-
ing over the performance of Hindi-English code-
switched speech recognition system.

In systems with a small amount of data for train-
ing the AMs, phones that are similar to each other
in the two languages being mixed can be merged,
leading to more data for each phone. This may
be especially useful in the case of related lan-
guages, or when a strong native language accent is
expected to influence pronunciations in the other
language. We experiment with phone merging
in AMs of Hindi-English code-switched conversa-
tional speech, and show that we can get improve-
ments on Word Error Rate (WER) by merging cer-
tain phones.

One technique to merge phones in the two lan-
guages being mixed is to use a common phone-
set such as the International Phonetic Alphabet
(IPA), or knowledge from a bilingual speaker to
decide which phones can be merged (manual-
merge). However, this may not always find the
optimal merges, particularly if the phoneset we
are starting with is not the appropriate represen-
tation for the dialect present in the speech. An-
other technique is to automatically find candidate
merges by taking into account phone errors made
by the ASR system in presence of a monolingual
context (data-driven). Thirdly, we can create lex-
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icons with all possible pronunciation variants cov-
ering all candidate phones and allow the decoder
to choose the correct pronunciation variant during
decoding (probabilistic). We implement and dis-
cuss these techniques for phone merging in Hindi-
English code-switched speech recognition.

The paper is organized as follows. Section 2
relates this work to prior work in code-switched
speech recognition. Section 3 describes the Hindi-
English speech data that we used. We describe our
proposed techniques and experiments with phone
merging in Section 4 and conclude the paper in
Section 5.

2 Relation to Prior Work

Code-switched speech recognition has been stud-
ied in the context of acoustic, language and pro-
nunciation modeling. The Language Identifica-
tion (LID) based approach is to identify the lan-
guage boundaries and subsequently use an ap-
propriate monolingual ASR system to recognize
monolingual fragments (Chan et al., 2004) or run
multiple recognizers in parallel with an LID sys-
tem (Ahmed and Tan, 2012; Weiner, 2012). An-
other approach is to train an AM on bilingual data
(Lyu et al., 2006; Vu et al., 2012) or to use one
of the monolingual AMs (Bhuvanagirir and Kop-
parapu, 2012) or to pool the existing monolin-
gual AMs by sharing phones belonging to both
languages. Yeh et al. (Yeh and Lee, 2015)
tackle the problem of code-switching in which a
speaker speaks mainly in one language, leading to
an imbalance in the amount of data available in
the two languages, with cross-lingual data shar-
ing approaches. (Pandey et al., 2017) also pro-
pose studies to adapt matrix language (monolin-
gual Hindi) resource to build better code-mixed
acoustic model in case of read speech.

Yilmaz et al. (Yilmaz et al.,, 2016) describe
two DNN architectures for recognizing Frisian-
Dutch code-switched speech. They use language
dependent phones in which each phone is tagged
with the language and modeled separately. They
also use language independent phones by model-
ing them jointly and merging them on the basis of
the associated IPA symbol. In their experiments,
they find that the language dependent approach
performs better. (Lyudovyk and Pylypenko, 2014)
describe an approach for code-switched speech
recognition of closely related languages, namely,
Ukrainian and Russian by creating a bilingual pro-
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nunciation lexicon.

(Chan et al., 2009) describe a two pass approach
for Cantonese-English mixed speech recognition,
in which they develop a cross-lingual phonetic
AM, with the phone set designed based on lin-
guistic knowledge. (Yu et al., 2004) present
three approaches for bilingual phone modeling
for Mandarin-English speech, namely combining
phone inventories, use IPA mappings to construct
a bilingual phone set and clustering phones with
hierarchical clustering by using the Bhattacharyya
distance and the acoustic likelihood. The third ap-
proach outperforms the IPA-based mapping and is
comparable to the combination of the phone in-
ventories.

A closely related area of research is the Multi-
Lingual speech recognition (Toshniwal et al.,
2018; Schultz and Waibel, 1997, 2001; Lin et al.,
2009; Vu et al., 2014). Though the problems
in multi-lingual ASR and ASR for code-switched
data seem similar such as; large phonetic space
due to the incorporation of the phones of both
languages, code-switched ASR has its own set of
challenges. For example, even with a large corpus,
getting enough data at code-switched points for
both the Acoustic Model and the Language Mod-
els is very challenging.

3 Data

The dataset used in this work contains conversa-
tional speech recordings spoken in code-switched
Hindi and English. Hindi-English bilinguals were
given a topic and asked to have a conversation
about the topic with another bilingual. They were
not explicitly asked to code-switch during record-
ing, but around 40% of the data contains at least
one English word in an utterance. The conver-
sations were transcribed by bilingual transcribers.
Hindi words were transcribed in the native Hindi
script Devanagari, and English words in Roman
script. There was no distinction made between
borrowed words and code-switching, which led to
some inconsistencies in transcription. Each con-
versation was broken down into utterances rang-
ing from very short one word utterances to long
sentences.

A summary of the Hindi-English code switched
dataset used in our experiments is shown in Ta-
ble 1. The code-switching statistics mentioned are
particular to this dataset and is subject to change
depending on the speaker. However, the phone



# of Total Unique En

Data  Utts Spkrs Hrs Words En (%) Words (%)

Train 41276 429 46 560893 16.6 18900  40.23

Test 5193 53 56 69177 16.5 6000 41.01

Dev 4689 53 5.7 68995  16.05 6051 40.04

Table 1: Hindi-English code switched data
merging experiments described in this paper is still ‘.
relevant due to the performance gains of the acous- °
tic model. d '... e
~ Y
4 Phone merging g 4f o JPD 0, |
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In this section, we first describe the baseline ASR go ° o'’
system built by combining the Hindi and English - 31 oo o2 .
phonesets, followed by experiments conducted on . °.
phone merging and the resulting impact on Word 9| i
Error Rate (WER). All experiments were carried A
out using Kaldi (Povey et al., 2011) and the phone 012 Oi 4 016 018
merging techniques are implemented in Python. Accuracy

4.1 Baseline ASR System

The CMU Pronunciation dictionary (Weide, 1998)
containing 39 phones was used as the lexicon for
all the English words in the data. This is not the
most appropriate choice given that all the speak-
ers in the data speak Indian English, however, due
to the lack of a publicly available large Indian En-
glish lexicon, we used CMUdict. To generate the
lexicon for the Hindi words, we used the Festvox
Indic front end (Parlikar et al.), which does ba-
sic grapheme to phone conversion for Hindi, in-
cluding schwa deletion and contextual nasaliza-
tion. The Hindi phoneset consisted of 50 phones
after removing some very low frequency phones.

We used Feature-space maximum likelihood
linear regression (fMLLR) (Gales, 1998) to train
a context-dependent GMM-HMM acoustic model
and a trigram Language Model (LM) built on the
transcripts during decoding. With this system, we
obtained a baseline Word Error Rate (WER) of
40.36%.

We evaluated the accuracies at phone level by
comparing the transition arcs that correspond to
phones in the decoded lattices with the alignments
obtained from the GMM-HMM model as ground
truth. Figure 1 shows a scatter plot of the phone
accuracy with respect to the log of the data avail-
able per phone in the test dataset. Evidently, we
observe higher accuracies for phones with larger
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Figure 1: Scatter plot of log of data count per
phone with respect to the phone accuracy on the
test set.

count with a few exceptions such as, /nN_HP/, /zh/
and /dR_HP/.

4.2 Manually merging similar sounding
phones

To increase the data availability per phone, we
merged similar sounds in both languages even if
they are not exactly the same linguistically (in
terms of their articulation). The mapping between
Hindi phones and CMUdict phones in the Festvox
Indic frontend, built for enabling a Hindi TTS
system to pronounce English words (Sitaram and
Black, 2016), was used for this purpose. All the
merged phones (a total of 31) were prefixed with
“-HP-M”.

To analyze the impact of merging, we started by
merging a pair of phones - the English phone eh
(example “academic ae k ah d eh m ih k) with
a similar sounding Hindi phone E-HP (example
in Roman script: “kehana k-HP E-HP hv-HP nB-
HP Aa-HP”). This resulted in 38 English phones,
49 Hindi phones and 1 merged phone resulting
in 88 unique phones. We obtained a WER of
40.21 using a GMM-HMM acoustic model, which



is a negligible improvement over the system with
no merging. The bar plot in Figure 2 shows the
change in the accuracies for each phones with re-
spect to the baseline. We notice an improvement
of 4.18% and 4.5% in the accuracy of the ‘eh’ and
‘E-HP’ phones respectively. Similar performance
was obtained while merging the English phone n
with the Hindi phone nB-HP. In both cases, a de-
crease in accuracies for a few phones were ob-
served.

Then, we merged all the 31 pairs of similar
sounding English and Hindi phones. We refer to
this system as the “all merged” system, for which
we obtained a WER of 39.7%. There was a no-
ticeable improvement in the accuracies of about
75% of the phones as shown in Figure 3 . We ob-
served a decrease in accuracies for phones which
do not have similar sounding equivalents to merge,
such as the Hindi phones ‘sr-HP” and ‘nN-HP’ and
the English phone ‘ng’. Large improvements in
the phone accuracies, amounting to around 50%,
were observed in merged phones such as ‘ow-HP’
(merged with the English phone ‘ao’) and ‘tr-HP’
(merged with the English phone ‘t”). Conspicu-
ously, the highest improvements were for phones
with low count prior to merging.

4.3 Measuring phone accuracy changes

To evaluate the performance of these systems
in terms of phone accuracy, we computed the
weighted average of change in accuracies. The
weights correspond to the data available per
phone. We measure Weighted Average of
Phoneme Improvement (henceforth referred to as
W API) as:

> wi X Aacc;
> Wi ’

where w; and Aacc; represent the data available
per phone and change in phone accuracy with re-
spect to the baseline respectively. A summary of
the W API score for different acoustic models is
shown in Table 2. The “all merged” system gives
the highest WAPI score of 2.45%, whereas merg-
ing ‘eh’ with ‘E-HP’ and ‘n’ with ‘nB-HP’ results
in a WAPI score of 0.31 and 0.47 respectively. In-
terestingly merging both ‘eh’ with ‘E-HP’ and ‘n’
with ‘nB-HP’ results in WAPI score of 0.49 which
is higher compared to individually merging these
phones.

From the above experiments we infer that merg-
ing phones result in more data for data-starved

WAPI =
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Phones

Merged WAPI
All 2.45
eh with E-HP 0.31
n with nB-HP 0.47
eh with E-HP & n with nB-HP  0.49
Py -0.59
Py 1.63

Table 2: Weighted average of phone improvement
(WAPI) scores for different phone merging.

phones which in turn improves the phone accura-
cies.

4.4 Improved Acoustic Models

We also performed the same experiments using
two Deep Neural Network (DNN) based acous-
tic models. The first model was built using 5 hid-
den layers with p-norm (Zhang et al., 2014) as the
non-linearity. The input dimension of each hidden
layer was 5000 and output dimension was 500. We
used 40 dimensional MFCC along with 4 splicing
frames on each side, appended with 100 dimen-
sional i-vectors (Dehak et al., 2011) as input fea-
tures. We also built a time-delay neural network
(TDNN) (Peddinti et al., 2015) with 6 hidden lay-
ers and ReLLU as the non linearity.

Merging GMM p-norm DNN TDNN
No merge 40.36 32.81 29.15
All merge 39.70 31.89 28.78
DDPM 52.95 45.99 42.16
DDPM (a.(p)) 41.07 34.69 31.52
DDPM (o) 40.75 34.48 31.28
P3g 41.21 33.40 29.84
Pq 40.92 34.30 28.94

Table 3: Word Error Rates of all systems. DDPM
stands for Data Driven Phone Merge. It has 3 vari-
ants as mentioned in section 4.5

Table 3 summarizes the WER for the different
systems. The all-merge model with p-norm DNN
had a WER of 31.89% (with confidence interval of
0.34%). This is 2.8% lower than the baseline DNN
model with no merging. The TDNN network out-
performed both the GMM and p-norm based DNN
AMs. The relative WER improvement of 1.29%
using TDNN with merging is statistically signifi-
cant compared to TDNN model without merging.



s L |
MHHHHH
-
g
=
g ”HH”HHHHHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂuun
3 o LUUUUUUUU gy uonon0onnonnononnanneaeesloy, aEs| |
.s L1111
)
5
@)
—_5 |- |
I EEEEEEEE
BT AR e T T R R R R Y T R AR e T e e T T e e R e R RS DR TR VR Y SRR SRR SYE
Sm Z. g E:?' a & 5 o ﬁ m;% S 4>: £3 c'\.v'—ﬁ < == :‘r_‘z_c‘:l)géfé gé-‘ﬂ_":&‘- §~‘d 'b»—<;$% % % gz';,
- ) &Sl
. : o) i . ) . i )
Figure 2: Accuracy changes (%) in the phone accuracies when eh (En) phone is merged with E-HP (Hi
phone

40

20

Change in accuracy(%)

___________________

ph-HP |
b
v
s
1
w
n
ch
g
I

Figure 3: Change in phone accuracies after merging all similar sounding Hindi and English phones.

Motivated by this improved ASR performance, we
investigate approaches to merge phones using data
driven methods. We hypothesize that the data
driven methods will provide us with clues on the
acoustic similarity between phones to be merged.

4.5 Data-driven phone merging (DDPM)

The potential phone pairs to merge can be iden-
tified based on the errors made by the decoder,
with respect to the alignments. A TDNN acous-
tic model trained using the unmerged (89 phones)
phoneset was used to decode the utterances from
the dev dataset, with a low LM weight of 1 so
as to minimize the influence of LM. Phoneme se-
quences are then derived by parsing the best path
through the decoded lattice. The same acoustic
model is also used to align the dev data and ob-
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tain the corresponding true phone sequences and
their durations. We choose pairs of aligned and
decoded utterances with a strict threshold of 80%
or more overlap in duration. Using the alignments,
we identify English phones which were wrongly
decoded as Hindi phones. We call them cross-
language swaps. Frequent swapping between
English-Hindi phone pair, indicates the need for
the pair to be merged.

Using this approach we observe several merges
that were present in the manual merge. For in-
stance, (e_HP, ey), (A_HP, ah), (ii_HP, iy), (m_HP,
m), (b_HP, b), (ph_HP, f). Errors such as, (Aa_HP,
D), (u_HP, ah), (j_HP, ey), (g_-HP, 1), were also no-
ticed. WER of 52.95, 45.99 and 42.16 were ob-
tained using GMM, DNN and TDNN models re-
spectively, after merging the phones identified by



the data-driven method. The decrease in perfor-
mance can be attributed to the wrong phone swaps.

4.5.1 Inducing context sensitivity through
reliability coefficients

Spurious phone swaps degrade the performance of
the ASR substantially. This can be reduced by
taking into account the phone context. We asso-
ciate a notion of context reliability with each con-
text ¢, which is defined as the proportion of correct
within-language phone predictions by the decoder
out of all the instances of a context c. We compute
this reliability as a coefficient (a.) for left, right
and both contexts in two different ways. o, can be
computed with respect to a specific center phone

(ae(p)) as:
correct instances of p with ¢
Oéc(p) = . ;
total instances of p with ¢
= P(z = plc)

)

An alternate method referred to as global con-
text reliability coefficient, is to compute the con-
text reliability coefficient for every context irre-
spective of the center phone p. This is obtained
by computing the ratio of the counts of the cor-
rect instances for any arbitrary phone in presence
of context c to the total instances of context c:

correct instances of context ¢

(2)

The computed . are applied as weights while
combining the probability of cross-language
swaps conditioned on the context c.

Our goal is to compute the conditional probabil-
ity of the decoded phone(x,) given the alignment
phone (z,), which is P(x4|z,). The phone ()
with the highest probability will be chosen as the
potential merge for z, (eq. 3).

total instances of context ¢

3)

The context information is incorporated by
computing the conditional probability specific to
a context as P(x4|zq,c) and then marginalizing
over all possible ¢ to obtain the swap probability
P(z4lza) (eq. 4).

Zq = arg max P(x4|z,)
Zq

P(zqta) = Y P(alaa, ¢)P(c|za)
~ ZP(de’Ua, ¢)P(z4|c)P(c) 4)

R~ ZP(de'Ea, c)a.P(c)
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P(c) is the prior probability for each context
c which is computed using the dev dataset. We
assign a neutral reliability (ay) score of 0.01 and
prior P(c) of 0.01 to all the unseen contexts. The
min and max values of a, are 0.0 and 1.0 respec-
tively.

Figure 4 shows cross-language phone confu-
sion matrices for the two context-sensitive data
driven phone merging approaches. We observe
that phone-specific coefficients are able to cap-
ture only the most prominent merges while global
coefficients produce merges that highly correlate
with the manual merge. This might be due to
the division of context information across phones
which reduces the context sensitivity. This clearly
suggests that some contexts help in producing bet-
ter predictions than others, regardless of the ref-
erence phone. Although many of the swaps pre-
dicted using DDPM closely resemble the manual
merges, the manual merge method outperformed
global-DDPM by approx. 3% absolute as seen in
Table 3. The distribution of ¢, values show that
the left and the right context exhibit high confi-
dence scores, whereas low confidence scores were
observed when both the context were considered.
Hence, we will benefit by removing the spurious
low-confidence contexts while merging.

Figure 5 presents the swap likelihood of the pre-
dicted phone-pairs in decreasing order. We ob-
serve that phone pairs that have the highest swap
likelihoods include nasals, close vowels and stops.
It is interesting that the data driven method iden-
tified new phone merges such as (ae, Aa_HP) and
(aa, ow_HP) compared to manual merged phones.
We believe that incorporating these new phone
merges into the manually merged phone set will
improve the ASR performance. Further experi-
ments need to be conducted to verify this claim.

4.6 Probabilistic merging

Next, we propose a method to allow the acous-
tic model to select appropriate phones during de-
coding. We trained an acoustic model using the
merged phones while also retaining the Hindi and
English phones. For example, the phone set for
the new AM contained the English phone ‘eh’, the
Hindi phone ‘E-HP’ as well as the merged phone
‘E-HP-M’. The intuition behind this approach is to
let the decoder choose between multiple pronun-
ciation variants in the lexicon so as to determine
the pronunciation used by a speaker who code-
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Figure 5:

switched. This approach has been shown to work
well in speech synthesis for pronunciation model-
ing of homographs (Sitaram et al., 2015). Table
4 compares the number of unique Hindi, English
and merged phones for the different systems men-
tioned.

During training, we modified the lexicon so as
to retain part of the data for the unmerged phones
and assigned the rest to the merged phones. We as-
signed 30% and 70% of the data to merged phones
which we refer to as P3p and Prg. During de-
coding, we created a different lexicon allowing
all possible pronunciation variants. We obtained
WERs of 41.21% and 40.92% using the HMM-
GMM based AM for P3g and Py models respec-
tively which are lower than the baseline. WAPI
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Swap-pair likelihood for phone-specific (a.(p)) and global () context reliability coefficients.

En Hi Merged Total
Baseline 39 50 0 89

All merge g8 19 31 58

DDPM 9 20 30 59

DDPM (ac(p) 20 25 14 59

DDPM (o) 21 24 14 59

Pl‘Ob&}blllSth 39 50 31 120
Merging

Table 4: Number of phones before and after merg-
ing



score of 1.63 for Py model was higher compared
to -0.59 of P3y model but lower compared to the
all merge model. Table 4 shows the number of
English, Hindi and merged phones for each tech-
nique.

The WER is a function of number of insertion,
deletion and substitution errors as well as the cor-
rect token numbers. Figure 6 shows the relative
percentage change in the insertion, deletion and
substitution values of the ““ all merge”, P3¢ and
Py model compared to the baseline system us-
ing TDNN as AM. The best system should have
the lowest insertion, deletion and substitution er-
rors and highest correct tokens. The “all merge”
model, which has the best WER scores, has higher
insertion and substitution errors but performs bet-
ter on deletion errors and recognition of correct
tokens. We can infer that certain phone merges
are causing higher insertion and substitution er-
rors and should be avoided, thus concluding that
the manually merged phones are sub-optimal.
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Figure 6: Percentage change in insertion, deletion,
substitution and correct token recognition num-
bers compared to the baseline system with TDNN
as AM. The best system should have the lowest of
insertion, substitution and deletion numbers and
the highest of correct token numbers. The number
of word tokens in baseline system for insertion,
deletion, substitution and correct tokens are 3342,
5735, 11089 and 49011 respectively.

5 Conclusion

In this work, we compare phone merging tech-
niques in context of code-mixed Hindi-English
speech with a baseline system built using a union
of both phone sets. We first merge similar sound-
ing phones across both languages manually in or-
der to reduce the phone set size and increase the
data availability per phone. We observe a 3% rel-
ative improvement in the WER values compared
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to the baseline using a p-norm based DNN model
along with a significant improvement in phone ac-
curacies. We then propose data-driven approaches
to merge phones automatically. To correct the
errors made by data-driven method, we weight
the cross-language swaps using reliable within-
language contexts. These methods gave newer
phone merge recommendations which can be use-
ful to improve the ASR performance. We fur-
ther propose probabilistic methods where in the
decoder is provided with both the merged as well
as the unmerged phones which reduced the inser-
tion errors compared to the manually merged sys-
tem. these techniques came close to, but did not
improve upon the manually merged ASR system.
Error analysis of manual merging indicates that it
is not optimal and there is a need for better data-
driven techniques to automatically merge phones
for code-switched ASR.
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Abstract

We explore the effect of injecting back-
ground knowledge to different deep neural
network (DNN) configurations in order to
mitigate the problem of the scarcity of an-
notated data when applying these models
on datasets of low-resourced languages.
The background knowledge is encoded
in the form of lexicons and pre-trained
sub-word embeddings. The DNN mod-
els are evaluated on the task of detecting
code-switching and borrowing points in
non-standardised user-generated Algerian
texts. Overall results show that DNNs ben-
efit from adding background knowledge.
However, the gain varies between models
and categories. The proposed DNN archi-
tectures are generic and could be applied
to other low-resourced languages.

1 Introduction

Recent success of DNNs in various natural lan-
guage processing (NLP) tasks has attracted atten-
tion from the research community attempting to
extend their application to new tasks. Neverthe-
less, the large amount of labelled data required to
train DNNSs limits their application to new tasks
and new languages because it is hard to find large
labelled corpora for these domains. The issue is
even more severe for low-resourced languages.
Another serious problem with most current
NLP approaches and systems is that they are
trained on well-edited standardised monolin-
gual corpora, such as the Wall Street Journal,
Wikipedia, etc. This could be explained by the
fact that for a long time NLP has been influenced
by the dominant descriptive linguistic theories af-
fected by the standard language ideology which
assumes that natural languages are uniform and
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monolingual. However, standardisation is not uni-
versal (Milroy, 2001), meaning that not all lan-
guages are standardised. Therefore, lexical, struc-
tural and phonological variation is, for instance,
the norm in natural language and not an excep-
tion, meaning that well-edited texts do not really
reflect the natural usage of natural languages, but
only represent formal languages.

The discrepancy between the assumed unifor-
mity of language both in linguistic theory and
NLP and their variable nature is accentuated by
new technologies, such as social media platforms
and messaging services. These new communica-
tion platforms have facilitated the proliferation of
writing in non-standardised languages on the web,
such as colloquial Arabic or what is commonly re-
ferred to as dialectal Arabic. This is because in
interactive scenarios people usually use spoken-
like (colloquial) language or, in multilingual so-
cieties where people have access to several lin-
guistic codes at the same time, a mixture of lan-
guages/language varieties. Consequently, this new
kind of written data has created a serious problem
regarding the usability of the existing NLP tools
and approaches as they fail to properly process it,
even in the case of well-resourced languages.

The contribution of the paper is to explore how
to mitigate the problems (i) of the scarcity of anno-
tated data when using DNNs with low-resourced
languages, and to what extent can we take advan-
tage of the limited available resources, and (ii)
to provide NLP approaches and tools that would
be able to deal with non-standardised texts and
language-mixing. In particular, for (i) we investi-
gate what are the optimal ways of injecting avail-
able background knowledge to different configu-
rations of DNNs in order to improve their per-
formance. For (ii) we take the case of the lan-
guage used in Algeria as it poses serious chal-
lenges for the available NLP approaches and tools.
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It is a low-resourced multilingual colloquial lan-
guage. We chose the task of a word-level lan-
guage identification which is a first step towards
processing such texts. The task focuses on detect-
ing code-switching and borrowing points in a text
which represents the same utterance. Knowing
what parts of text belong to what language variety
allows to perform better qualitative and quantita-
tive analysis of such texts with other tools.

The paper is organised as follows: in Section 2
we briefly describe the complex linguistic situa-
tion in Algeria as a result of a language contact.
The section aims to explain the linguistic chal-
lenges of processing such texts and motivates our
choices based on established sociolinguistic theo-
ries. In Section 3 we present our available linguis-
tic resources and different DNN configurations. In
Section 4 we describe our experimental setup and
analyse the results. Finally, in Section 5 we com-
pare our contribution to previous related work.

2 Linguistic Background

In North Africa in general, and in Algeria in par-
ticular, intense language contact between various
related and unrelated languages has resulted in
a complex linguistic situation where several lan-
guages are used in a single communicative event.
A few cases of language contact have attracted
the attention of the linguistic community while the
monolingual norm dominates in linguistics. One
kind of language contact situation has been de-
scribed by Ferguson (1959) as diglossia which
refers to a situation where two linguistic systems
coexist in a functional distribution within the same
speech community. In another kind of language
contact situations, several languages coexist but
not in a well-defined functional distribution. This
situation is referred to as bilingualism (Sayahi,
2014) which could result from either informal con-
tact between coexisting languages like Berber and
Arabic, or from formal education where in addi-
tion to other language people learn French with
varying degrees of competence.

Based on the Fishman’s model (Fishman,
1967), North African Arabic, known as Maghrebi
Arabic, is classified as a linguistic situation in
the speech community characterised by diglossia
with bilingualism. The intense language contact
between related and unrelated languages has re-
sulted mainly in two widespread linguistic phe-
nomena: code-switching and borrowing. As de-
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fined by Poplack and Meechan (1998), code-
switching is (ideally) integration of material from
one language to another without any phonological,
morphological or syntactic integration, whereas
borrowing is when material is integrated.

For computational purposes, we focus on
diglossic code-switching (Sayahi, 2014), which
happens between related languages such as
switching between Arabic varieties, and bilingual
code-switching, which happens between unrelated
languages such as switching between one Ara-
bic variety and other coexisting language such as
Berber, French or English. Regarding borrowing,
it is practically not possible to clearly distinguish
whether a word in one Arabic variety is integrated
into another variety or not because there are no
lexicons for Arabic varieties, except for the stan-
dard one, and we also do not have access to acous-
tic representations of words. Based on this, we
can practically focus only on bilingual borrowing
rather than on diglossic borrowing.

(D a ges sl bopl b 3 bywe & v (500

Golre s JUfg Ly shasSy dmaal
FF G

b. Put a small towel in a cup of water and
dissolve Aspegic in it and cover him
with it, it is what I usually do. He will
feel quickly better.

As illustration, (1) is a user-generated utterance
which contains words in Modern Standard Arabic
(La ¢ 3§ ¢lraee), note that the word Lnse is mis-
spelled and should be spelt like 314w, words in
local Algerian Arabic ( ETE T (tb" (SR
f; f 45% S zéJ\.u cdla Ly (sl aeSsy), French
words integrated in Arabic ({.lb (i o) , and a

French word without integration ()¢ ).

3 Linguistic Resources and Models

3.1 Linguistic Resources

We use the dataset by (Adouane and Dobnik,
2017) where each word is tagged with a label
identifying its category which could be a lan-
guage/language variety, including local Arabic va-



rieties (ALG), Modern Standard Arabic (MSA),
French (FRC), Berber (BER), English (ENG),
non-Arabic words integrated in local Arabic or
what is referred to as borrowing (BOR), in addi-
tion to language independent categories such as
named entities (NER), digits (DIG) and interjec-
tions (SND). To the best of our knowledge this
is the only available labelled dataset for code-
switching and borrowing for Algerian. As the la-
belled dataset is small, we also collected a larger
unlabelled dataset from the same sources as the
authors of the labelled dataset, and pre-processed
them in the same way. Table 1 gives information
about the datasets where texts refer to social media
texts with an average length of 19 words, words
refer to linguistic words excluding other tokens
(digits, punctuation, emoticons), and types refer
to unique words.

Dataset #Texts #Words  #Types
Labelled 10,590 213,792 57,054
Unlabelled 311,130 4,928,827 350,759

Table 1: Statistics about the datasets.

We also use the lexicons compiled by the authors
of the labelled dataset, with further cleaning. The
lexicons include lists of inflected words checked
manually, one list per category. Words belonging
to more than one category are not included. Ta-
ble 2 gives more information about the sizes of the
lexicons.

Category ALG MSA FRC BOR NER ENG BER

#Types 42788 94,167 3,206 3,509 1,945 165 21,789

Table 2: Statistics about the lexicons.

3.2 Models

We approach the task of detecting code-switching
and borrowing points in text as a sequence tag-
ging problem where the aim is to assign a tag to
each word in the text depending on its context.
We use two DNN architectures, namely Recurrent
Neural Network (RNN) and Convolutional Neu-
ral Network (CNN) with different configurations
summarised in Figure 1.

The first option is to use an RNN to map char-
acter embeddings to tags directly. Alternatively,
we can use word embeddings. Word embedding
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tags

RNN < > CNN

word embeddings

]

Lexicon FastText

char embeddings

Figure 1: A summary of possible tagging models.

can be any combination of (a) fixed lexicon infor-
mation (b) fasttext embeddings (c) a custom CNN
built from character embeddings. The word em-
beddings can be mapped to tags using either an
RNN or a CNN, or a simple dense layer with soft-
max activation.

Except for the pure Lexicon-based model, all
other models have access to characters and thus
to the internal structure of words (phoneme and
morphemes), which we expect to be predictive of
a particular variety. All models are trained end-
to-end, except for the fasttext embeddings and the
lexicon. We report only the configurations of mod-
els which give the best performance, with the fine-
tuned parameters, namely the number of units for
each RNN layer, dropout rate, the number of fea-
tures and the filter size for each CNN layer. The
parameters are fine-tuned on a separate develop-
ment set containing 1,000 texts (13,771 tokens).

3.2.1 Character-level RNN

The character-level RNN is composed of two
LSTM layers of 400 units each, with a dropout of
10%, followed by a dense layer with softmax acti-
vation. Due to the nature of RNNs, the network as-
signs one language variant per input symbol, and
thus per character — but the task is to predict a
tag for each word. To deal with this limitation, we
consider only the tag associated with the last char-
acter of a word.

3.2.2 Word-level RNN

The word-level RNN is composed of a standard
LSTM layer with 400 units with a dropout of 10%,
followed by a dense layer.

3.2.3 Character-level CNN

The character-level CNN is composed of two con-
volution layers with 60 features with a filter size
5, with a relu activation and a dropout of 10%, fol-
lowed by max pooling in the temporal dimension.



3.2.4 Word-level CNN

The word-level CNN is composed of two convolu-
tion layers with a filter size 3, with a relu activation
and a dropout of 10%, followed by a dense layer
with softmax activation. The first layer uses 100
features and the second 60 features.

3.2.5 Lexicon-based Model

In order to take advantage of the available lexi-
cons, Table 2, we represent their words as one-hot
encoding vector, which we refer to as lexicon em-
beddings. The lexicon-based model is composed
of the lexicon embeddings followed by two con-
volution layers with a filter size 3, with a relu acti-
vation and a dropout of 10%, followed by a dense
layer with softmax activation. The first layer uses
100 features and the second 60 features.

3.2.6 FastText-based Model

In order to take advantage of the unlabelled
dataset, Table 1, containing a high level of mis-
spellings and spelling variation, we assume that
word embeddings that are based on sub-word in-
formation capture spelling variation and morpho-
logical information better than the embeddings
that take word as a unit. For this purpose we use
FastText library designed to train word embed-
dings where a word is represented as the sum of
its sub-strings (Bojanowski et al., 2016). We cre-
ated five fasttext embeddings trained on the unla-
belled dataset with different parameters. We found
that the optimal parameters are: word vector di-
mension of 300, and the range of the size of the
sub-strings representing a word between 3 and 6
characters, with a context size of 5 words, trained
on 20 epochs. The FastText-based model is com-
posed of the fasttext embeddings followed by two
convolution layers with filter size 3, with a relu ac-
tivation and a dropout of 10%, followed by a dense
layer with softmax activation. The first layer uses
100 features and the second 60 features.

4 Experimental Setup and Results

All models and configurations are evaluated under
the same conditions using 10-fold cross-validation
on the labelled dataset. As a baseline we take an
existing system (Adouane and Dobnik, 2017), a
classification-based system which uses a chain of
additional back-off strategies which involve lexi-
cons, linguistic rules, and finally the selection of
the most frequent category. We refer to this sys-
tem as the baseline.
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First, we train the RNN and CNN models only
on the labelled data (supervised learning) with-
out any background knowledge. We also examine
the effect of the FastText-based and the Lexicon-
based models separately to quantify the contribu-
tion of each. Then we combine both models to
optimise their performance. Second, in order to
take advantage of all available linguistic resources,
we add to each of the RNN and the CNN mod-
els background knowledge in the form of (i) lex-
icon embeddings; (ii) fasttext embeddings; (iii) a
combination of both lexicon and fasttext embed-
dings; and (iv) bootstrap the unlabelled dataset
with the baseline system and train the best per-
forming DNN model on it to investigate whether
bootstrapping improves its performance.

All results are reported as the average perfor-
mance of the 10-fold cross-validation for each
model at epoch 100 using the parameters men-
tioned earlier. For short, we use FastText to refer
to the FastText-based model and fasttext to refer
to the fasttext embeddings, Lexicon to refer to the
Lexicon-based model and lexicon to refer to the
lexicon embeddings.

4.1 Models without Background Knowledge

In Table 3 we report the average error rate of the
experiments without background knowledge for
only the best performing RNN, CNN, Lexicon,
and FastText models.

Model ER (%)
1 Char-level RNN 13.38
2 Char-level CNN 8.18
3 FastText 16.46
4  Lexicon 20.62
5 FastText + Lexicon 9.21
6 Baseline 9.52

Table 3: Average error rate of the models without
background knowledge.

Results show that the baseline (6) outperforms the
Char-level RNN (1), FastText (3) and Lexicon (4)
models. However, the baseline is outperformed
by the Char-level CNN model (2) with 1.34% er-
ror reduction. Combining FastText and Lexicon
in one model (5) performs much better than using
each model separately, and slightly outperforms
the baseline by 0.31% error reduction.

In Figure 2 we report the average performance



of each model per category, measured as precision,
recall, f-score and loss. Notice that we do not re-
port the loss for the baseline because of the way
the system was designed. The results show that
the baseline system performs better on the major-
ity categories, ALG and MSA, with an average f-
score of 91.91 and 90.44 respectively as well as on
non-linguistic categories like DIG and SND with
an average f-score of 97.17 and 93.88 respectively.

However, the baseline system performs less
well on the minority categories, BER and FRC
with an average f-score of 80.41 and 80.31 re-
spectively, and performs even worse on NER and
BOR with an average f-score of 72.55 and 64.70
respectively. It performs the worst on ENG with
an average f-score of 49.45. Regarding the minor-
ity categories, precision is high on BER (94.51%),
BOR (93.61%), FRC (92.97%) and lower on NER
(88.20%) and ENG (71.41%). However the re-
call is low on all categories BER (72.76%), FRC
(70.70%), NER (61.74%) and the lowest on BOR
(49.44%), and ENG (39.37%).

The error analysis of the baseline system shows
that the system is mostly confused between re-
lated language varieties like ALG-MSA as they
share a lot of words, as well as between varieties
that share lexically ambiguous words like FRC-
ALG, BOR-ALG, FRC-BOR, NER-ALG, BER-
ALG. Several words were neither seen in the train-
ing data nor were they covered by the available
lexicons which, given that the unknown words
are tagged as ALG, leads to confusions such as
ENG-ALG, NER-ALG, BER-ALG, BOR-ALG,
and FRC-ALG.

@ a gl ad ol U ki ol J6 dyy,
BAIFICR PV 75 BRI PN Feuy:
o)

b. Since they said that they will cut water

next week, I have bought a load of 20

bottles of Saida of 1.5 litre.

The MSA-NER confusion is mainly caused by
the fact that many NERs are simply common

nouns in MSA. For instance, 5. could be an
adjective in the feminine form in MSA meaning
happy, or a feminine proper name, or something
else. In the context of example (2) it is NER as it
refers to the name of a product. The word L means

water in ALG, but it is also used as a negation
particle in MSA and frequently in ALG, a relative
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pronoun in MSA, and a noun meaning mother in

ALG. Likewise is 3 means bottle in ALG, but it
also means contest or competition in MSA.

The f-score and precision of the Char-level
RNN model is lower from the baseline on all cat-
egories, and the recall is better on BOR 64.11%
compared to only 49.44% on the baseline, and
FRC 72.12% compared to 70.70% respectively.
ENG, BER, NER, BOR and FRC are the hardest
categories to identify with the following respec-
tive loss values: -9.56, -6.72, -3.89, -3.57, -2.80,
and all categories are confused with ALG, the ma-
jority class.

The f-score of the Char-level CNN model is bet-
ter on SND, MSA, FRC, DIG, BOR, ALG com-
pared to the baseline, but it performs worse on
NER, ENG, BER. This could be contributed by
the worse recall on these categories which follows
the same trend as the f-score. However, in terms
of precision, the Char-level CNN model performs
better on ALG, BER, ENG and SND and worse
on the remaining categories, with the same kind of
confusions as the baseline.

The f-score of the FastText model is low on all
categories compared to the baseline. The same
holds for recall and precision except on BER
where the precision is better 96.18% compared
to 94.51% on the baseline. The model produces
the same kind of errors as the previous models,
but which are most similar to the Char-level CNN
model.

Compared to the baseline, the Lexicon model
performs better in terms of the f-score on BOR
(80.94 compared to 64.70), ENG (73.72 compared
to 49.45), and FRC (83.60 compared to 80.30).
However it performs significantly worse on BER
(18.31 compared to 80.41). This is likely because
of the limited coverage of the lexicons. The re-
sults also indicate the bias of the lexicons to those
categories that are more difficult to distinguish au-
tomatically. On the other hand, in terms of the re-
call, the Lexicon model outperforms the baseline
on all categories, except on ALG. In terms of the
precision, it is only better on ALG and ENG. The
model makes similar errors as the FastText model,
only more frequently.

Combining FastText and Lexicon models has
a positive effect as the f-score, recall and preci-
sion increase on all categories, mainly on BOR (f-
score of 47.10 to 84.74), ENG (F-score of 32.05 to
70.59) and NER (f-score of 58.90 to 80.35). The
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combined model makes the same errors as previ-
ous models but less frequently.

Overall, the results in this section show that
a simple Char-level CNN model outperforms the
more complicated baseline system which uses a
back-off strategy and extra resources. However
the Char-level CNN model performs worse on the
minority classes, particularly on NER, ENG and
BER. On the other hand, the other models perform
better on the minority classes in terms of recall, but
they perform worse on the remaining categories
because of the limited coverage of the lexicons or
because of lexical ambiguity. This means that the
performance of these models is in complementary
distribution. We will explore this observation in
the following section.

4.2 Models with Background Knowledge

One possible improvement of the models in Sec-
tion 4.1 is to inject information from the lexicons
and the knowledge encoded in the fasttext to the
DNN models. In Table 4 we report the average
error rate of only the best performing experiments
combining different models and resources.

Model ER (%)
1 Char-level RNN + lexicon 8.27
2 Word-level RNN + fasttext 8.20
3 Word-level RNN + fasttext + lexicon 5,34
4 Char-level CNN + lexicon 5.18
5  Word-level CNN + fasttext 9.75
6  Char-level CNN + lexicon + fasttext 6.23
7 Char-level CNN + lexicon + Bootstrapping 5.23
8 Baseline 9.52

Table 4: Average error rate of the models with
background knowledge.

The results show that RNN models (with original
error rate of 13.38% for Char-level RNN) benefit
from both adding the lexicon (1) and the fasttext
(2). The gain is even higher when combining both
with the Word-level RNN (3). The CNN mod-
els behave differently when adding lexicon and
fasttext. The Char-level CNN (4) performs best
with the lexicon with 3% error reduction. The
Word-level CNN (5) performs worse with fasttext
compared to basic Char-level CNN introducing a
1.57% increase in the error rate (Table 3). Also the
Char-level CNN (6) does not benefit from combin-
ing lexicon and fasttext. It appears that the latter
introduces noise that CNN is sensitive to. Like-
wise, additional bootstrapped training data does
not help the otherwise best performing Char-level
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CNN + lexicon model (7). This may be also ex-
plained by the additional noise in the bootstrapped
data.

Figure 2 indicates that adding lexicon informa-
tion has a positive effect on the overall perfor-
mance of the RNN models. The gain from the
lexicons is noticeable on all categories where pre-
cision, recall and f-score increase, most impor-
tantly on BER, BOR, ENG, FRC and NER. The
same kind of errors are present as with the previ-
ous models but fewer in number. For instance the
number of errors between ALG-MSA drops from
1,077 to 724, and between FRC-ALG from 104 to
64.

Adding lexicon information to the Char-level
CNN model boosts its overall performance over
models not using lexicons. All the categories ben-
efit from the lexicon information and their f-score,
recall and precision increase, most importantly on
the minority categories such as ENG, with the
same errors but less frequent. However, adding
fasttext does not improve the performance of the
Word-level CNN model. Its average f-score de-
creases on all categories except on ENG where it
increases from 22.76 to 29.91.

Compared with the Char-level CNN + lexicon
model, adding fasttext to Char-level CNN does not
have the same positive effect. The only signifi-
cant gain is an increase in precision on ENG from
82.59% to 84.79%. Char-level CNN + fasttext +
lexicon model performs better than the FastText +
Lexicon model. It seems that fasttext does not help
the CNN model.

On the other hand, adding fasttext to an RNN
boosts its performance. The error rate drops to
13.38% (Char-level RNN) and 8.20% (Word-level
RNN). While the precision of each category im-
proves, the recall drops on both BOR and ENG
categories, by 3.35% and 1.97% respectively. The
f-score increases on all categories except on ENG
where it drops by 1.76%.

Examining the effect of lexicon and fasttext
on the RNN models, we find that the preci-
sion on the minority categories, chiefly BOR,
ENG, FRC, NER is higher when adding lexicon
(87.10%, 78.77%, 88.36%, and 86.77%) com-
pared to when adding fasttext (73.26%, 66.37%,
84.45% and 78.07%), but the precision on BER is
better when adding the fasttext (96.18% compared
to 91.51%). The same trend is observed for re-
call where BER is the only category that benefits



from fasttext compared to lexicon (70.65% com-
pared to 66.47%). ENG is the category which is
most negatively effected when adding fasttext with
a drastic decrease of 36.45% (23.62% with fasttext
and 60.07% with lexicon), followed by BOR with
18.98% decrease, and NER with 7.54% decrease.
The f-scores have the same pattern as the recall.

A gain of adding lexicon to the Word-level
RNN + fasttext model is observed on all cate-
gories. While precision increases on all categories,
for example on ENG from 78.77% without the lex-
icon to 88.04% with the lexicon, it slightly de-
creases for NER from 86.77% to 85.97% and SND
from 99.00% to 98.86%. The recall and f-score in-
crease on all categories.

The gain from using the bootstrapped data is
mainly reflected in an increase in precision on the
minority categories such as ENG, BOR, FRC and
NER (93.04%, 96.71%, 96.68% and 93.85% com-
pared to 82.60%, 90.56%, 91.31% and 89.43% re-
spectively without using the bootstrapped data). In
terms of recall, the bootstrapped data only boosts
ALG and SND categories. The f-scores of the
model trained without the bootstrapped data are
better on all categories. The insignificant effect of
the bootstrapped data could be attributed to the ad-
ditional noise introduced by the baseline system.

5 Related Work

The emerging digitised multilingual data that
followed the introduction of new technologies
and communication services has attracted atten-
tion of the NLP research community in terms
of how to process such linguistic data that
resulted from language contact between sev-
eral related and unrelated languages, for ex-
ample in detection of code-switching where
mainly traditional sequence labelling methods are
used for Bengali-English-Hindi (Barman et al.,
2014a), Nepali-English (Barman et al., 2014b),
Spanish-English and MSA-Egyptian Arabic (Diab
et al.,, 2016), MSA-Moroccan Arabic (Samih
and Maier, 2016), MSA-Algerian Arabic-Berber-
French-English (Adouane and Dobnik, 2017), etc.

The work most closely related to ours is de-
scribed in (Samih et al., 2016) who used a super-
vised LSTM-RNN model combined with Condi-
tional Random Fields to detect switching points
between related languages (MSA - Egyptian Ara-
bic) trained on a small dataset from Twitter. How-
ever, the system was only evaluated on the major-
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ity categories. Similarly, Kocmi and Bojar (2017)
proposed a supervised bidirectional LSTM-RNN
trained on artificially created multilingual edited
texts. These does not fully reflect all the complexi-
ties of real linguistic use in a multilingual scenario.

Adouane et al. (2018) propose a character-level
GRU-RNN on the same task as described here
backed by the available unlabelled data. They re-
port that their supervised RNN model performs
the best on labels with more representative sam-
ples. Adding neural language model that was pre-
trained on noisy unlabelled data does not help,
but bootstrapping the unlabelled data with another
system improves the performance of all their sys-
tems. In this work we use different DNN ar-
chitectures (RNNs and CNNs), and we aim to
examine the behaviour of each model when in-
jecting background knowledge in the form of en-
coded information from the available lexicons and
a pre-trained sub-word embeddings from unla-
belled data. Our goal is to take advantage of the
available NLP resources, with as little processing
as possible to mitigate the problem of scarce an-
notated data.

6 Conclusion

We have presented DNN models for detect-
ing code-switching and borrowing for an under-
resourced language. We investigated how to
improve these models by injecting background
knowledge in the form of lexicons and/or pre-
trained sub-word embeddings trained on an unla-
belled corpus, thus taking advantage of the scarce
NLP resources currently available. The results
show that the models behave differently for each
category of added knowledge. While adding in-
formation from the lexicons markedly improves
the performance of all models, adding knowledge
in the form of pre-trained sub-word embeddings
improves the RNN model more than the CNN
model. Bootstrapping does not bring a significant
overall contribution to performance of our mod-
els which is surprising given the previous reports
in the literature. However, it does boost preci-
sion of the minority categories. One future di-
rection worth exploring is how to deal with the
problem of misspellings and spelling variations to
reduce the irregularities in non-standardised user-
generated data as this appears to have a strong ef-
fect on the performance of RNN and CNN models.
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Abstract

Code-Mixing (CM) is the phenomenon
of alternating between two or more lan-
guages which is prevalent in bi- and
multi-lingual communities. Most NLP
applications today are still designed
with the assumption of a single inter-
action language and are most likely to
break given a CM utterance with mul-
tiple languages mixed at a morphologi-
cal, phrase or sentence level. For ex-
ample, popular commercial search en-
gines do not yet fully understand the
intents expressed in CM queries. As
a first step towards fostering research
which supports CM in NLP applica-
tions, we systematically crowd-sourced
and curated an evaluation dataset for
factoid question answering in three CM
languages - Hinglish (Hindi+English),
Tenglish (Telugu+English) and Tamlish
(Tamil+English) which belong to two lan-
guage families. We share the details of
our data collection process, techniques
which were used to avoid inducing lexi-
cal bias amongst the crowd workers and
other CM specific linguistic properties of
the dataset. Our final dataset, which is
available freely for research purposes, has
1,694 Hinglish, 2,848 Tamlish and 1,391
Tenglish factoid questions and their an-
swers. We discuss the techniques used by
the participants for the first edition of this
ongoing challenge.

1 Introduction

Code-Mixing (CM) is formally defined as the
embedding of linguistic units such as phrases,
words, and morphemes of one language into
an utterance of another language, which is
commonly observed in multilingual communi-
ties ((Myers-Scotton, 1997), (Poplack, 1980),
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(Muysken, 2000)). Traditionally, some studies
(Yow and Patrycia, 2011) have viewed the mix-
ing of two independent codes as lack of fluency
of the segment of population in either of the lan-
guages. However, an alternate perspective (Mil-
roy and Muysken, 1995) argues that mixing of
two traditionally isolated linguistic codes poten-
tially creates a third legitimate code. Researchers
(Crystal, 1997) have also presented several socio-
cultural reasons and motivations for switching.
There have been studies to depict the usage of
particular language based on the emotional at-
tachment and the sentiment of the person towards
that topic (Rudra et al., 2016). In this paper,
we adopt the perspective of descriptive linguis-
tics and make an effort to describe this prevalent
form of language as it occurs, without adopting a
prescriptive approach.

Ubiquitous access to social media tools and
platforms have also made CM the preferred
choice for both formal and informal commu-
nication. In such settings, where the commu-
nication is either semi-formal or informal, re-
searchers ((Bali et al.,, 2014), (Barman et al.,
2014)) have observed a higher tendency for multi-
lingual speakers to use CM. We studied a sam-
ple of conversation logs from a commercial chit-
chat based conversational agent in the Indian mar-
ket. The agent was trained to engage in infor-
mal chat conversations with the help of a database
of Twitter conversations from the Indian mar-
ket. Since India is a multilingual country with
a large number of multilingual speakers, we no-
tice that users often freely use each language in-
dividually or their CM versions while convers-
ing with the agent. We notice that, in around
3% of overall conversations, users were found to
be chatting with the agent in CM language such
as ‘hello, kya chal raha hai’ (Meaning: hello,
what’s up?). Interestingly, in cases where the re-
sponse of the agent was in CM language such as
‘sorry yaar’ (Meaning: sorry friend), users too
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responded back in CM language in 27% of those
times. There have been other studies regarding
the quantitative and qualitative aspects of code-
switching on social media along similar lines (Hi-
dayat, 2008). However, a large number of NLP
applications, such as Question Answering (QA),
Dialogue Systems, Summarization etc, still con-
tinue to be designed with the assumption of a
single interaction language such as English (Brill
et al., 2002), Hindi ((Kumar et al., 2005)), Chi-
nese ((Yongkui et al., 2003), (Sun et al., 2008)).
Such systems are most likely to break given a CM
utterance which has multiple languages mixed at
sentence, phrase or morphological level. Hence,
it is highly imperative for researchers to focus on
building more robust end-user NLP applications
which can understand and process CM language.

Building a good evaluation dataset for Factoid
QA in CM is wrought with challenges such as a)
ensuring that the annotators are unbiased in any-
way to artificially use CM b) recruiting a good
team of native bi-lingual speakers as annotators
¢) maintaining a good quality and diversity of
questions across intents, answer types and enti-
ties. In this paper, we describe our experience
in dealing with the above challenges while cre-
ating the dataset. We used a crowd-sourcing plat-
form for collecting data where the crowd work-
ers were restricted to only native language (Hindi,
Telugu and Tamil) speakers. We shared a detailed
set of guidelines and instructions about the task
with the crowd workers and also ran them through
some basic quality checks before collection of ac-
tual data. Finally, we were able to collect around
1,694 Hinglish, 2,848 Tamlish and 1,391 Tenglish
factoid questions along with their answers. We
have organized a Code-Mixed Question Answer-
ing challenge based on this data for the first edi-
tion of this challenge. There are 7 teams that reg-
istered and took the data from us. In this paper,
we discuss the preliminary techniques that 2 of
these groups used. To summarize, the following
are the main contributions of this paper:

e We curated an evaluation dataset for the task
of Factoid QA in CM languages with more than
5000 QA pairs for Hinglish, Tamlish and Tenglish
languages. We also make it freely available for re-
search purposes.

e We share our experiences related to eliciting
lexically unbiased CM questions by using images
as anchor points.

e We present the techniques used in the first edi-
tion of the CM QA challenge.

2 Related Work

Early work in this domain include investigat-
ing CM phenomenon in a formal and compu-
tational framework (Joshi, 1982) and develop-
ing formalisms (Goyal et al., 2003), (Sinha and
Thakur, 2005). Recent years have seen atten-
tion towards part of speech tagging for CM lan-
guages and gathering corpora ((Vyas et al., 2014),
(Solorio and Liu, 2008), (Jamatia et al., 2015),
(Soto and Hirschberg, 2017)) for it. Language
identification in mixed language scenarios has
also been studied recently ((Barman et al., 2014),
(Chittaranjan et al., 2014)) and has also been
aggressively addressed as a shared task at ma-
jor conferences ((Solorio et al., 2014), (Sequiera
et al., 2015)). Some of the other applications
that were picked up in research in CM over the
past few years include Named Entity Recogni-
tion (Zirikly and Diab, 2015), semantic parsing
(Duong et al., 2017), dependency parsing (Par-
tanen et al., 2018) and shallow parsing (Sharma
et al., 2016). While the above work focusses on
important language processing challenges in CM,
we are more interested in end-user NLP applica-
tions which support CM such as Factoid QA in
CM languages.

Eliciting a corpus of CM questions by para-
phrasing an English question was used to perform
question classification (Raghavi et al., 2015).
While this method has the advantage of having
a ground truth parallel text, the possibility of lex-
ical bias from the English question while framing
the code-mixed question exists. An extension to
this work was proposed by building an end-to-end
web based CM question answering system named
WebShodh (Chandu et al., 2017). Efforts have
been made to develop cross lingual QA systems
that take questions in English and answer back
in English but search for candidate answers in
Hindi newspapers (Sekine and Grishman, 2003)
along with other machine learning approaches
(Nanda et al., 2016). There has been some work
in the early 2000s to generate a dialog based QA
system in Telugu to support Railway inquiries
(Reddy and Bandyopadhyay, 2006). This kind
of cross language QA system is being researched
for European languages as well (Neumann and
Sacaleanu, 2003). A dataset of 506 questions
from messages from Facebook was proposed in
the Bengali-English CM domain (Banerjee et al.,
2016). Our dataset is over ten times larger than
this data and takes into account the lexical varia-
tion brought in by collecting questions from im-
ages and code-mixed articles.
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3 Dataset Collection

In order to study differences between lexical
bias from entrainment and elicit lexically diverse
questions, we employ two modes of data col-
lection: eliciting code-mixed questions from a)
images and b) code-mixed articles. The for-
mer are general questions and the latter are con-
text specific questions (similar to machine read-
ing). Techniques of collecting queries for a di-
alog system by presenting scenarios symbolically
and diagrammatically was previously used (Black
et al., 2011) in order to minimize supplying lex-
ical and phrasal cues. For collection of Hinglish
data, we used both these approaches whereas for
collecting Tenglish and Tamlish data, we used
only images. This is because for Hinglish, we
could find informative blogging websites based
on which it is easier to frame factoid code-mixed
questions. However, to the best of our knowl-
edge, during the time of our annotation, such fact
based code-mixed content was still not available
in Tenglish/Tamlish. It is also noted that it is less
likely to get questions that have abstract answers
(beyond the realm of physical entities) when they
are collected based on images.

3.1 Challenges in Code-Mixed Factoid
Questions Collection

We faced the following challenges during the
data collection task.

1. How would we eliminate the bias towards
using English in general scenarios while using
a search engine etc.,? In other words, we need
to encourage crowd workers to provide us with
data that is neither biased to English monolingual
questions due to preconceptions of the language
preference while interacting with a computer, nor
bias them to provide mixed language data if it
does not feel natural to them.

2. How do we eliminate responses from people
who are not native speakers? To mitigate this
problem, we have given the instructions to each
of these target languages in romanized code-
mixed version of the corresponding languages
mixed with English. This has the dual advantage
of being understood only by those who have
enough competence in the matrix language as
well as easing them into code-mixing and making
them comfortable with it.

3. How do we elicit factoid questions? This is
a trivial issue. We had to explain what a factoid
question is while providing sufficient examples
of factoid and non-factoid questions.

4. How do we collect questions that are general
enough that they could be answered without
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providing the context of the images (for image
based questions)? The design of the task to col-
lect questions based on images, in order to study
the comparative lexical bias when a code-mixed
article is given, has resulted in a lot of questions
that are related to multi-modal reasoning. For
example, Tenglish question ‘image lo entha
mandi unnaaru?’ (Meaning: How many people
are there in the image?) requires a visual in order
to answer. We removed such questions in the post
processing after data collection.

We ensured a good mix of categories while se-
lecting the target fulcrum entity images (exam-
ple: guitar, bicycle), location (example: Eiffel
Tower, Golden Gate Bridge), person (example:
Roger Federer, Eminem), event (example: World
War 2, Dandi March). Out of these, we manually
selected 80 images from which factoid questions
can be asked. To gather questions based on arti-
cles, we first scraped documents from hinglishpe-
dia.com, randomly selected 80 articles from them
and made sure that all of them were code-mixed.
The crowd-workers are then requested to form
factoid questions based on these articles such that
the answers to the questions are present in the cor-
responding article.

3.2 Crowd-sourcing for Question & Answer
Collection

We engaged with two streams of demographics
while collecting the data: university students and
crowd-workers. Each participant is allowed to
provide us with only 20 questions to avoid idi-
olectic biases i.e, biases of each individual. In
the first step, we performed the activity in a more
controlled environment in university classrooms.
The instructors of the classrooms were requested
to give a brief presentation we made about what
code-mixing is along with some example ques-
tions. This was performed to alleviate the bias
against mixing while interacting with a machine.
The students (with native languages among Hindi,
Telugu and Tamil) were given clear explanations
about factoid and non-factoid questions in order
to elicit the right kind of questions for our task.
In the second phase, we migrated this setup
to Amazon Mechanical Turk task, where crowd-
workers were redirected to our interface! of
mixed language instructions based on their native
language. Each accepted Human Intelligence Test

lhttps ://docs.google.com/
document /d/1CTFTjmU6RKUwsNH1z0Sj1_
8EZt8dz1-VGF5VwPLIpy0/edit 2usp=
sharing (toanonymize)



Category of Questions Num  Multilingual Index Language Entropy Integration Index Avg Length
Hinglish image questions 1,419  0.72 0.61 0.25 7.50
Hinglish article questions 275 0.88 0.66 0.29 8.90
Tamlish questions 2,848 0.69 0.59 0.24 5.56
Tenglish questions 1,391  0.80 0.64 0.28 5.90

Table 1: Data Statistics:

The code-mixing metrics for Hinglish (Hindi+English), Tamlish

(Tamil+English) and Tenglish (Telugu+English) questions

(HIT) was compensated with $2.50 on the Turk
setup. We have got a lot more responses for Tam-
lish questions as compared to both Hinglish and
Tenglish together as reflected in Table 1. In this
scenario, although the turkers have not been for-
mally explained about what code-mixing is apart
from providing them with instructions and exam-
ples, most of the data we received included mixed
language Romanized questions. While in the for-
mer scenario, the collected questions were ex-
plicitly moderated to remain within bilingual and
multilingual environments, like in India, the latter
scenario does not ensure this, as they do not have
to be present in India. The extent of code-mixing
and fluency of the questions may vary as com-
pared to the questions collected from Indian class-
room environment due to the difference in their
socio-cultural environments. Though we have
mentioned in the instructions to provide us with
questions that sound natural to the participants,
we acknowledge that it may not have been com-
pletely natural as they were explicitly requested to
mix two languages. The third phase involves col-
lecting answers to all the questions. Monolingual
questions and image-based questions that contain
referring expressions, such as ‘in this figure’ were
removed before collecting answers. To filter out
noisy and random answers, the set-up includes
a qualifying CM question for which we clearly
knew the answer. When collecting answers, we
only accept them from workers who correctly an-
swer the qualifying question.

3.3 Curation and Post-processing

After data collection, we removed duplicate en-
tries and also performed one step of human veri-
fication. This responsibility was divided into two
phases. The first step was employing certain post
processing steps in order to remove the questions
that did not match the presented specifications
and rejecting them. One major problem is the
use of referring expressions and determiners cor-
responding to the images about which the ques-
tions were asked. In each of the three languages,
we made a list of all possible spelling variants
of referring expressions like ‘image/picture mein’
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(Meaning: in the image), ‘ye’ (Meaning: this),
‘iss’ (Meaning: this) and separated the questions
that contain these expressions. The same pro-
cess was not done for questions collected based
on code-mixed articles. This is because referring
expressions corresponding to the given text do not
hinder searching for an answer in the given snip-
pet. Lexical level language identification is per-
formed to remove the questions that do not have
atleast one word from both the languages. These
selected questions after filtering are then curated
and gone through manually to add back the ques-
tions that made sense before rejecting the HITs.
The next level of curation was performed during
the answer collection phase. This was necessary
because it was still possible to bypass these cura-
tion conditions. For example, there were some en-
tries that seemed like English queries with an ad-
ditional suffix belonging to the corresponding na-
tive language at the end of some of the words. For
example, ‘Whatil isil waterfalla borderil America
and Canada?’ (Tamlish question for ‘What is the
waterfall in the border of America and Canada’).
On the other hand there are queries that seemed
to have been translated using an online translation
tool into the matrix language and randomly insert-
ing some English words in between. For example,
‘Mein which Indian state did Mother Teresa kaam
kiya?’ (Hinglish question). This example seems
to be a lexical level translation of first, eighth and
ninth words of the English question ‘In which In-
dian state did Mother Teresa work (past-tense)?’
into Hindi. 67.87% of the data collected from
Turk was acceptable and passed our curation tests.
Among the remaining, about 21% were rejected
due to the use of referring expressions, 11% due
to erroneous attempts by typing junk words. All
the questions passed the curation tests for more
than 90% of the accepted HITs and some of the
questions were acceptable for the remaining 10%.
This implies that the instructions provided for the
task were sufficiently clear to elicit CM factoid
questions. The above are the statistics for the data
corresponding to the crowd sourced platform that
might provide a baseline estimate for collecting
useful data for this domain on such platforms.



Since the number of curators is much less (ap-
proximately 6 people) than the number of crowd-
workers, we need to understand that the curation
process is much more expensive in terms of man-
ual effort. The above steps are taken to elicit qual-
ity data for our purposes. The tasks of collect-
ing questions and answers were deliberately sep-
arated for two reasons. One is to ensure clarity of
the task and make sure that the users are giving
naturally code-mixed questions and asking them
to provide answers in English within the same
task might lead to unnecessary biases or confu-
sion. The second reason is that when asked to pro-
vide questions and answers together, one might
tend to ask the simplest questions to which an-
swers are already known to them. This in turn
might have reduced the variety of questions for
the same anchor point. We have also collected
feedback about each question whether it is a fac-
toid and if additional multi-modal information is
needed to answer it, during the answer collection
phase.

4 Data Analysis

Recent studies have focused on empirical mea-
surements of code-switching (Guzman et al.,
2017). The multilingual index(M-Index), Lan-
guage Entropy and Integration index(I-index)
measure the extent of mixing and switching fre-
quency. Table 1 presents the statistics of out
dataset along with these metrics for mixing. The
average number of words per question is higher in
Hinglish compared to Tamlish and Tenglish. The
M-index for all the 3 language pairs are in com-
parable ranges while it is slightly less for Tam-
lish. The questions are provided along with the
following information: (1) language information
(2) question type annotated as ‘context depen-
dent’ (for article based questions) and ‘context in-
dependent’ (for images based questions) and (3)
corresponding article for article based questions.

4.1 Answer Type Distribution

In order to analyze the distribution of question
types in our dataset, we sampled questions, from
Tenglish and Hinglish, which contain either of the
following two selected images - ‘“Taj Mahal’ and
‘Hiroshima’. We use the coarse and fine-grained
type hierarchies proposed by (Li and Roth, 2006)
for annotating the questions. For the first im-
age: ‘Taj Mahal’, we had 91 Tenglish questions
and 71 Hinglish questions. For Tenglish ques-
tions, the distribution of coarse level types were
34 PERSON, 8 ENTITY, 30 LOCATION and 19
NUMERIC. For Hinglish questions, the coarse-
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type distribution was found to be 25 PERSON,
9 ENTITY, 22 LOCATION and 15 NUMERIC.
An interesting observation we noticed was that -
there were 23 Tenglish and 17 Hinglish variants
of the question ‘Who built Taj Mahal?’ and simi-
larly there were 12 Tenglish and 8 Hinglish vari-
ants of the question ‘In which city is Taj Mahal
located?’. A similar analysis for the other focus
entity ‘Hiroshima’ gave us 21 Tenglish questions
distributed as 7 NUMERIC, 9 LOCATION, 4 EN-
TITY, 1 PERSON type questions and 14 Hinglish
questions distributed as 10 NUMERIC, 2 LOCA-
TION, 1 ENTITY and 1 PERSON type ques-
tions. Among these we observed 4 and 8 vari-
ants in Tenglish and Hinglish respectively for the
question ‘In which year did attack on Hiroshima
and Nagasaki take place?’. These statistics re-
veal that, for the same image shown to them, par-
ticipants issued questions resulting in a variety of
answer types in the target code-mixed languages.
Figure 1 shows the percentage distribution of the
question types for ‘Taj Mahal’ and ‘Hiroshima’
across the three language pairs.

In order to gain better intuitions on the ‘why
and how’ of code-mixing, the collected ques-
tions are studied with respect to idiolectic lan-
guage preferences, i.e the idiosyncrasies of mix-
ing the languages and the extent of code-mixing
across languages. To study the individual mix-
ing biases in the data, Multilingual Index is calcu-
lated for each individual in each of the language
pairs. Figure 2 shows histograms for idiolects of
Hinglish, Tenglish and Tamlish. As can be ob-
served from the figure, Hinglish and Tenglish has
many crowd-workers towards the higher end of
multilingual index whereas Tamlish has a rather
smoother distribution except for the last range.

4.2 Lexical Bias in Article based Questions

The bias of copying the words was mitigated to
an extent by the usage of images as anchor points
to collect questions. However, studying the lex-
ical bias when a code-mixed article is given acts
as a proxy to study entrainment. The variant of
expressing the questions from code-mixed arti-
cles serves two purposes. One is to study the dif-
ferences in difficulty of down stream task of re-
trieving for question answering as compared to
the image based questions. In this category of
questions, the answer is present in the snippets
that are given and the focus is primarily on re-
trieving the answers from within the given text.
The second is to study the varying lexical biases
to frame a question when code-mixed content is
given versus when it is not. To study this empiri-
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cally, we calculated the percentage of intersection
of words between question and articles. The av-
erage of overlapping words is 54.20%, while the
minimum and maximum are 12.5% and 92.31%
respectively. Similarly, the longest overlapping
subsequences have a mean of 2.24 with a mini-
mum of 1 word and a maximum of 16 words.

4.3 Mixing Phenomena observed in the Data

One of the interesting categories of mixing that
is observed in the data is mixing gender infor-
mation of the native and the mixed form of the
word. For example, consider the question from
the data, ‘earth kab form hui thi?’ (English mean-
ing: When was Earth formed?). A paraphrase of
the same question is ‘dharthi kab form hui thi?’.
In Hindi, the gender of the verb has to agree with
the subject. While the gender of Earth is mas-
culine (which should have agreed with ‘hua’ and
not ‘hui’), the gender of dharthi (which agrees
with ‘hui’) is feminine as perceived by a native
speaker. But as observed in the question, feminine
form ‘hui’ is used with ‘Earth’ which is mixed
word from English. Sebba (2009) refers to this as
one type of "harmonization strategy’ in language
mixing and it is one that he says might be typi-
cal of highly literate bilinguals. We believe the
naturalness of the data is highly dependent on the
nativity of annotators. Throughout our process,
we took as much care to ensure that we use na-
tive speakers of the language for our annotation.
However, there were still a few exceptions. We
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also tried avoiding completely random, spurious
and noisy inputs by checking if they were simply
permutations of the original input and their lexi-
cally translated words.

A known problem in dealing with code-mixed
text is non-standardized Romanization of native
language when mixed with English. Phonologi-
cal perceptions of a syllable can be represented
differently. For example, from the data a cou-
ple of the very frequent such variations are ‘kon’
and ‘kaun’ for ‘who’ in Hindi, and ‘he’ and ‘hai’
for ‘is’ in Hindi. For both these words, the lat-
ter variants are closer to the pronunciation of the
Hindi words, but the other sounds are in col-
loquial usage frequently as well. Consider the
question, ‘Friends serial ke kitne seasons ba-
naye ja chukein hain?’ (Meaning: How many
seasons were made for Friends serial?). Using
‘n’ in ‘chukein’ indicates that the person liter-
ally transliterated the Hindi spelling into Roman
spelling because colloquially the ‘»” sound is of-
ten omitted while speaking. A similar obser-
vation applies to the word ‘kartein’ (Meaning:
do). Similarly, ‘pe’ is a more colloquial usage
of the word ‘par’ (Meaning: on). Though ‘pe’
is never used in standard written Hindi, the data
collected has both variants of the words. Sim-
ilar observations in Tenglish data include vari-
ations for ‘cheyinchaadu’ and ‘ceyincadu’ (both
the words mean ‘did’). This problem compounds
in Tenglish since Telugu is an agglutinative lan-



guage. For example, in the variants ‘chesthu un-
aadu’ and ‘chesthunnadu’ (meaning: have been
doing (masculine form)), the two words can be
written together as a single word or separately.

Some of the examples show forcible mixing
since the instructions specifically mentioned to
provide code-mixed questions. For example, ‘An-
droid ko Google ne kab buy kiya tha?’ (Mean-
ing: ‘When did Google buy Android?’). The
word ‘khareed’ which means ‘buy’ is a very com-
mon Hindi word and in such cases, the native
word is used more naturally as opposed to the
mixed word. 10 such examples were selected
from Hinglish and shown to 5 native speakers of
Hindi to annotate if they seem natural, unnatural
or neutral. All these examples were marked as ei-
ther unnatural (36%) or neutral (64%) and none
of them were marked as natural. This shows that
there is some pattern or notion of mixing words
for native speakers.

In some other examples, we also observed what
can be considered an opposite of forced mix-
ing. For example, in question ‘71994 mein pre-
mier kiya hua pramukh American comedy TV
saathiyon ka naam kya hai?’ (Meaning: What
is the name of the famous American comedy
TV show Friends that was premiered in 19947),
words like ‘pramukh’ (Meaning: famous) and
‘saathiyon’ (Meaning: friends) are less common
in common usage compared to their English mix-
ing counterparts. Also, note that this is uncom-
mon since the named entity ‘Friends’ is translated
to the Hindi counterpart. Another known phe-
nomenon is the mixing of languages at morpho-
logical level which was observed very commonly
in the data. This poses a problem for word level
modeling or formulation for addressing the down
stream tasks such as our current case of question
answering. For example, in the Tenglish ques-
tion ‘Eiffel Tower ni entha mandi architectlu de-
sign chesaru?’ (Meaning: How many architects
designed Eiffel Tower?), the word ‘architectlu’
(Meaning: architects) is mixed at morphological
level by English word ‘architect’ and Telugu suf-
fix ‘lu’, which is a plural marker.

5 CM QA Challenge: Techniques

The CM QA challenge was announced and broad-
casted during the summer of 2017. The task is
to provide a ranked list of relevant answers for
given CM queries. The image based questions
are annotated as ‘general’ and the article based
questions are provided with the corresponding ar-
ticles. While 7 teams have registered to take part
in the challenge and have collected data from the
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organizers, a couple of teams have successfully
completed participating in the challenge. In this
section, we discuss the techniques used by two
participating groups to address the first edition of
this challenge.

As discussed in Section 3, there are 2 cate-
gories of questions; (1) general questions where
there is no context, and (2) article based questions
for which the answers are retrieved from a given
context. To address the latter type, paragraphs
from Wikipedia are leveraged as general context.
One team (from Deutsche Forschungszentrum fiir
Kiinstliche Intelligenz (DFKI)) addressed this by
identifying the named entities in the CM query
and look them up in the summaries of Wikipedia
articles 2. These summaries typically contain
5 sentences. The second team (from IIT Hy-
derabad) trained a similarity model using DSSM
(Huang et al., 2013) to retrieve and rank the an-
swer bearing sentences from Wikipedia. Both the
groups have worked along similar lines to address
questions with general context.

The team from DFKI dealt with article based
questions as well. At this stage, both the cat-
egories of questions contain query and informa-
tion about relevant paragraph. A pre-trained Doc-
ument Reader model DrQA proposed by Chen
et al. (2017) on a popular machine reading QA
dataset SQuAD (Rajpurkar et al., 2016) is used
for this domain. This model answers open do-
main factoid questions using Wikipedia by not
considering document retrieval. An open source
implementation of this model® is used and our re-
sults are lower than we expected: average EM
is 0.0691 and average F1 is 0.1001 on the train-
ing dataset. In the category of general ques-
tions (image based) where the relevant paragraph
is not given, the predicted answer is similar in
meaning to the ground truth but can be broader.
For instance, when the Hinglish answering ‘em-
inem ka profession kya hai?” (Meaning: What
is Eminem’s profession?), this system gives ‘rap-
per, record producer, and actor’, as compared to
‘Rapper’. Though the system is correct, the an-
swer gathered included only ‘rapper’ which most
data collection techniques for QA face an issue.
To train these models, Hindi embedding space
is mapped into the English one. A standard ap-
proach in relation to Hindi was investigated by
(Bhattacharya et al., 2016) involving finding a
translation matrix (using linear regression) that
minimizes the reconstruction error between target
language embeddings and translated embeddings.

https://pypi.org/project/wikipedia

https://github.com/facebookresearch/DrQA



This idea is developed by using a neural network
and a random forest regression to find translation
matrix. By using Polyglot Hindi and English em-
beddings with Universal Word-Hindi Dictionary
we achieve MSE score of 0.057.

6 Challenges observed in CM QA

Gathering more data: The training subset con-
tains 1295 unique question-answer pairs, which
poses a significant challenge to train complex
models from scratch. As an alternative, a trans-
fer learning technique can be used, using a model
pre-trained on a large-scale open-domain fac-
toid dataset, such as SQuAD. For instance, com-
munity question answering forums can be used,
which naturally contains a lot of code-mixed lan-
guage due to the extensive borrowing of technical
terms. Such setup has two benefits: it eases the
problem of collecting new data and alleviates the
need to manually label it.

Spell Checking: Since the question-answer pairs
are coming from an informal background, some
of them are misspelt. Language identification is
an overhead to deal with this using traditional
spell checking techniques. An extensive use of
dictionaries is the most obvious approach, but a
more practical solution might be to use character-
based methods and introduce artificial noise to
make models more robust.

Romanization variability: It should also be
noted that apart from spell checking, there is vari-
ability in romanization output. For example, the
Hindi word ‘jidhar’(Meaning: where) can either
be written as ‘jidhr’. As it is unclear which of
the models of transliteration would a user prefer,
a developer needs to keep all options open.

Poor translation from open source tools: In
many cases, translation tools completely distort
the meaning of the sentence. An illustrative ex-
ample of this is: ‘Sun ka colour kya hai?” (What
is the colour of the Sun?) - ‘What is the color of
listening?” and so on. As one can see, an En-
glish collocation ‘full name’ is not preserved, but
translated into ‘Fullham’. In some cases it can be
explained by the incorrect use of capitalization:
‘niagara falls kaunse desh mein hai?’ is translated
into ‘What is the name of the person who is suf-
fering from diabetes?’, but using capitalized ‘N’
gives correct translation. It is worth noting that
incorrect query translation contributed to approx-
imately 35% of errors.

Answer granularity: Moreover, while perform-
ing error analysis, we have found a few cases
where a level of required granularity for an an-
swer was unclear. A common type of error for the
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model was to output ‘Champ de Mars in Paris,
France’ when asked °Eiffel Tower kahan hai?’
(Where is the Eiffel Tower?), while the ground
truth answer was ‘france’. Errors like that account
for approximately 7% of all the wrong predictions
in the development set. Such cases suggest that
considerable attention must be paid during label-
ing of a corpus. One can either keep a list of ac-
ceptable answers or provide refined guidelines for
both annotators and developers. In the latter, it
might help to analyze human performance on the
same dataset to understand what is the most com-
mon answer granularity level.

Cross-lingual embeddings: Finally, when work-
ing with neural models, we have to carefully
approach the construction of embedding spaces.
While in the current version we have worked
only with English translations, a neater approach
would be to directly use both languages. (Ruder,
2017) provides an extensive survey of the avail-
able approaches. Whereas more and more re-
sources are emerging for Hindi, such as MUSE
(Conneau et al., 2017), few researchers have ad-
dressed the task for Telugu and Tamil.

7 Conclusions

In this paper, as a first step towards fostering
research in the area of Factoid QA in CM lan-
guages, we present our evaluation dataset consist-
ing of more than 5000 crowd-sourced questions
along with their answers in three CM languages -
Hinglish, Tenglish and Tamlish. We received a lot
more Tamlish questions on crowd sourced plat-
form compared to the other two languages. We
also shared our experiences while curating this
evaluation dataset such as usage of images as an-
chor points to avoid lexical biasing towards CM.
We have looked at the extent of lexical biasing of
the words in article based questions. In future, we
would also like to see if the participants are invert-
ing the language for the words present in the ar-
ticles. The dataset features a diverse range of an-
swer types across all the CM languages. We also
shared some interesting properties of this dataset
related to lexical bias and other phenomenon re-
lated to code mixing. In future, we would like
to explore techniques to generate synthetic CM
data from large-scale datasets.We plan on con-
tinuing the data collection process to elicit more
data. This paper also reports the first edition of the
challenge and plan on continuing it in the coming
years as well. We have made our dataset freely
available for research purposes to encourage more
research work and result in significant advances in
the area of Factoid QA in CM languages.
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Transliteration Better than Translation?” Answering
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Abstract

Humans can learn multiple languages.
If they know a fact in one language,
they can answer a question in an-
other language they understand. They
can also answer Code-mix (CM) ques-
tions: questions which contain both
languages. This ability is attributed to
the unique learning ability of humans.
Our task aims to study if machines
can achieve this. We demonstrate how
effectively a machine can answer CM
questions. In this work, we adopt a
two-step approach: candidate genera-
tion and candidate re-ranking to an-
swer questions. We propose a Triplet-
Siamese-Hybrid CNN (TSHCNN) to
re-rank candidate answers. We show
experiments on the SimpleQuestions
dataset. Our network is trained only
on English questions provided in this
dataset and noisy Hindi translations
of these questions and can answer
English-Hindi CM questions effectively
without the need of translation into
English. Back-transliterated CM ques-
tions outperform their lexical and sen-
tence level translated counterparts by
5% & 35% respectively, highlighting
the efficacy of our approach in a
resource-constrained setting.

1 Introduction

Question Answering (QA) has received signifi-
cant attention in the Natural Language (NLP)
community. There are many variations (open-
domain, knowledge bases, reading comprehen-
sion) as well as datasets (Joshi et al., 2017;
Hopkins et al., 2017; Rajpurkar et al., 2016;
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Bordes et al., 2015) for the question answering
task. However, many approaches (Lukovnikov
et al., 2017; Yin et al., 2016; Fader et al., 2014;
Chen et al., 2017a; Hermann et al., 2015) at-
tempted in QA so far have been focused on
monolingual questions. This is true for both
methods and techniques as well as resources.

Code-mixing (referred to as CM) refers to
the phenomenon of “embedding of linguis-
tic units such as phrases, words and mor-
phemes of one language into an utterance
of another language” (Myers-Scotton, 2002).
People in multilingual societies commonly use
code-mixed sentences in conversations (Grover
et al., 2017), to search on the web (Wang and
Komlodi, 2016) and to ask questions (Raghavi
et al., 2017). However, current Question An-
swering (QA) systems do not support CM
and are only designed to work with a single
language.
able for multilingual users to naturally interact
with the QA system, specifically in scenarios
wherein they do not know the right word in
the target language.

CM presents serious challenges for the lan-
guage processing community (Cetinoglu et al.,
2016; Vyas et al., 2014), including parsing,
Machine Translation (MT), automatic speech
recognition (ASR), information retrieval (IR)
and extraction (IE), and semantic processing.
Even for problems such as language identi-
fication, or part of speech tagging, that are
considered solved for monolingual languages,
performance degrades when mixed-language is
present. Lack of language resources such as
annotated corpora, part-of-speech taggers and
parsers poses a considerable challenge for au-
tomated processing and analysis of CM lan-
guages. This further amplifies the challenge
for CM QA. This CM question answering task

This limitation makes it unsuit-
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is challenging not just because of having multi-
ple languages with different semantics but also
because of the different word order of source
language and CM, making it difficult to ex-
tract essential features from the input text.

We base our work on the premise that hu-
mans can answer CM questions easily provided
they understand the languages used in the
question. They require no additional training
in the form of CM questions to comprehend a
CM question. So, one way to tackle CM ques-
tions is to translate them into a single language
and use monolingual QA systems (Lukovnikov
et al., 2017; Yin et al., 2016; Fader et al., 2014).
Machine Translation systems perform poorly
on CM sentences. The only other viable op-
tion is lexical translation (word by word trans-
lation). Lexical translation requires language
identification, which Bhat et al. (2018) show
to be solved. We show that our model trained
on both English and Hindi can perform better
on CM question directly than its lexical trans-
lation. This removes the need to obtain a large
bilingual mapping of words for lexical transla-
tion. Also, such a sizeable bilingual mapping
may be hard to obtain for low-resource lan-
guages.

Knowledge Bases (KBs) like Freebase
(Google, 2017) and DBpedia ! contain a vast
wealth of information. Information is struc-
tured in the form of tuples, i.e. a combination
of subject, predicate and object (s, p, o) in
these KBs. Such KBs contain information pre-
dominately in English, and low resource lan-
guages tend to lose out on having a rich infor-
mation source.

We use bilingual embeddings to fill the gaps
due to lack of resources. We also develop a
K-Nearest Bilingual Embedding Transforma-
tion (KNBET) which exploits bilingual em-
beddings to outperform the performance of
lexical translation.

We overcome challenges discussed above in
our paper and develop a CM QA system over
KB, named CMQA, using only monolingual
data from individual languages. We demon-
strate our system with Hinglish (Matrix lan-
guage: Hindi, Embedded language: English)
CM questions. Our evaluation shows promis-
ing results given that no CM data was used to

"http://dbpedia.org/
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train our model. This shows promise that we
do not need CM data but can use monolingual
data to train a CM QA system. Our results
show that our system is much more useful as
compared to translating a CM question.

Our contributions are as follows:

1. We show how we can answer CM ques-
tions given an English corpus, noisy Hindi
supervision and imperfect bilingual em-

beddings.

. We introduce a  Triplet-Siamese-
Hybrid Convolutional Neural Network
(TSHCNN) that jointly learns to rank
candidate answers.

. We provide a test dataset of 250 Hindi-
English CM questions to researchers.
This dataset is mapped with Freebase tu-
ples and English questions from the Sim-
pleQuestions dataset.

To the best of our knowledge, we are the first
to tackle the problem of End-to-End Code-
Mixed Question Answering over Knowledge
Bases in a resource-constrained setting. Ear-
lier approaches for CM QA (Raghavi et al.,
2017) require a bilingual dictionary to trans-
late words to English and an existing Google
like-search engine to get answers, which we do
not require.

The rest of the paper is structured as fol-
lows: We survey related work in Section 2 and
describe the task description in Section 3. We
explain our system in Section 4. We describe
experiments in Section 5 and provide a de-
tailed analysis and discussion in Section 6 and
conclude in Section 7.

2 Related Work

Question Answering and Knowledge
Bases Question answering is a well stud-
ied problem over knowledge bases (KBs)
(Lukovnikov et al., 2017; Yin et al., 2016;
Fader et al., 2014) and in open domain (Chen
et al., 2017a; Hermann et al., 2015). Learning
to rank approaches have also been applied to
QA successfully (Agarwal et al., 2012; Bordes
et al., 2014). Many earlier works (Ture and
Jojic, 2017; Yu et al., 2017; Yin et al., 2016)
which tackle SimpleQuestions divide the task
into two steps: mention detection and relation



prediction, whereas we jointly do both using
our model. Lukovnikov et al. (2017) is more
similar to our approach wherein they train a
neural network in an end-to-end manner.

CodeMixing and CodeSwitching Code-
mixing and code-switching has recently gath-
ered much attention from researchers (Bhat
et al., 2018; Rijhwani et al., 2017; Raghavi
et al., 2015, 2017; Banerjee et al., 2016; Dey
and Fung, 2014; Bhat et al., 2017). CM re-
search is mostly confined towards developing
parsers and other language pipeline primitives
(Bhat et al., 2018, 2017). There has been
some work in CM sentiment analysis (Joshi
et al., 2016). Raghavi et al. (2015) demon-
strate question type classification for CM ques-
tions and Raghavi et al. (2017) also demon-
strate a CM factoid QA system that searches
for the lexically translated CM question using
Google Search on a small dataset of 100 CM
questions. To the best of our knowledge, there
has been no work on building an end-to-end
CM QA system over a KB.

Bilingual Embeddings Recent work has
shown that it is possible to obtain bilingual
embeddings using only a minimal set of paral-
lel lexicons (Smith et al., 2017; Artetxe et al.,
2017; Ammar et al., 2016; Luong et al., 2015;
P et al., 2014) or without any parallel lexicons
(Zhang et al., 2017; Conneau et al., 2017). Our
approach, can use these bilingual embeddings
and supervised corpus for a resource-rich lan-
guage, to enable CM applications for resource-
poor languages.

Cross-lingual Question Answering
Closely related is the problem of cross-lingual
QA. There have been various approaches
(Ahn et al., 2004; Lin and Kuo, 2010; Ren
et al., 2010; Ture and Boschee, 2016) to
cross-lingual QA. Some approaches (Lin and
Kuo, 2010) rely on translating the entire
question. Others (Ren et al., 2010), have
also explored using lexical translations for
this task. Recently, Ture et al. (Ture and
Boschee, 2016) proposed models that combine
different translation settings. There have
been some efforts (Pouran Ben Veyseh, 2016;
Hakimov et al., 2017; Chen et al., 2017b) to
attempt cross-lingual question answering over
knowledge bases.
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3 Task Description

The SimpleQuestions task presented by Bor-
des et al. (2015) can be defined as follows.
Let £ = {(si,pi,0i)} be a knowledge base
represented as a set of tuples, where s; rep-
resents a subject entity, p; a predicate (also
referred as relation), and o; an object entity.
The task of SimpleQuestions is then: Given a
question represented as a sentence, i.e. a se-
quence of words g = {wy, ..., wy,}, find a tuple
{5,p,0} € K such that é is the correct answer
for question ¢. This task can be reformulated
to finding the correct subject § and predicate
p that question g refers to and which charac-
terise the set of triples in K that contains the
answer to g.

Consider the example, given question
"Which city in Canada did Ian Tyson
originated from?”, the Freebase subject
entity m.041ftf representing the Cana-
dian artist Ian Tyson and the relation
fb:music/artist /origin, can answer it.

4 Our System: CMQA

In this section, we describe our system which
consists of two components: (1) the Candidate
Generation module for finding relevant candi-
dates and (2) a Candidate Re-ranking model,
for getting the top answer from the list of can-
didate answers.

4.1 Candidate Generation

Any freebase tuple (specifically, the object in
a tuple is the answer to the question) can be
an answer to our question. We use an efficient
(non-deep learning) candidate retrieval system
to narrow down our search space and focus on
re-ranking only the most relevant candidates.
Solr? is an open-source implementation of an
inverted index search system. We use Solr to
index all our freebase tuples (FB2M) and then
query for the top-k relevant candidates given
the question as a query. We use BM25 as the
scoring metric to rank results. Since we index
freebase tuples which are in English (translat-
ing the entire KB would require a very large
amount of effort and we restrict ourselves to
using only the provided English KB), any non-
English word in the query does not contribute

2http:/ /lucene.apache.org/solr/



—) Convolution

Positive Tuple—> Convolution —> Max Pool

Shared
Weights

Additional
Inputs

—> Max Pool —>

L

Qggstion + Convolution ——{ Max Pool |—>!
i |_Positive Tuple :

Convolution —) Max Pool [—>

o Fully
\n Connected
¢ Layer
a
| t

i/ Similarity
Score
Ranking
Loss
A
o/ Similarity
Score

Shared
Weights

Figure 1: TSHCNN Architecture

to the matching. This is a limiting factor in
candidate generation for CM questions.

4.2 Candidate Re-ranking

We Convolutional Neural Networks
(CNNs) to learn the semantic representation
for input text (Kim, 2014; Hu et al., 2015;
Lai et al., 2015; Cho et al., 2014; Johnson and
Zhang, 2015; Zhang et al., 2015). CNNs learn
globally word order invariant features and at
the same time pick order in short phrases.
This ability of CNNs is important since dif-
ferent languages® have different word orders.

use

Retrieving a semantically similar answer to
a given question can be modelled as a classifi-
cation problem with a large number of classes.
Here, each answer is a potential class and the
number of questions per class is small (Could
be zero, one or more than one. Since we match
only the subject and predicate, there could
be multiple questions having a common sub-
ject and predicate combination). An intuitive
approach to tackle this problem would be to
learn a similarity metric between the question
to be classified and the set of answers. We
find Siamese networks have shown promising
results in such distance-based learning meth-
ods (Bromley et al., 1993; Chopra et al., 2005;
Das et al., 2016).

Our Candidate Re-ranking module is in-

3English is SVO whereas Hindi is free word order.
SVO means Subject Verb Object.
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spired by the success of neural models in vari-
ous image and text tasks (Vo and Hays, 2016;
Das et al., 2016). Our network is a Triplet-
Siamese Hybrid Convolutional neural network
(TSHCNN), see figure 1. Vo and Hays (2016)
show that classification-siamese hybrid and
triplet networks work well on image similarity
tasks. Our hybrid model can jointly extract
and exchange information from the question
and tuple inputs.

All convolution layers share weights in
TSHCNN. The fully connected layers are also
Siamese and share weights. This weight shar-
ing helps project both questions and tuples
into a similar semantic space and reduces the
required number of parameters to be learned.

Additional Input: Concatenate question +
tuple Our initial network only had two in-
puts (question and tuple) to each correspond-
ing branch. We further modify our network
to provide a third input in the form of the
concatenation of question and tuple. This ad-
ditional input helps our network learn much
better feature representations. We discuss this
in the results section.

As shown in figure 1, questions and candi-
date tuples are provided to our system. Our
experiments vary in the input questions (En-
glish and CM variations of questions), but the
candidates (tuples or answers) are always in
monolingual English. Thus our final answer is
always in English.



4.2.1 K-Nearest Bilingual Embedding
Transformation (KNBET)

The standard approach given bilingual (say
English-French) embeddings (Plank, 2017;
Da San Martino et al., 2017; Klementiev et al.,
2012) has been to use the English word vec-
tor corresponding to the English word and the
French word vector for the French word. Also,
the network is trained only on the English cor-
pora, i.e. trained using English word vectors
only. When the input is say, a French sen-
tence, they use French word vectors. Bilingual
embeddings try and project both the English
and French word vectors in the same seman-
tic space, but these vectors are not perfectly
aligned and might lead to errors in the net-
works’ prediction.

We propose to obtain the average of the
nearest k-english-word-vectors for the given
french word and use it as the embedding for
the French word. For k=1, this reduces to a
bilingual lexical dictionary using bilingual em-
beddings (Vulic and Moens, 2015; Madhyastha
and Espana-Bonet, 2017). Since the bilingual
embeddings are not perfectly aligned, Smith
et al. (2017) show® that precision@k increases
as k increases (e.g. for Hindi PQ1 is 0.39,
P@3 is 0.58 and P@10 is 0.63), when we ob-
tain French (or any other language) transla-
tions for an English word. Thus, we conduct
experiments with varying values of k and re-
port the best results for the optimal k. Our
experiments confirm the efficacy of KNBET.
Further, we believe this KNBET can be used
to improve the performance of any multilin-
gual system that uses bilingual embeddings.

4.2.2 Loss Function

We use the distance based logistic triplet loss
(Vo and Hays, 2016) which gave better results
than a contrastive loss (Bordes et al., 2014).
This has also been reported by Vo and Hays
(2016) to exhibit better performance in image
similarity tasks as well. Here, Spos and Speg
are the similarity scores obtained by the ques-
tion+positive tuple and question+negative tu-
ple respectively.

LOSS = log(l + e(sneg*Spos)) (1)

4Results available on the GitHub repo:
github.com/Babylonpartners/fast Text_ multilingual
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5 Experiments

5.1 Dataset

We use the SimpleQuestions (Bordes
et al., 2015) dataset which comprises
75.9k/10.8k/21.7k  training/validation/test
questions. Each question is associated with
an answer, i.e. a tuple (subject, predicate,
object) from a Freebase (Google, 2017) subset
(FB2M or FB5M). The subject is given as
a MID ° and we obtain its corresponding
entity name by processing the Freebase data
dumps. We were unable to obtain entity
name mappings for some MIDs, and these
were removed from our final set. We also
obtain Hindi translations for all questions
in SimpleQuestions using Google Translate.
Note, these translations are not perfect and
serve as a noisy input to the network. Also,
we only translate the questions, and the
answers remain in English. As with previous
work, we show results over the 2M-subset of
Freebase (FB2M).

We use pre-trained word embeddings® pro-
vided by Fasttext (Bojanowski et al., 2016)
and use alignment matrices’ provided by
Smith et al. (2017) to obtain English-Hindi
bilingual embeddings. Smith et al. (2017) use
a small set of 5000 words to obtain the align-
ment matrices. The provided Hindi embed-
dings are in Devanagari script. We use ran-
domly initialised embeddings between [-0.25,
0.25] for words without embeddings.

We have prepared a dataset of Hindi-English
CM questions for a smaller set of 250 tu-
ples obtained from the test split of Simple-
Questions dataset. We gathered these ques-
tions from Hindi-English speakers, who were
asked to form a natural language CM ques-
tion, shown a tuple. Further, for every tuple
we obtained CM questions from 5 different an-
notators and pick one at random for the final
test set, to ensure multiple variations. Each
CM question is in Roman script, and anno-
tators anglicise (or transliterate) Hindi words
(Devanagari script) to Roman script, to the
best of their ability. This introduces varia-
tions in spellings and posses a challenge for
the network and also back-transliteration.

5A unique ID referring to an entity in Freebase.

Shttps:/ /fasttext.cc/
"https://goo.gl/LwgulD



Table 1: Network Parameters

Parameter Value

Batch Size 100

Non-linearity Relu

CNN Filters & | 20 filters each of

Width width 1, 2 and 4 resp.
Pool Type Global Max Pooling
Stride Length | 1

FC Layer 1 100 units + 0.2 Dropout
FC Layer 2 100 units + 0.2 Dropout
FC Layer 3 1 unit + No Relu
Optimizer Adam (default params)

Table 3: Candidate generation results: Recall
of top-k answer candidates for each question

type

K | English CM-MT CM-LT CM-TL
1 68.4 39.1 54.6 58.4
2 75.7 42.3 59.3 63.8
5 82.3 49.4 67.2 70.0
10 85.5 53.4 71.5 73.4
50 91.4 56.9 78.7 78.6
100 92.9 59.7 80.6 81.0
200 94.3 62.1 83.0 83.1

Table 2: End-to-End Answer Accuracy for En-
glish Questions

Model Acc.
Bordes et al. (2015) 62.7
Golub and He (2016) 70.9
Lukovnikov et al. (2017) 71.2
Yin et al. (2016) 76.4
Yu et al. (2017) 77.0
Ture and Jojic (2017) 86.8
Ours: Candidate Generation — 68.5

Ours: Candidate Re-Ranking 77.0

5.2 Generating negative samples

We generate 10 negative samples for each
training sample. We follow Bordes et al.
(2014) to generate 5 negative samples. These
candidates are samples picked at random and
then corrupted following Bordes et al. (2014).
We further use 5 more negative samples ob-
tained by querying the Solr index. This gives
us negative samples which are very similar to
the actual answer and further the discrimina-
tory ability of our network. This second pol-
icy is unique, and our experiments show that
it gives us better performance.

5.3 Evaluation and Baselines

We report results using the standard evalua-
tion criteria (Bordes et al., 2015), in terms of
path-level accuracy, which is the percentage of
questions for which the top-ranked candidate
fact is correct. A prediction is correct if the
system correctly retrieved the subject and the
relationship.

Since there is no earlier work on CM QA
over KBs, we compare the different ways a CM
question can be answered using our QA sys-
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tem. We translate the entire CM question to
English using Google translate (cm-mt). We
also lexically translate the CM question to En-
glish (cm-1t). Further, since the CM question
is in Roman script, we apply language identi-
fication (LI), and back-transliteration (BTL)
for Hindi words using Bhat et al. (2018)%
and obtain a CM question which has English
words in Roman script and Hindi words in
Devanagari (cm-tl). We report results for all
these different CM question variations using
our TSHCNN. We tried Raghavi et al. (2017)
WebShodh? system, but it did not return any
answers, and hence we are unable to use it for
comparison.

We also report results for the English ques-
tions in SimpleQuestions on our model trained
only on English. This serves as a benchmark
for our model as compared to other work on
SimpleQuestions (Ture and Jojic, 2017; Yu
et al., 2017; Yin et al., 2016; Lukovnikov et al.,
2017; Golub and He, 2016; Bordes et al., 2015).

Network parameters and decisions are pre-
sented in Table 1. We train our model until
the validation loss on the validation set stops
improving further for 3 epochs. We report the
results on the epoch with the best validation
loss. We use K = 200 for the initial candidate
generation step.

6 Results

6.1 Quantitative Analysis

In Table 2, we present end-to-end results us-
ing our CMQA system. It shows competi-

8The LI system is trained on CM data and the BTL
system is trained with parallel transliteration pairs.
“http:/ /tts.speech.cs.cmu.edu/webshodh/cmga.php



Table 4: End-to-End Results. We train on different inputs: only English questions, only Hindi
questions and both English and Hindi questions. The answers are in English for all training

scenarios.

TO: Train on, E: English questions, H: Hindi questions, EH: English and Hindi

questions, BE: Bilingual Embeddings, CQT: Concatenate question + tuple , KNB: KNBET (K-
Nearest Bilingual Embedding Transformation), SCNS: Solr Candidates as Negative Samples,
E2E Scores: Candidates obtained using the same CM question variation, cm-It-tl: Candidates
obtained using lexical translation of cm-tl questions and input question was cm-tl.

TO BE CQT KNB SCNS

Codemix Question Accuracy

English Candidates E2E Scores

cm-mt  cm-lt  cm-tl | cm-mt  cm-lt  cm-tl  cm-lt-tl
E | no yes no yes 0.39 0.58 0.37 0.31 0.51 0.32 0.33
H | no yes no yes 0.08 0.07  0.17 0.07 0.06 0.16 0.15
EH | no yes no yes 0.40 0.53  0.53 0.31 0.50 0.48 0.47
E | yes yes no yes 0.41 0.57  0.46 0.34 0.53 041 0.41
H | yes yes no yes 0.39 0.54  0.57 0.30 0.50  0.52 0.54
EH | yes yes no yes 0.46 0.59 0.62 | 034 0.55 0.55 0.57
E |yes yes k=3 yes 0.42 0.57  0.53 0.34 0.54  0.50 0.49
H | yes yes k=3 yes 0.44 0.53  0.59 0.33 0.46  0.54 0.55
EH | yes yes k=3 yes 0.46 0.59 0.61 | 0.35 0.55 0.56 0.54
E | yes yes no no 0.42 0.50  0.55 0.33 0.50  0.53 0.52
EH | yes no no yes 0.29 0.44  0.40 0.21 0.37  0.37 0.38

tive results on English questions with all but
one of the more recent approaches for Sim-
pleQuestions. This shows the effectiveness of
our model for English QA. Our initial candi-
date generation step surprisingly surpasses the
original Bordes et al. (2015) paper.

In Table 3, we report candidate generation
We obtain candidates for each CM
question variation using the question itself as a
query. Further, cm-tl has words in Devanagari
script which do not contribute to the search
similarity scores when searching over an En-
glish corpus. Thus we use the candidates ob-
tained for the lexical translation of cm-tl ques-
tions as candidates for cm-tl. This variation
with candidates of cm-It and questions of cm-
tl is termed as cm-lt-tl. Additionally, we show
results using the candidates obtained for the
English question as the candidates for all three
CM question variations (cm-mt, cm-1t and cm-
tl). This ensures a fair comparison of all three
CM question variations using TSHCNN.

results.

In Table 4, we show results on the CM ques-
tions. Our model TSHCNN, trained on both
English and Hindi questions gives the best
scores. It is better by 3 - 8% for various
CM question variations. Although, training
only on English and using bilingual embed-
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dings should offer performance that matches
training on both English and Hindi. However,
this does not happen since the bilingual em-
beddings are not perfect (see subsection KN-
BET). We do an ablation study of the various
components and describe them in more detail
further.

Monolingual vs Bilingual Embeddings
Results clearly show that improvements are
obtained when we use bilingual embeddings.
There is an improvement of 17% for cm-tl
questions when the network is trained on En-
glish and Hindi using bilingual embeddings
versus using monolingual embeddings. This
is because bilingual embeddings project words
with similar semantics more closely. This dif-
ference is much more pronounced when we
train the network only on Hindi questions.
The tuples were still in English, and the mis-
aligned semantic space (when using monolin-
gual embeddings) for English and Hindi made
it difficult for the Siamese network to learn
anything meaningful. We can also observe an
improvement of 11% for cm-1t questions (when
trained on English and Hindi questions and us-
ing bilingual embeddings). We attribute this
to the fact that CM questions have a different
word order than English questions. Moreover,



Table 5: Qualitative Analysis. CA: Correct Answer, EC: Candidates obtained for English
question used as candidates for CM questions, E2E: Candidates obtained in an end-to-end
manner i.e., the same question variation was used to obtain candidates, PA: Predicted Answer,
EC, E2E & CM-LT-TL PA: Predicted answers grouped if same.

Examples

Example 1: CA (have wheels will travel, book written work subjects, family)
English Question: what is the have wheels will travel book about?
Predicted Answer: (have wheels will travel, book written work subjects, adolescence)

CM Question: have wheel will travel kitaab kis vishaya par likhi gyi hai? PA: NA

CM-MT Question: howe wheel will travel book written on?
EC & E2E PA: (travel, media common literary genre books in this genre, michael palin)

CM-LT Question: have wheel will travel book what subject on wrote added is?
EC & E2E PA: (have wheels will travel, book written work subjects, adolescence)

CM-TL Question: have wheel will travel fordd fd fowg w feidl Wit 8?7
EC, E2E & CM-LT-TL PA: (have wheels will travel, book written work subjects, adolescence)

Example 2: CA (traditional music, music genre artists, the henrys)
English Question: which quartet is known for traditional music?
Predicted Answer: (traditional music, music genre albums, music and friends)

CM Question: traditional music ke liye konse artist jaane jate hain? PA: NA

CM-MT Question: which artists are known for traditional music?
EC & E2E PA: (traditional music, music genre artists, sally jaye)

CM-LT Question: traditional music of for which one artist life goes are there?
EC PA: (bbc music volume 19 number 6 chamber music elias string quartet,
music album artist, franz schubert)

E2E PA: (the way life goes, music album artist, tom keifer)

CM-TL Question: traditional music P AT P artist ST I &7
EC, E2E & CM-LT-TL PA: (traditional music, music genre artists, sally jaye)

with the use of bilingual embeddings, our net-
work can project both Hindi and English ques-
tions into the same semantic space, which in
turn helps CM questions. The effect of mono-
lingual embeddings is visible when we train
only on Hindi. We notice accuracies for all
CM question variations drop significantly.
K-Nearest Bilingual Embedding
Transformation (KNBET) With k = 3,
the results obtained with KNBET are higher
by 16% for cm-tl trained only on English com-
pared to no KNBET. This demonstrates that
our transformation increases the effectiveness
of bilingual embeddings. This is attributed
to the fact that our transformation reduces
the errors that bilingual embeddings may
otherwise possess due to imperfect alignment.
Training on Hindi Questions Training
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with Hindi questions helps the network learn
the different word orders that are present in
Hindi questions. This improves scores for cm-
tl questions when trained only on Hindi. Fur-
ther, joint training on both English and Hindi
questions gives us the best results.

SCNS: Using Solr Candidates as Neg-
ative Samples We ran experiments using 10
negative samples generated as per Bordes et al.
(2014). However, the scores obtained when
using a combination of both negative sample
generation policies: corrupted tuples and Solr
candidates, was 12.7% higher. This is a signif-
icant improvement in scores.

CQT: Additional Input, Concatenate
question + tuple '© We obtain an improve-

0We made sure that the experiments with no CQT



ment of 34% - 62% in our scores when we
provide additional input in the form of con-
catenated question and tuple. One plausible
explanation for this improvement is the 50%
more features for the network. To verify this,
we added more filters to our convolution layer
such that total features equalled that when ad-
ditional input was provided. However, the im-
provement in results was only marginal. An-
other, more likely explanation would be that
the max pooling layer picks out the dominant
features from this additional input, and these
features increase the discriminatory ability of
our network.

EC: English candidates We perform ex-
periments wherein we use the same set of can-
didates obtained for English questions as the
candidates for all CM question variations (cm-
mt, cm-1t and cm-tl). Results show that cm-
tl questions give the highest scores on a net-
work trained on both English and Hindi ques-
tions using bilingual embeddings. This result
shows that lexical translation might not be the
best strategy to tackle CM questions. Further,
more techniques should be devised to handle
the CM question in its original form rather
than translating it at the sentence or lexical
level.

6.2 Qualitative Analysis

In Table 5, some examples are shown to depict
how results of transliterated CM question fare
better than their translated counterparts. Ex-
ample 1 shows that machine translation fails to
translate the CM question correctly. The pre-
dicted answer is henceforth incorrect. Exam-
ple 2 highlights limitations for lexical transla-
tion. Lexically translated questions lose their
intended meaning if a word has multiple pos-
sible translations and it results in an incorrect
prediction.

7 Conclusion

This paper proposes techniques for Code-
Mixed Question Answering over a Knowledge
Base in the absence of direct supervision of
CM questions for training neural models. We
use only monolingual data ! and bilingual em-

had the same number of features as that of with CQT.

" The language identification system uses CM data.
We could instead use a rule-based system using no CM
data without much loss in performance.

beddings to achieve promising results. Our
TSHCNN model shows impressive results for
English QA. It outperforms many other com-
plicated architectures that use Bi-LSTMs and
Attention mechanisms. We also introduce
two techniques which significantly enhance re-
sults. KNBET reduces the errors that may
exist in bilingual embeddings and could be
used by any system working with bilingual em-
beddings. Additionally, negative samples ob-
tained through Solr are useful for the network
to learn to differentiate between fine-grained
inputs. Despite imperfect bilingual embed-
dings, our model shows impressive results for
CM QA. Our experiments highlight the need
for CM QA system, since CM questions in
their original form outperforms translated CM
questions.
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Abstract

In this paper, we detail our work
on comparing different word-level lan-
guage identification systems for code-
switched Hindi-English data and a stan-
dard Spanish-English dataset. In this
regard, we build a new code-switched
dataset for Hindi-English. To understand
the code-switching patterns in these lan-
guage pairs, we investigate different code-
switching metrics. We find that the CRF
model outperforms the neural network
based models by a margin of 2-5 percent-
age points for Spanish-English and 3-5
percentage points for Hindi-English.

1 Introduction

Code-switching occurs when a person switches
between two or more languages in a single
instance of spoken or written communication
(Gumperz, 1982; Myers-Scotton, 1997). Code-
switching instances are prevalent in modern in-
formal communications between multilingual in-
dividuals specially, in social media platforms such
as Facebook and Twitter. Given this prevalence
of code-switching, there is value in automatic pro-
cessing and understanding of such data. Language
identification at the word level is the first step
in computational modeling of code-switched data.
Language identification is important for a wide
variety of end user applications such as informa-
tion extraction systems, voice assistant interfaces,
machine translation, as well as for tools to assist
language assessment in bilingual children (Gupta
etal., 2014; Chandu et al., 2017; Roy et al., 2013).
Language detection, in addition, enables sociolin-
guistics and pragmatic studies of code-switching
behavior.

Code-switching in speech is well studied in
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linguistics, psycholinguistic and sociolinguistics
(Sankoff, 1970; Lipski, 1978; Poplack, 1980;
Gumperz, 1982; Auer, 1984; Myers-Scotton,
1997, 2002). The alternation of languages across
sentence boundaries is known as code-switching
and the alternation within a sentence is known as
code-mixing. In this paper we will refer to both
instances as code-switching and differentiate be-
tween the types of code switching when neces-
sary. Table 1 shows examples of code-switching
for Hindi-English and Spanish-English.

Example 1

Good morning sitji, aaj ka weather kaisa hai?
(Good morning sir, How is the weather today?)

Example 2

Styling day trabajando con @username
vestuario para #EIFactorX y soy hoy chofer.

I will get you there in pieces im a Safe Driver.
(Styling day working with @username

wardrobe for #ElFactorX and today I am a driver.
I will get you there in pieces im a Safe Driver.)

Table 1: Example 1 shows code-switching be-
tween Hindi-English and Example 2 between
Spanish-English (Molina et al., 2016).

Word level language identification of code-
switched text is inherently difficult. First, a sin-
gle code-switched instance can have mixing at
the sentence or clause level, the word level, and
even at the sub-word level (e.g. sir-ji, chapathi-
s). Second, the typology of the languages involved
in switching and their inter-relatedness further in-
crease the task complexity. For example, a shared
Latin influence on Spanish and English results in
lexical relatedness (Smith, 2001; August et al.,
2002), making Spanish-English language identifi-
cation harder than Hindi-English. Third, in spite
of the fact that Hindi has a native script (De-
vanagari), most of the Hindi social media text is
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transliterated. Transliteration is conversion of a
text from one script to another. In the case of
Hindi, text is converted from native, Devanagari
to Roman script. Due to lack of standardization
in transliteration, a single Hindi word can have
multiple surface forms (e.g. Humara, Hamara,
Hamaaraa etc.). Some Hindi words can take the
same surface form as an English word. The words
’hi’ (an auxiliary verb), ’is’ (this), and ‘us’ (that)
are some examples. Finally, the characteristics of
social media text such as non-standard spelling,
contractions, and not strictly adhering to the gram-
mar of the language adds to the list of challenges.

In this work, we make three contributions. First,
we build a new code-switched dataset for Hindi-
English (HIN-ENG) language pair from Facebook
public pages and Twitter. Second, we investi-
gate different code-switching metrics for Hindi-
English and a standard Spanish-English (SPA-
ENG) dataset. Third, we compare a traditional
machine learning model - conditional random field
(CRF), and two recurrent neural network (RNN)
based systems, for word-level language identifica-
tion of the above language pairs. In contrast to
the CRF model, the RNN-based systems do not in-
volve language specific resources or sophisticated
feature engineering. We test these models, first for
each of the language pairs individually, and then
for a corpus with both the language pairs com-
bined.

Among the language identification systems, the
CRF model outperforms both the RNN-based sys-
tems across language pairs. When both the lan-
guage pairs are combined, the result from the best
performing model (CRF) is 25% points higher
than the baseline system. The RNN-based mod-
els also give reasonable results.

2 Related Work

Over the last decade several researchers have ex-
plored word-level language identification for dif-
ferent language pairs and dialect varieties. The
FIRE shared task series - (Roy et al., 2013; Choud-
hury et al., 2014; Sequiera et al., 2015b) focuses
on language identification of code-mixed search
queries in English and Indian languages for in-
formation retrieval. We use a larger set of labels
compared to these tasks. The First and Second
Shared Task on Language Identification in Code-
Switched Data (Solorio et al., 2014; Molina et al.,
2016) show the necessity for automatic process-

52

ing of code-switched text and report comparison
of different language identification systems. The
best system from the second iteration of these
shared tasks uses a logistic regression model and
reports a token-level Fl-score of 97.3% for SPA-
ENG. Our results are competitive with this score.
Das and Gambick (2014) use a dictionary based
method and SVM model with various features for
Hindi-English and Bengali-English. Their system
achieves an Fl-score of 79% for Hindi-English.
Barman et al. (2014) create a new dataset and
study code mixing between the three languages -
English, Hindi, and Bengali using CRF and SVM
models. In another work, Gella et al. (2014) build
a language detection system for synthetically cre-
ated code-mixed dataset for 28 languages. Similar
to some of the works in the above mentioned pa-
pers, we model the language detection task as a
sequence labeling problem and explore combina-
tions of several features using the CRF model, but
we use a larger set of labels. We obtain signif-
icantly higher performance for the Hindi-English
language pair than Das and Gambéck (2014).
Along with the traditional machine learning ap-
proach, some researchers have also used mod-
els based on artificial neural networks. Chang
and Lin (2014) use an RNN architecture with
pre-trained word2vec embeddings for SPA-ENG
and the Nepali-English datasets from the First
Shared Task on Language Identification in Code-
Switched Data. Samih et al. (2016) build an
LSTM based neural network architecture for SPA-
ENG and MSA-DA datasets from the Second
Shared Task on Language Identification in Code-
Switched Data. Their model combines word
and character representations initialized with pre-
trained word2vec embeddings. We replicate their
model with softmax output layer for SPA-ENG
and run similar experiments for HIN-ENG, as well
as with both the corpora combined. Our result for
SPA-ENG match that of Samih et al. (2016).

3 Data

We use the SPA-ENG dataset from the EMNLP
Code-Switching Workshop 2016. This data is col-
lected from Twitter, based on the geographical ar-
eas with strong presence of Spanish and English
bilingual speakers - California, Texas, Miami, and
New York (Solorio et al., 2014; Molina et al.,
2016). The labels used are summarized in Table
2. The hashtags are treated as a word and are la-



Label Description HIN-ENG (%) | SPA-ENG (%)
lang1 English words only 57.764 38.258
lang2 Hindi/Spanish words only 20.418 40.579
ne Proper names 6.582 1.935
other Symbols, usernames, emoticons 14.807 18.952
mixed Words partially in both the languages 0.04 0.018
ambiguous | Can’t determine whether English or Hindi/Spanish 0.009 0.137
fw Words is not English neither Hindi/Spanish 0.369 0.01
unk Unrecognizable word 0.012 0.11

Table 2: A brief description of the labels and label distribution for HIN-ENG and SPA-ENG datasets.

beled accordingly.

Corpus Creation for Hindi-English. For the
HIN-ENG corpus, we consider Facebook pages
of prominent public figures from India. Hindi-
English bilingual users are highly active in these
pages (Bali et al., 2014). We crawl posts and their
comments from the Facebook public pages of var-
ious sports-persons, political figures, and movie
stars. We also crawl random tweets from geo-
graphical locations Mumbai and Delhi using the
Twitter APIL. From the crawled posts, we remove
the posts in native scripts, and remove duplicate
and promotional posts. We filter the posts con-
taining URLs and those with less than 3 words.

Language Pair | Tweets | Tokens Unique
Pair (Posts) Tokens (%)
SPA-ENG 25,130 | 294,261 | 35,153 (11.95)
HIN-ENG 7,421 | 146,722 | 23,998 (16.36)

Table 3: Corpus statistics for the language pairs.
Token ratio is the percentage of the total tokens
that are unique. A higher token ratio implies a
richer corpus vocabulary.

We follow EMNLP 2016 shared task annota-
tion guidelines and use a semi-automatic approach
to annotate the data. The labels are reviewed
and corrected with the help of in-lab annotators.
The inter-annotator agreement score over approx-
imately 4,000 tokens is 0.935. A portion of
the Facebook dataset is annotated using the En-
glish lexicon and Hindi transliterated pairs."> We
use pattern matching rules to label punctuations,
emoticons, and usernames. These labels are then
corrected manually for ne, fw, mixed, ambiguous,
and unk labels. We also make use of two exist-
ing datasets - Facebook dataset from ICON2016
POS tagging shared task and the dataset from (Se-

Uhttp://wortschatz.uni-leipzig.de/en/download
*http://cse iitkgp.ac.in/resgrp/cnerg/qa/fire 1 translit/
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quiera et al., 2015a).> We manually map the la-
bels of these data sets to labels in Table 2. We
train a character n-gram based CRF model using
the above mentioned three datasets (see Section
5.2) and predict the labels for all the posts crawled
from Facebook and the random tweets from Twit-
ter. From these, we identify the posts predicted as
code-switched, correct the labels where necessary,
and add them to the final dataset. The F1-weighted
score for this model is close to 96 percent.

4 Code-Switching Analysis

In this section we provide some descriptive statis-
tics about the corpora to understand the language
distribution and language-relatedness. Table 4
shows the language distribution at post (tweet)
level. The SPA-ENG dataset has a balanced dis-
tribution where as, in the HIN-ENG dataset ma-
jority of the instances are in English. The be-
low statistics show that both the datasets have a
good amount of code-switched instances to train
and test the language identification systems. Ta-

Language CS langl | lang2 | other
Pairs Instances

HIN-ENG 43.62 51.77 | 4.02 | 0.60

SPA-ENG 34.75 33.53 | 28.94 | 2.77

Table 4: Post-level language distribution in the
datasets. Column 5 corresponds to the instances
that do not have any words with language tags.
langl: ENG, lang2: HIN/SPA.

ble 2 presents the label-wise token distribution for
the datasets. For HIN-ENG, majority of the words
(58%) are in English, 20% are in Hindi, and 7%
are named-entities. The SPA-ENG dataset in com-
parison has a balanced distribution of the two lan-
guages with 38% of the words in English, 41% in

3http://amitavadas.com/Code-Mixing.html
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Figure 1: Vocabulary overlap for labels langl, lang2, and ne for HIN-ENG and SPAN-ENG.

Spanish, and 2% are named-entities. The higher
instances of the named-entities in the HIN-ENG
dataset is a result of the way the data is sourced.

Figure 1 shows the overlap between the to-
kens belonging to langl, lang2, and ne. These
overlaps introduce ambiguity for the automatic la-
beling task. Around 2.5% of the Hindi words in
HIN-ENG share the same spelling as some En-
glish words because of transliteration of Hindi text
to Roman script. In comparison, there is a 6%
overlap between Spanish and English words in the
SPA-ENG dataset (e.g. no, a, final). This indi-
cates higher degree of lexical relatedness between
Spanish and English as compared to Hindi and En-
glish. The overlap between language words and
named-entities is due to words such as university
and united. These words can be part of names of
organizations, movie titles or song titles and can
also be used as language constructs in either of the
languages.

100 N-gram overlap percentage for language pairs

— SPA-ENG
— HI-ENG

80

60

% overlap

40

20

Char n-grams

Figure 2: Plot of character n-grams overlap be-
tween the languages in the datasets, for n
2,3,4,5 and 6.

In another analysis, we explore the similarity
in character n-gram profiles of the languages in-
volved (Maharjan et al., 2015). A higher simi-
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larity in the character n-grams increases the dif-
ficulty of the task. We generate character n-grams
of length 2 to 6 from the language vocabularies
of each corpora. We show the plot of the charac-
ter n-gram overlaps for HIN-ENG and SPA-ENG
in Figure 2. As expected, the overlap decreases
rapidly with increase in n-gram length. The SPA-
ENG n-gram overlap is higher than that of HIN-
ENG for all n-gram lengths. This trend is consis-
tent with the results in Figure 1. To further un-
derstand the complexity involved, for an n-gram
occurring in both the languages, we calculate the
probability of that n-gram being a part of an En-
glish word in the corpus. A probability closer to
50% indicates higher ambiguity in classifying that
n-gram. We find that a significant fraction (25%)
of these shared n-grams, averaged over all n-gram
lengths, appear in the range 40%-60%.

5 Code-Switching Metrics

The code-switching behavior can be different de-
pending on the medium of communication, con-
text of language use, topic, authors (or speakers),
and the languages being mixed among other fac-
tors. We compute 3 different metrics to under-
stand code-switching patterns in our datasets, as
well as to rationalize the performance of the lan-
guage identification models.

M-Index: Multilingual index is a word-count-
based measure that quantifies the inequality of the
language tags distribution in a corpus of at least
two languages (Barnett et al., 2000). Equation (1)
defines the M-Index as:

13 p

k-1

where £ is the total number of languages and p; is
the total number of words in the language 7 over
the total number of words in the corpus. The value

M — Index = (D



ranges between 0 and 1 where, a value of O corre-
sponds to a monolingual corpus and 1 corresponds
to a corpus with equal number of tokens from each
language.

Integration Index: Integration Index is the ap-
proximate probability that any given token in the
corpus is a switch point (Guzman et al., 2016;
Guzman et al., 2017). Given a corpus composed
of tokens tagged by language {/;} where ¢ ranges
from 1 to n — 1, the size of the corpus. The I-index
is computed as follows:

1
I — Index = ——

2.

1<i=j—-1<n-1

S(li, 1) (2)

where S(l;,1;) = 1if [; # 1; and O otherwise. For
a corpus with n tokens, there are n — 1 possible
switch points. It quantifies the frequency of code-
switching in a corpus.

Code-Mixing Index: At the utterance level, this is
computed by finding the most frequent language
in the utterance and then counting the frequency of
the words belonging to all other languages present
(Gambick and Das, 2014). It is calculated using:

2ic1

(w;) — max(w;)

CMI =

3)
n—u

where Y " | (w;) is the sum over number of words
for all N languages in the utterance, max(wj;) is
the highest number of words present from any lan-
guage, n is the total number of tokens, and u is the
number of language independent tokens. Here, we
consider the labels langl, lang2, and fw as lan-
guage words and the rest as other. The range of
CMl value is [0, 100). If an utterance has language
independent tokens or only monolingual tokens,
then the corresponding CMI value is 0. A higher
value of CMI indicates higher level of mixing be-
tween the languages. CMI-all is an average over
all utterances in the corpus and CMI-mixed is an
average over only code-switched instances.

Language | M-Index | CMI-all | CMI-Mixed | I-Index
Pairs

HIN-ENG 0.582 8.564 22.229 0.070

SPA-ENG 0.998 7.685 22.114 0.058

Table 5: CS Metrics for the datasets.

SPA-ENG has higher M-Index (Table 5) value
indicating a balanced ratio of words from the
two languages. This is consistent with the dis-
tribution of language words in the datasets (Ta-
ble 2). The differences in CMI-all between
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HIN-ENG and SPA-ENG is about 0.9 percentage
points and 0.1 percentage points for CMI-mixed.
The higher difference for CMI-all could be be-
cause of the higher percentage of code-switched
instances (9%) in HIN-ENG as compared to SPA-
ENG (Table 4). Considering CMI-mixed and
I-Index metrics together, it is evident that HIN-
ENG has more language mixing and higher num-
ber of code-switching points than SPA-ENG. This
is because HIN-ENG has more instances that have
multiple word insertions. In SPA-ENG, instances
with word insertion at more than one place in an
utterance are less frequent. We also observe that
a larger majority of code-switching happens be-
tween language words in HIN-ENG (76%) than in
SPA-ENG (69%). For example, a number of Hindi
word insertions are due to the use of the honorary
article ji with an address form (Sir/Madam). In
general, observing more code-switching in HIN-
ENG is due to the fact that code-switching be-
tween Hindi and English is very widespread in In-
dia (Parshad et al., 2016; Bali et al., 2014).

6 Language Identification Models

We provide below a brief description of each of
the models used.

CRF: Language identification is a sequence label-
ing task where the label of a token in a sequence
is correlated with the labels of its neighboring to-
kens. So we use CRF - a sequence labeling model
to capture the structure in the data. We explore dif-
ferent language independent features such as char-
acter n-grams, word unigram, morphological fea-
tures, affixes, and contextual information for the
language pairs. For each word, we generate char-
acter n-grams of length 1 to 5 and filter them based
on a minimum threshold frequency of 5. To cap-
ture the morphological information of the tokens,
we use binary features - is digit, is special charac-
ter, is all capital, is title case, begins with @ char-
acter, has accent character (for SPA-ENG only)
and has apostrophe.

We also use language dependent resources like
lexicons and monolingual parts-of-speech (POS)
taggers. For HIN-ENG, we use three different
lexicons - Leipzig corpus for English, FIRE 2013
transliterated Hindi word pairs, and lexically nor-
malized dictionary from Han et al. (2012) and
the output of Twitter POS tagger and CRF++



based Hindi POS tagger.*> For SPA-ENG, we
use Leipzig corpus Spanish along with the other
two lexicons mentioned above and the output from
monolingual TreeTaggers for Spanish and En-
glish.®

Bidirectional LSTM: Long Short Term Memory
networks (LSTMs) (Hochreiter and Schmidhuber,
1997) are a variation of recurrent neural networks
(RNNS), that address the vanishing gradient issue
(Hochreiter, 1998) by extending RNNs with mem-
ory cells. A shortcoming of LSTM is that only the

Yo ¥oreeens Y,
Softmax T
} Dense Layer

:

} Predictions

BLSTM Layer

Input Layer
(fastText
! Word Emb)

Figure 3: Bidirectional LSTM Model.

previous history in a sequence can be utilized. In
a sequence labeling task like language identifica-
tion, it is helpful to use the future context given in
the sequence. Bidirectional LSTM (BLSTM) net-
works can access both the preceding and succeed-
ing contexts by involving two separate hidden lay-
ers. These networks can capture the long distance
relations in the sequence efficiently, in both di-
rections. We build an end-to-end sequence model
with a single BLSTM layer layer (Figure 3).

Word-Character LSTM: This model is a replica-
tion of the model proposed by Samih et al. (2016)
(Figure 4). The input layer in this model has word
and character embeddings. The latter are used to
capture morphological features of a word. We use
two LSTMs to learn fixed-dimensional represen-
tations from the embedding layers. At the out-
put layer, we apply a softmax over the concate-
nated word and character vectors to obtain the to-
ken label. Unlike the BLSTM model, here current
token and the neighboring tokens are considered
to predict the label for the current token. We re-
place the emoticons in the dataset with a place-

*http://www.cs.cmu.edu/ ark/TweetNLP/
Shttp://nltr.org/snltr-software/

Shttp://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
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holder character to reduce the vocabulary size and
as a result reduce the dimension of character em-
beddings. This decreases the number of train-
able model parameters and thereby mitigates over-
fitting to some extent.

n } Prediction

Softmax
\ } Dense Layer

— <

50 50 o o e I Concatenation
/ ‘\ Layer
Word Character Feature
LSTM LSTM Encoders
R R e
Word Emb 4 t Character

Emb
W'r1-2’wn»1 ’Wn’wn+1 ’Wn+2 wn

Figure 4: Word-Character LSTM Model. The in-
put layer of word-char LSTM is initialized with
fastText word embeddings.

7 Experiments and Results

For CRF, we run experiments with different com-
binations of hand-crafted features discussed in the
previous section. We run three different sets of
experiments- with no contextual information, and
with surrounding words of context window sizes 1
and 2. Table 6 and Table 7 shows results from
these experiments.

For the RNN-based systems, we use pre-trained
fastText word embeddings.” We learn the embed-
dings using a large monolingual corpus for each of
the languages and a smaller code-switched corpus
for the language pairs. The rationale for using a
large monolingual data is that it is readily available
and that it can account for the different contexts in
which words appear in different languages - thus
providing an accurate separation between the lan-
guages. We train three separate sets of embed-
dings each for SPA-ENG, HIN-ENG, and SPA-
ENG + HIN-ENG. The embeddings for SPA-ENG
are trained by combining a portion of English Gi-
gaword corpus (Graff et al., 2003) and Spanish
Gigaword corpus (Graff, 2006), and a subset of
tweets from Samih et al. (2016). For HIN-ENG,
we combine a portion of English Gigaword cor-
pus, transliterated Hindi monolingual corpus, and
Facebook posts that contain code-switching. All

"https://fasttext.cc/



Experiments Context-0 | Context-1 | Context-2
Baseline 85.02 - -
Word + 1 to 5 char
n-grams (1) 96.89 96.79 96.77
(1) + word form (2) | 96.95 96.77 96.78
(2) + affixes (3) 96.96 96.84 96.84
(3) + lexicons (4) 97.07 97.03 97.12
(4) + POS tags 97.05 97.16 97.11
(4) + Univ POS tags | 97.1 97.15 97.12
Table 6: Token-level F1-weighted score of the CRF model for different feature combinations for HIN-
ENG.
Experiments Context-0 | Context-1 | Context-2
Baseline 83.17 - -
Word + 1to 5
char n-grams (1) 97.02 96.81 96.82
(1) + word form (2) | 97.21 97.09 97.01
(2) + affixes (3) 97.17 97.07 97.06
(3) + lexicons (4) 97.31 97.19 97.16
(4) + POS tags 97.24 97.19 97.17
(4) 4+ Univ POS tags | 97.25 97.19 97.21

Table 7: Token-level F1-weighted score of the CRF model for different feature combinations for SPA-

ENG.

these corpora are used to train the embeddings for
SPA-ENG + HIN-ENG. This helps to capture the
word usage in the context of each language and
eliminates the ambiguity for the words that have
same surface form in multiple languages. We train
300-dimension embedding vectors using fastText
skip-gram model for 250 epochs with a learning
rate of 0.001 and a minimum word count thresh-
old of 5.

For BLSTM model, we initialize the embedding
layer with the pre-trained fastText word embed-
dings and feed the output sequence from this layer
to the BLSTM layer. At the output layer a soft-
max activation function is applied over the hid-
den representation learned in the BLSTM layer.
For word-char model, we initialize the word em-
bedding matrix with fastText embeddings and use
random initialization for character embedding ma-
trix. We train both the RNN-based models by
optimizing the cross entropy objective function
with Adam (Kingma and Ba, 2014) optimizer. We
use dropout masks after BLSTM layer in BLSTM
model, LSTM layers in word-char model, and
embedding layer in each model to mitigate over-
fitting. The reported BLSTM model and word-
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char models have hidden units of size 80 and 100
respectively in the LSTM layers. For word-char
model, for each token we try a neighboring token
window size of 1, 2, and 3. The context window
size of 2 gives better results and is reported here.

System SPA-ENG | HIN-ENG | SPA-ENG +
HIN-ENG
Baseline 83.17 85.02 71.49
CRF (Context-2) 97.06 96.84 96.37
BLSTM 92.22 93.9 88.7
Word-char LSTM 95.46 92.19 90.1

Table 8: Token-level F1-weighted score for lan-
guage identification systems.

Multiple Language Pair Experiment. We use
the models described in Section 6 in an experi-
ment to identify the labels for a dataset with multi-
ple language pairs. This dataset has both Spanish-
English and Hindi-English language pairs (SPA-
ENG + HIN-ENG). To account for the third lan-
guage, we use an additional label - lang3 (HIN).
Except for the pre-trained word embeddings, the
models do not involve any language dependent
feature engineering, and are easy to scale for mul-
tiple language pairs. As the word embeddings are



HIN-ENG SPA-ENG
Transitions Weights Transitions Weights
unk — unk 9.511 fw—fw 4,731

fw— fw 5.800 ne — ne 2.798
ambiguous — ambiguous | 4.630 lang2 — lang?2 1.464
lang2 — lang?2 2.872 lang2 — ne 1.005

ne — ne 2.824 langl — ne 0.915

other — other 1.905 lang2 — mixed 0.833
langl — langl 1.535 langl — langl 0.707
other — langl 0.801 lang2 — ambiguous | 0.625
langl — other 0.573 other — other 0.483
langl — mixed 0.353 other — mixed 0.427

Table 9: The top 10 most likely transitions learned by the best CRF model for HIN-ENG and SPA-ENG

datasets.

trained mostly on monolingual data, this depen-
dency does not constrain the systems.

7.1 Results and Evaluation

We use a simple lexicon-based model as baseline
for our language identification systems. We use
F1-weighted scores for model evaluations to ac-
count for the imbalance in label distributions (Ta-
ble 2). All the models improve the performance
over the respective baseline models by 7 to 25 per-
centage points. For CRF, which is the best per-
forming model across language pairs, the current
word and its character n-grams are the most im-
portant features. Adding POS tags does not im-
prove these results by much. This could be be-
cause the POS taggers are optimized for monolin-
gual data and their output for the code-switched
data contains noise. Using contextual informa-
tion improves the results for HIN-ENG, but not
for SPA-ENG. In Table 8 we compare the RNN-

Language Pair | System langl | lang2 ne
HIN-ENG BLSTM 0.96 094 | 0.77
Word-char LSTM | 0.95 0.85 | 0.76
CRF (Context-2) | 0.98 096 | 0.85
SPA-ENG BLSTM 0.89 0.95 |0.32
Word-char LSTM | 0.89 0.97 | 0.40
CRF (Context-2) | 0.94 098 | 0.57

Table 10: Token-level Fl-score of majority labels - lang],
lang?2 and ne for the models.

based models and the CRF model. We consider
the performance of the CRF model using only the
language independent features with a context size
of 2 for a fair comparison. Among the RNN-based
systems, while the results are competitive overall,
there is no single system that performs the best
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across language pairs. The BLSTM system per-
forms better for HIN-ENG, while word-char sys-
tem performs better for SPA-ENG. The BLSTM
model captures long distance dependencies in a
sequence and this is in line with the observation
made above with the CRF model- more context
helps for HIN-ENG. It is also consistent with the
code-switching patterns discussed in Section 3.
A majority of code-switched tweets in SPA-ENG
have a single instance of word insertion and these
are being miss-labeled by the models. The overall
better results for SPA-ENG are because of a larger
training data used.® The baseline results for SPA-
ENG + HIN-ENG is relatively low as compared
to the individual language pairs. This shows that
simultaneously identifying language for multiple
language pair is harder. We obtain reasonable re-
sults for these initial experiments with all the mod-
els.

To understand these results better, we look at the
label-wise F1-score for langl, lang2 and ne (Table
10). The F1-scores for CRF is better across the la-
bels and the difference is significantly high for ne.
The F1-score ne is relatively high for HIN-ENG,
which can be attributed to the fact that around
58% of the named-entities in the test set appear
in the training set. This overlap is only 17% for
SPA-ENG. So, infrequent named-entities seems to
be hardest to accurately label. In addition, the
RNN-based models are more sensitive to amount
of training samples.

Further, we examine the transitions learned by

8The Fl-score drops by 10 percentage points for the re-
ported experiments with the training dataset that is half in
size, while maintaining the post-level language distribution.



our best CRF model for each of the language pairs
(Table 9). For both language pairs, the transitions
between the same languages are more likely than
switching. But we also observe that the transitions
from lang to lang?2 and vice-versa rank higher for
HIN-ENG than SPA-ENG. This is because there
are fewer code-switching points in SPA-ENG as
compared to HIN-ENG in these datasets.
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Figure 5: Projection of word representations
learned by the neural networks model for HIN-
ENG + SPA-ENG. We reduce the word vector di-
mensions using PCA. The mapping of labels to
colors: langl - red, lang2 - green, lang3 - blue, ne
- black, other - orange, ambiguous - purple, mixed
- purple, fi - yellow, unk - yellow.

We also visualize the feature representations
learned by the RNN-based models by projecting
the word embeddings for a randomly selected sub-
set of words from the development datasets for
SPA-ENG + HIN-ENG (Figure 5). The word-
char model gives a clearer separation between the
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three languages, the words belonging to the la-
bels other and ne. While the BLSTM model also
provides clear separation between the language
words, there is an overlap with the tokens from
other. These results show that these models can
be scaled to detect code-switching in multiple lan-
guage pairs without any additional feature engi-
neering.

8 Conclusions

The complexity of language identification of code-
switched data depends on the data source, code-
switching behavior, and the typology and relation
between the languages involved. We find that the
code-switching metrics complement each other
in explaining the code-switching patterns across
language pairs. The analysis of code-switching
metrics shows that in our datasets Hindi-English
speakers tend to switch languages more often than
Spanish-English speakers. In future, it would
be interesting to explore and compare the code-
switching behavior of data from different sources
such as movie scripts, song lyrics, and chat con-
versations across different language pairs.

We successfully use two different deep learning
architectures without involving sophisticated fea-
ture engineering for the task and obtain competi-
tive results. However a traditional CRF model per-
forms better than the deep learning models for the
language pairs considered. This is probably due to
the amount of training data we have. The results
show that word embeddings are able to capture the
language separation well. Scaling these systems
to identify languages in datasets with many lan-
guage pairs and datasets with switching between
more than two languages is a potential future di-
rection to explore.
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Abstract

Lack of text data has been the major is-
sue on code-switching language model-
ing. In this paper, we introduce multi-
task learning based language model which
shares syntax representation of languages
to leverage linguistic information and
tackle the low resource data issue. Our
model jointly learns both language mod-
eling and Part-of-Speech tagging on code-
switched utterances. In this way, the
model is able to identify the location of
code-switching points and improves the
prediction of next word. Our approach
outperforms standard LSTM based lan-
guage model, with an improvement of
9.7% and 7.4% in perplexity on SEAME
Phase I and Phase II dataset respectively.

1 Introduction

Code-switching has received a lot of attention
from speech and computational linguistic commu-
nities especially on how to automatically recog-
nize text from speech and understand the struc-
ture within it. This phenomenon is very com-
mon in bilingual and multilingual communities.
For decades, linguists studied this phenomenon
and found that speakers switch at certain points,
not randomly and obeys several constraints which
point to the code-switched position in an utter-
ance (Poplack, 1980; Belazi et al., 1994; Myers-
Scotton, 1997; Muysken, 2000; Auer and Wei,
2007).  These hypotheses have been empiri-
cally proven by observing that bilinguals tend to
code-switch intra-sententially at certain (morpho)-
syntactic boundaries (Poplack, 2015). Belazi et al.
(1994) defined the well-known theory that con-
straints the code-switch between a functional head
and its complement is given the strong relation-
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ship between the two constituents, which cor-
responds to a hierarchical structure in terms of
Part-of-Speech (POS) tags. Muysken (2000) in-
troduced Matrix-Language Model Framework for
an intra-sentential case where the primary lan-
guage is called Matrix Language and the second
one called Embedded Language (Myers-Scotton,
1997). A language island was then introduced
which is a constituent composed entirely of the
language morphemes. From the Matrix-Language
Frame Model, both matrix language (ML) is-
land and embedded language (EL) islands are
well-formed in their grammars and the EL is-
lands are constrained under ML grammar (Namba,
2004). (Fairchild and Van Hell, 2017) studied de-
terminer—noun switches in Spanish—-English bilin-
guals .

Code-switching can be classified into two
categories: intra-sentential and inter-sentential
switches (Poplack, 1980). Intra-sentential switch
defines a shift from one language to another lan-
guage within an utterance. Inter-sentential switch
refers to the change between two languages in a
single discourse, where the switching occurs af-
ter a sentence in the first language has been com-
pleted and the next sentence starts with a new lan-
guage. The example of the intra-sentential switch
is shown in (1), and the inter-sentential switch is
shown in (2).

(1) & & £ check.

(I want to go) check.

(2) o A E EH B4 ¥ — 4> /DI seriously 1

didn’t have so much things to say

(I don’t understand how to speak for an
hour) seriously I didn’t have so much things
to say

Proceedings of The Third Workshop on Computational Approaches to Code-Switching, pages 62—67
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Language modeling using only word lexicons
is not adequate to learn the complexity of code-
switching patterns, especially in a low resource
setting. Learning at the same time syntactic fea-
tures such as POS tag and language identifier al-
lows to have a shared grammatical information
that constraint the next word prediction. Due
to this reason, we propose a multi-task learning
framework for code-switching language modeling
task which is able to leverage syntactic features
such as language and POS tag.

The main contribution of this paper is two-
fold. First, multi-task learning model is pro-
posed to jointly learn language modeling task and
POS sequence tagging task on code-switched ut-
terances. Second, we incorporate language infor-
mation into POS tags to create bilingual tags - it
distinguishes tags between Chinese and English.
The POS tag features are shared towards the lan-
guage model and enrich the features to better learn
where to switch. From our experiments result, we
found that our method improves the perplexity on
SEAME Phase I and Phase II dataset (Nanyang
Technological University, 2015).

2 Related Work

The earliest language modeling research on code-
switching data was applying linguistic theo-
ries on computational modelings such as Inver-
sion Constraints and Functional Head Constraints
on Chinese-English code-switching data (Li and
Fung, 2012; Ying and Fung, 2014). Vu et al.
(2012) built a bilingual language model which is
trained by interpolating two monolingual language
models with statistical machine translation (SMT)
based text generation to generate artificial code-
switching text. Adel et al. (2013a,b) introduced
a class-based method using RNNLM for comput-
ing the posterior probability and added POS tags
in the input. Adel et al. (2015) explored the com-
bination of brown word clusters, open class words,
and clusters of open class word embeddings as
hand-crafted features for improving the factored
language model. In addition, Dyer et al. (2016)
proposed a generative language modeling with ex-
plicit phrase structure. A method of tying input
and output embedding helped to reduce the num-
ber of parameters in language model and improved
the perplexity (Press and Wolf, 2017).

Learning multiple NLP tasks using multi-task
learning have been recently used in many do-
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mains (Collobert et al., 2011; Luong et al., 2016;
Hashimoto et al., 2016). They presented a joint
many-task model to handle multiple NLP tasks
and share parameters with growing depth in a sin-
gle end-to-end model. A work by Aguilar et al.
(2017) showed the potential of combining POS
tagging with Named-Entity Recognition task.

3 Methodology

This section shows how to build the features and
how to train our multi-task learning language
model. Multi-task learning consists of two NLP
tasks: Language modeling and POS sequence tag-

ging.
3.1 Feature Representation

In the model, word lexicons and syntactic features
are used as input.

Word Lexicons: Sentences are encoded as 1-
hot vectors and our vocabulary is built from train-
ing data.

Syntactic Features: For each language island,
phrase within the same language, we extract POS
Tags iteratively using Chinese and English Penn
Tree Bank Parser (Tseng et al., 2005; Toutanova
et al., 2003). There are 31 English POS Tags and
34 Chinese POS Tags. Chinese words are distin-
guishable from English words since they have dif-
ferent encoding. We add language information in
the POS tag label to discriminate POS tag between
two languages.

3.2 Model Description

Figure 1 illustrates our multi-task learning exten-
sion to recurrent language model. In this multi-
task learning setting, the tasks are language mod-
eling and POS tagging. The POS tagging task
shares the POS tag vector and the hidden states to
LM task, but it does not receive any information
from the other loss. Let w; be the word lexicon in
the document and p; be the POS tag of the corre-
sponding w; at index t. They are mapped into em-
bedding matrices to get their d-dimensional vector
representations z}’ and x7. The input embedding
weights are tied with the output weights. We con-
catenate x;” and a;f as the input of LSTMy,,,. The
information from the POS tag sequence is shared
to the language model through this step.

ug = LSTMy,, (2 @ 2F ug—1)

Ut = LSTMpt (i’f, Utfl)
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Figure 1: Multi-Task Learning Framework

where & denotes the concatenation operator,
and v, are the final hidden states of LSTM;,,, and
LSTM,; respectively. u; and vy, the hidden states
from both LSTMs are summed before predicting
the next word.

2t = Ut + Ut

et

Z]T:l e

The word distribution of the next word y; is nor-
malized using softmax function. The model uses
cross-entropy losses as error functions L;,, and
L, for language modeling task and POS tagging
task respectively. We optimize the multi-objective
losses using the Back Propagation algorithm and

we perform a weighted linear sum of the losses
for each individual task.

Yt = ,where j =1,..,T

['total = pﬁlm + (1 - p)ﬁpt
where p is the weight of the loss in the training.

3.3 Experimental Setup

In this section, we present the experimental setting
for this task

Corpus: SEAME (South East Asia Mandarin-
English), a conversational Mandarin-English
code-switching speech corpus consists of spon-
taneously spoken interviews and conversations
(Nanyang Technological University, 2015). Our
dataset (LDC2015S04) is the most updated
version of the Linguistic Data Consortium (LDC)

64

database. However, the statistics are not identical
to Lyu et al. (2010). The corpus consists of two
phases. In Phase I, only selected audio segments
were transcribed. In Phase II, most of the audio
segments were transcribed. According to the
authors, it was not possible to restore the original
dataset. The authors only used Phase I corpus.
Few speaker ids are not in the speaker list pro-
vided by the authors Lyu et al. (2010). Therefore
as a workaround, we added these ids to the train
set. As our future reference, the recording lists are
included in the supplementary material.

Table 1: Data Statistics in SEAME Phase 1

Train set | Dev set | Test set
# Speakers 139 8 8
# Utterances | 45,916 1,938 1,228
# Tokens 762K 31K 17K
Avg. segments | 5 o 368 | 3.8
length
Avg. switches 3.60 3.47 3.67

Table 2: Data Statistics in SEAME Phase 11

Train set | Dev set | Test set
# Speakers 138 8 8
# Utterances | 78,815 4,764 3,933
# Tokens 1.2M 65K 60K
Avg. segment | 3.59 | 3.99
length
Avg. switches 2.94 3.12 3.07

Table 3: Code-Switching Trigger Words in

SEAME Phase 11
POSTag | Freq | POSTag | Freq
VVzy 107,133 | NNgy 31,031
ADzp 97,681 | RBgy 12,498
PNzpy 92,117 | NNPgy | 11,734
NNzg 45,088 | JIgn 5,040
VAzp 27,442 | INgn 4,801
CDzy 20,158 | VBgyn 4,703
Preprocessing: First, we tokenized En-

glish and Chinese word using Stanford NLP
toolkit (Manning et al., 2014). Second, all hesita-
tions and punctuations were removed except apos-
trophe, for examples: “let’s” and “it’s”. Table 1
and Table 2 show the statistics of SEAME Phase I
and II corpora. Table 3 shows the most common

trigger POS tag for Phase II corpus.



Training:  The baseline model was trained
using RNNLM (Mikolov et al., 2011)!. Then,
we trained our LSTM models with different hid-
den sizes [200, 500]. All LSTMs have 2 layers
and unrolled for 35 steps. The embedding size is
equal to the LSTM hidden size. A dropout reg-
ularization (Srivastava et al., 2014) was applied
to the word embedding vector and POS tag em-
bedding vector, and to the recurrent output (Gal
and Ghahramani, 2016) with values between [0.2,
0.4]. We used a batch size of 20 in the train-
ing. EOS tag was used to separate every sentence.
We chose Stochastic Gradient Descent and started
with a learning rate of 20 and if there was no im-
provement during the evaluation, we reduced the
learning rate by a factor of 0.75. The gradient was
clipped to a maximum of 0.25. For the multi-task
learning, we used different loss weights hyper-
parameters p in the range of [0.25, 0.5, 0.75]. We
tuned our model with the development set and we
evaluated our best model using the test set, taking
perplexity as the final evaluation metric. Where
the latter was calculated by taking the exponential
of the error in the negative log-form.

PPL(w) = eFtotal

4 Results

Table 4 and Table 5 show the results of multi-
task learning with different values of the hyper-
parameter p. We observe that the multi-task model
with p 0.25 achieved the best performance.
We compare our multi-task learning model against
RNNLM and LSTM baselines. The baselines
correspond to recurrent neural networks that are
trained with word lexicons. Table 6 and Table
7 present the overall results from different mod-
els. The multi-task model performs better than
LSTM baseline by 9.7% perplexity in Phase I
and 7.4% perplexity in Phase II. The performance
of our model in Phase II is also better than the
RNNLM (8.9%) and far better than the one pre-
sented in Adel et al. (2013b) in Phase I.
Moreover, the results show that adding shared
POS tag representation to LSTM;,,, does not hurt
the performance of the language modeling task.
This implies that the syntactic information helps
the model to better predict the next word in the
sequence. To further verify this hypothesis, we

'downloaded from Mikolov’s website

http://www fit.vutbr.cz/ imikolov/rnnlm/
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Table 4: Multi-task results with different weighted
loss hyper-parameter in Phase 1

Hidden PPL PPL
size p Dev Test
0.25 | 180.90 | 178.18
200 0.5 182.6 | 178.75
0.75 | 180.90 | 178.18
0.25 | 173.55 | 174.96
500 0.5 | 175.23 | 173.89
0.75 | 185.83 | 178.49

Table 5: Multi-task results with different weighted
loss hyper-parameter in Phase 11

Hidden PPL PPL
size p Dev Test
0.25 | 149.68 | 149.84
200 0.5 | 150.92 | 152.38
0.75 | 150.32 | 151.22
0.25 | 141.86 | 141.71
500 0.5 | 144.18 | 144.27
0.75 | 145.08 | 144.85

Table 6: Results in Phase 1

PPL PPL
Model Dev Test
RNNLM (Adel et al., 2013a) | 246.60 | 287.88
(Adel et al., 2015) 238.86 | 245.40
FI + OF (Adel et al., 2013a) | 219.85 | 239.21
FLM (Adel et al., 2013b) 177.79 | 192.08
LSTM 190.33 | 185.91
+ syntactic features 178.51 | 176.57
Multi-task 173.55 | 174.96
Table 7: Results in Phase II
PPL | PPL
Model Dev Test
RNNLM 178.35 | 171.27
LSTM 150.65 | 153.06
+ syntactic features | 147.44 | 148.38
Multi-task 141.86 | 141.71

conduct two analysis by visualizing our prediction
examples in Figure 2:

a) Measure the improvement of the target word’s
log probability by multi-task model compared to
standard LSTM model. This is computed by cal-
culating the log probability difference between
two models. According to Figure 2, in most of the
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Figure 2: Prediction examples in Phase II. Left: Each square shows the target word’s log probability
improvement by multi-task model compared to LSTM model (Darker color is better). Right: Each
square shows the probability of the next POS tag is Chinese (Darker color represents higher probability)

cases, the multi-task model improves the predic-
tion of the monolingual segments and particularly
in code-switching points such as “under”, “secu-
rity”, “generation”, “then”, “graduate”, “ft)”, and
“f”. It also shows that the multi-task model is
more precise in learning where to switch language.
On the other hand, Table 3 shows the relative fre-
quency of the trigger POS tag. The word “then”
belong to RB gy, which is one of the most com-
mon trigger words in the list. Furthermore, the
target word prediction is significantly improved in
most of the trigger words.

b) Report the probability that the next produced
POS tag is Chinese. It is shown that words “then”,

“security”, “ 17, “BEF, “ff”, and “f*)” tend to
switch the language context within the utterance.
However, it is very hard to predict all the cases
correctly. This is may due to the fact that with-
out any switching, the model still creates a correct
sentence.

5 Conclusion

In this paper, we propose a multi-task learning ap-
proach for code-switched language modeling. The
multi-task learning models achieve the best perfor-
mance and outperform LSTM baseline with 9.7%
and 7.4% improvement in perplexity for Phase I
and Phase II SEAME corpus respectively. This
implies that by training two different NLP tasks
together the model can correctly learn the correla-
tion between them. Indeed, the syntactic informa-
tion helps the model to be aware of code-switching
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points and it improves the performance over the
language model. Finally, we conclude that multi-
task learning has good potential on code-switching
language modeling research and there are still
rooms for improvements, especially by adding
more language pairs and corpora.
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Abstract

One language is often assumed to be dom-
inant in code-switching (C-S), but this as-
sumption has not been empirically tested.
We operationalize the matrix language
(ML) at the level of the sentence, us-
ing three common definitions. We test
whether these converge and then model
this convergence via a set of metrics that
together quantify the nature of C-S. We
conduct our experiment on four differ-
ent Spanish-English corpora. Our results
demonstrate that our model can separate
some corpora according to whether they
have a dominant ML or not but that the
corpora span a range of mixing types that
cannot be sorted neatly into an insertional
vs. alternational dichotomy.

1 Introduction

From Joshi (1982) forward, many researchers as-
sume that one of the participating languages in
code-switching (C-S) is dominant. This notion
is theorized in linguistics as the Matrix Language
Frame model (MLF) (Myers-Scotton, 1997). The
MLF assumes an asymmetry between the lan-
guages involved in C-S, with the matrix language
(ML) providing the frame into which embedded
language elements (EL) from the contact language
are inserted, as well as an asymmetry between
system vs. content morphemes. System mor-
phemes in the MLF comprise a subset of closed
class morphemes that neither assign nor receive a
thematic role (e.g., determiners, quantifiers, aux-
iliaries, conjunctions). Constraints on language
mixing follow from the asymmetry: The ML pro-
vides the grammatical elements and framing while
the EL provides merely content morphemes. Nev-
ertheless, there are two long-standing criticisms of
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the ML: (1) the criteria for the identification of
the ML are not straightforward (Winford, 2003;
Meakins, 2011; Bhat et al., 2016); and (2) the
consistent identification of a single ML might not
be possible (Auer and Muhamedova, 2005; Bhat
et al., 2016; Liu, 2008; Adamou, 2016). To this
we add a third concern: In ascertaining an ML,
researchers often rely on selected, decontextual-
ized example sentences. With some exceptions,
most in NLP (Gambéick and Das, 2016; Bhat et al.,
2016; Vyas et al., 2014), few scholars have calcu-
lated the ML for each sentence or utterance in a
sizable dataset (Blokzijl et al., 2017). Thus, tests
of the MLF using replicable methods are lacking,
despite the fact that the determination of an ML
has consequences for linguistic analyses and for
accurate models of multilingual texts for language
processing (Bhat et al., 2016; Solorio and Liu,
2008a,b) and for applications like TTS (Sitaram
and Black, 2016; Sitaram et al., 2015) and ASR
(Liet al., 2012).

In this paper, we attempt to quantify the na-
ture of mixing using multiple measures and to
operationalize the concept of the ML at the sen-
tence level using code-switched Spanish-English
corpora. We then test the concept of the ML
and its applicability to different degrees of mix-
ing as quantified by the ratio of languages repre-
sented in a sentence, by the probability of switch-
ing from one word to the next, and by the regu-
larity vs. intermittency of switching as defined by
the distribution of the interevent spans of each lan-
guage. We operationalize the ML for the instances
of intrasentential mixing identified in our cor-
pora along three different parameters: numerically
dominant language overall, numerically dominant
language of all verbs, and numerically dominant
language of a subset of system morphemes. We
then predict the likelihood that these different cal-
culations of the ML converge to the same language
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result (i.e., point to a unique ML) as a function
of our corpus metrics. Our result is a model that
classifies C-S data according to how likely it is
that all three measures of the ML agree on the
same language label. Our contribution is three-
fold: first, we show that one can ascribe a single
ML with a high degree of likelihood given a par-
ticular pattern of C-S and that a simple word-count
method is sufficient to do so; secondly, we em-
pirically demonstrate that there is a cline of C-S
such that corpora cannot always be neatly sepa-
rated into insertional and alternational types as is
generally claimed in the sociolinguistic literature;
thirdly, we find that measures designed to assess
the time-course of complex systems like C-S are
lacking for small datasets.

2 Related Work
2.1 Debates about the MLF Model

Studies of C-S commonly distinguish between
insertional and alternational patterns (Muysken,
2000). With insertional switching, speakers are
said to know which one language an utterance
is “coming from” (Joshi, 1982; Romaine, 1995;
Sitaram and Black, 2016). In the MLF model
(Myers-Scotton, 1997), this language is formal-
ized as the ML. Insertional C-S, which may be
indistinguishable from borrowing (Poplack et al.,
1988), is encountered in many sociolinguistic set-
tings irrespective of the typologies of the language
pairing studied (Poplack et al., 1988; Muysken,
2000; Li and Fung, 2013; Vyas et al., 2014;
Adamou, 2016). In Sentence 1, Marathi is the
ML, identified by the relative ordering of words
in the clause and by the language of the system
or closed-class morphemes, such as the quantifier
kahi and the light verb kar; English contributes
only the EL lexeme paint. Hindi is argued to be
the ML in Sentence 2 (Bhat et al., 2016) , which
presents an EL Island (ELI), an English-language
embedded constituent with its own internal struc-
ture.!

e Sentence 1
mula kahi khurcya paint kartat

! In the NLP literature, insertionanal mixing is often re-
ferred to as code-mixing (CM), following Gumperz (1982)
(Vyasetal., 2014; Bali et al., 2014), though some researchers
employ CM as an umbrella term for both insertional and al-
ternational mixing (Sequiera et al., 2015). Others use CM for
any switching that occurs within an utterance (and C-S for
switching at or above the utterance level) (Gambick and Das,
2016).
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[boys some chairs paint do+TNS]

e Sentence 2
Shanivar neeras hai from that perspective
[Saturday boring is from that perspective]

The means by which the ML of a clause or ex-
tended discourse is determined remains debated.
The ML has been variously associated with the
numerically dominant language, (Myers-Scotton,
1997; Gambiack and Das, 2016; Sharma and Mot-
lani, 2015), with the language of the finite verb
(Klavans, 1985; Treffers-Daller, 1994; Meakins,
2011), or with the first language in a left-to-right
parsing (Doron, 1983). It should be noted that the
ML, as defined by Myers-Scotton, operates over
a unit she calls the CP, which is co-extensive with
the clause. For the purpose of this paper, we define
the ML over a sentence, which may contain more
than one clause. Since the majority of the corpora
to be examined are from natural conversations, it
is likely that most sentences consist of a single
clause, as sentences are known to be shorter and
syntactically less complex in spoken language.

The ML is not argued to be applicable to alter-
national switching, because speakers move from
one grammar to another within an utterance. But
it is often not clear from cited examples whether
a new language span constitutes the alternation of
MLs, as appears to be the case in Sentence 3 from
the bilingual memoire Killer Cronicas, or whether
the span is an ELI inserted into an ML, as is argued
to be the case for Sentence 2. For instance, ex-
amining natural Japanese-English data within the
MLEF, Namba (2012) could not determine the ML
of C-S utterances such as Sentence 4, which ac-
counted for 42% of the clauses in the corpus.

e Sentence 3
Anyway, just leave him plantado, al taxista
este, or throw some money at him y salir
[stranded that taxi-driver ... and leave]

e Sentence 4
I want to be goorukiipaa ni nari-tai
[goalkeeper RESULTATIVE become]

2.2 Measuring the complexity of
code-switching

Importantly, bilingual speech practices are com-
plex and it is not clear that the traditional binary ty-
pology of insertional and alternational C-S, while
useful as a heuristic, is adequate to characterize



the nature of C-S (Auer and Muhamedova, 2005).
There have been recent attempts to quantify mix-
ing complexity with the aim of arriving at empir-
ically reliable comparisons of C-S between cor-
pora (Gambéck and Das, 2016; Das and Gambick,
2014; Jamatia et al., 2015; Guzman et al., 2016;
Guzmén et al., 2017a). Each aims to capture the
fact that C-S may vary along multiple planes. We
follow Guzman et al. (2016, 2017a) who quantify
mixing in terms of several parameters calculated
from language labels at the word level: (1) the
ratio of languages represented; (2) the probabil-
ity of switching language between any two words;
(3) the burstiness of switching as characterized by
the distribution of the length of spans; and (4)
the sequential ordering of alternating monolingual
spans.

3 Data

Bhat et al. (2016) built models for generating C-S
sentences based on input sentences and the con-
straints of the MLF and of the Equivalence Con-
straint, a symmetrical model for alternating C-S
(Poplack, 1980). When the sentences were sub-
mitted to human evaluation, there was significant
variance in acceptability, potentially attributable to
discrepancies in the register of some of the words
used, as C-S tends to be informal and conversa-
tional. For our study, we avoid confounds that
can be introduced by generated C-S by drawing
on C-S data generated by bilingual speakers them-
selves. We were restricted in our choice of data by
the requirement that all data bear a language label
and a POS tag. As is commonly observed, POS
tagged bilingual data are rare because the accu-
racy of monolingual taggers is reduced when the
context is broken by C-S (Vyas et al., 2014).

The corpora that we use reflect degrees of mix-
ing so that we test the viability of the MLF hy-
pothesis across varying types of C-S. Each corpus
was previously tagged for language and POS by its
creators. In order to be able to compare between,
the original POS tags used for each datasets were
mapped to the core POS tagset from the Univer-
sal Dependencies (UD) framework (Nivre et al.,
2016). The corpora to be modeled are the follow-
ing.

1. §7 was created by Thamar Solorio (2008a;
2008b). It documents a conversation among
three Spanish-English bilinguals, resulting in
approximately 8,000 words. It was tagged
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for language and POS, using TreeTagger’s
English and Spanish parameters (Solorio and
Liu, 2008a).

2. Miami consists of files from the Bangor Mi-
ami Corpus, transcripts of informal conversa-
tions between Spanish-English bilinguals in
Miami. The data was automatically anno-
tated for language and POS, using the Bangor
Autoglosser (Donnelly and Deuchar, 2011).

. SpinTX comprises selected transcripts of
speakers from the Spanish in Texas Corpus, a
set of recorded interviews between Spanish-
English bilinguals residing in Texas (Bul-
lock and Toribio, 2013; Toribio and Bullock,
2016). The corpus in its entirety was auto-
matically tagged for POS using the English
and Spanish versions of TreeTagger (Schmid,
1995) applied sequentially.?

KC is an excerpt of the epistolary work Killer
Cronicas: Bilingual Memoires by Susana
Chavez-Silverman. Nearly evenly balanced
between English and Spanish, the POS anno-
tated segment contains approximately 8,000
words. It was automatically tagged for lan-
guage following Guzmaén et al. (2016) and
then manually annotated for POS using the
UD tagset.

4 Procedures

In order to examine the viability and agreement
of the MLF across the four corpora, we converted
all POS labels to the core UD tagset. For S7, Mi-
ami, and SpinTX, we remapped the existing POS-
tagset from either TreeTagger or the Bangor Auto-
glosser using a lookup table. In the case of KC, we
manually tagged every token according to the UD
framework since we had no previous tagging. The
POS annotations were completed by a Spanish-
English bilingual, professional linguist and then
each annotation was checked by two others.

Each corpus was submitted to sentence tok-
enization, breaking on full or sentential stops. For
S7, Miami, and SpinTX, we followed the exist-
ing sentence end markers, such as “SENT” and
“FS”, from the original POS tagging before con-
version to UD. For KC, we performed a manual

>The Spanish in Texas Corpus is available through
a creative commons license for non- commercial down-
load in various file formats from http://corpus.
spanishintexas.org/en.



Table 1: Anyway, al taxista right away le noté un
acentito, not too specific

ML Definition English  Spanish ML
Word Count 6 6 Tie
Verb 0 1 Spanish
Functional words 2 3 Spanish

sentence-tagging since the UD tagset collapses all
punctuation under the “.” tag, which loses all sen-
tence boundary information. There are currently

no workable sentence tokenizers for C-S data.

As it is designed to permit the comparison of
syntax in a language independent manner, the 17-
tag core UD provides adequate POS annotations
for capturing the system morphemes for Spanish-
English. But the core level does not provide
the level of granularity to distinguish finite verbs
from non-finite ones (infinitives, participles and
gerunds). Thus, we operationalized the ML for
each sentence using three methods: the numeri-
cally dominant language of all tokens (TOTAL),
the numerically dominant language of all verbs
(VERB), and the numerically dominant language
of functional elements (FUNC), i.e. DET, SCONJ,
CCONIJ, PRON, and AUX. Each of these three
methods predicted “English”, “Spanish”, or “Tie”
as the ML for each sentence in our datasets. We
quantified agreement between these measures us-
ing the logical AND of all three. If at least one
method predicted a different ML than the other
two, then the agreement was 0 for DISAGREE.

As an example, consider Sentence 5 in Table 1.
Since there is an equal number of tokens from
English and Spanish, the word count or TOTAL
method predicts a Tie. However, both VERB and
FUNC predict a Spanish ML because of the higher
number of Spanish verbs and functional elements.
In this case, the sentence-level agreement is DIS-
AGREE because the measures do not all concur.

We operationalize the nature of mixing via three
metrics: M-Index, I-Index and Burstiness, each
defined below.

1. The Mixing Index (M-Index), developed by
the LIPPES Group (Barnett et al., 2000)
from the Gini coefficient defines the ratio of
languages in a text. It is bounded by O (a
monolingual text) and 1 (a text with an even
distribution of languages).
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2. The Integration Index, (I-Index), created by
Guzman et al. (2016; 2017b; 2017a) de-
scribes the probability of switching. It ranges
from O (monolingual text) to 1 (a text in
which every other word is drawn from a dif-
ferent language).

. Burstiness, proposed by Goh and Barabdsi
for complex systems (2008), defines the regu-
larity of switching. It is adapted here to apply
to the interevent level of sequences of mono-
lingual tokens, called spans, after every C-S.
It is bounded within the interval of -1 (anti-
bursty, periodic dispersion of switching) and
1 (predictable patterns of switching).

A fourth metric, Memory (Goh and Barabasi,
2008), which models the temporal order of the
spans, is desirable for examining C-S in larger
corpora (Guzman et al., 2016; Guzmén et al.,
2017b,a), and was calculated at the sentence level
over the test corpora. We were forced to ex-
clude it from further consideration because the
sentences were short and often included spans of
equal length, yielding a standard deviation of zero.
Since the multiplicand and the multiplier in the di-
visor of the Memory function are standard devia-
tions, our sentences yielded many divisors of 0.

We tested our ML methods only on the subsets
of the datasets that contained C-S, i.e. we elimi-
nated all monolingual sentences from our corpora.
This has the consequence of removing conversa-
tional disfluencies such as restarts, which are un-
likely to to demonstrate a C-S. In addition, we ex-
cluded all parts of the SpinTX and Miami corpora
that did not contain a base-line amount of mix-
ing. For Miami, we removed the herringl1 and
maria2l conversations. Similarly, in SpinTX we
removed all conversations with an I-index of less
than 0.1. The final test corpus contained 7,879 C-S
sentences, each coded for the three sentence-level
metrics described above, for the ML predictions
from each of the three numerical methods TOTAL,
VERB, and FUNC, and for whether the numerical
ML predictions agreed or not.

Across all sentences, the three methods con-
verge on an ML 58% of the time. There were no-
table differences in the range of convergence at the
corpus-level. For S7, they agree 65%; for Miami
57%; for SpinTX 71%, and for KC only 45%.



Figure 1: Effects Plot for Corpus and I-index
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We fit a logistic regression to predict AGREE (i.e.,
there is an ML upon which all three measures
agree) with three continuous predictor variables
(M-Index, I-Index, Burstiness) and one categori-
cal predictor (Corpus). An analysis of the model
output revealed significant variability as to the ef-
fect of the I-index depending on the corpus, vi-
sualized in Figure 1. To capture this variability, an
interaction between Corpus * I-Index was added to
the model. The updated model is able to correctly
predict AGREE or DISAGREE across all corpora
with an Fl-score of 69.3%, as shown in predictor
density plot of Figure 2. All three metrics and the
corpus as a categorical variable were significant in
predicting agreement. The strongest predictors are
the M-Index and Burstiness, with opposite effects,
as seen in Figure 3. The M-Index inversely affects
agreement; as the M-Index increases, the determi-
nations of the ML are less likely to agree. Con-
versely, as the Burstiness increases, all three ML
methods are more likely to agree. Plotting the pre-
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dictors for each sentence yields Figure 4, which
shows the model’s prediction of agreement for the
data from all four corpora.

Although the model does not cleanly split all
sentences of KC and SpinTX by agreement, we
do see a clear preference for predicting AGREE
for SpinTX and DISAGREE for KC. However,
we also find that the model predicts multi-modal
agreement distributions for the S7 and Miami cor-
pora. The small peaks around O indicate that
the model does not have sufficient information to
distinguish between predicting AGREE or DIS-
AGREE for a small amount of data, which we dis-
cuss below.

Figure 3: Odds Ratio Plot
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6 Discussion

In this paper we found that the three different
methods for determining the ML of a sentence
agreed 58% of the time across different mixing
types. Further, we found a clear distinction be-
tween the rate of agreement for corpora that ap-
pear to be more insertional versus others. We also



demonstrated that, collectively, these corpora span
a range of types with some clearly intermediary
between insertion and alternation. These interme-
diary patterns may correspond to instances of con-
gruent lexicalization, a mix of insertion and alter-
nation (Muysken, 2014).

Our model performance across all four corpora
leads us to believe that language tagging is much
more useful than previously thought and it may
suffice in many cases for determining the ML. In
fact, we can reliably predict the agreement of dif-
ferent ML methods with an accuracy of 69.3% us-
ing our metrics on language tags. The implica-
tion is that researchers in linguistics and in NLP
could use word-count alone to determine the ML
as a good first-approximation depending on the
type of mixing in their data. Corpora with spo-
radic embeddings present an ideal case where the
linguistic methods of determining ML often agree
with word-count and these are likely to be prolific.
In the Pangloss Collection of endangered Slavic
languages in Europe, three of the six corpora
contain less than 5% borrowed words (Adamou,
2016), a percentage that parallels the findings in
other contact corpora of naturally produced speech
(Treffers-Daller, 1994; Bullock et al., 2016; Ca-
coullos and Aaron, 2003; Varra, 2013). But, the
performance of the model on the S7 and Miami
datasets indicate that our current metrics are not
sufficient to predict agreement even when cor-
pora have characteristics that indicate that they are
largely insertional (low M-Index + high Bursti-
ness). The uncertainty in the model predictions
leads us to conclude that there is a continuum of
mixing types within the existing typology of alter-
national and insertional mixing.

7 Future Research

In on-going work, we need to examine the meth-
ods of determining the ML in natural interactions
in finer detail in order to determine which method
is most likely to diverge from the other two. To
further examine the viability of the MLF hypoth-
esis, we are exploring other language pairings and
analyzing the effectiveness of our current met-
rics at clustering and comparing across corpora,
although we are hampered by the lack of POS-
tagged bilingual data from natural speech. In ad-
dition, we are currently testing the performance
of entropy-based measures (Guzman et al., 2017a)
as predictors for ML agreement. Finally, the per-
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formance of our model requires deeper syntac-
tic analysis of the nature of mixing types and of
the grammatical structures of the S7 and Miami
datasets in particular.
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Abstract

Multilingual speakers switch between lan-
guages displaying inter sentential, intra
sentential, and congruent lexicalization
based transitions. = While monolingual
ASR systems may be capable of recogniz-
ing a few words from a foreign language,
they are usually not robust enough to han-
dle these varied styles of code-switching.
There is also a lack of large code-switched
speech corpora capturing all these styles
making it difficult to build code-switched
speech recognition systems. We hypothe-
size that it may be useful for an ASR sys-
tem to be able to first detect the switch-
ing style of a particular utterance from
acoustics, and then use specialized lan-
guage models or other adaptation tech-
niques for decoding the speech. In this
paper, we look at the first problem of de-
tecting code-switching style from acous-
tics. We classify code-switched Spanish-
English and Hindi-English corpora using
two metrics and show that features ex-
tracted from acoustics alone can distin-
guish between different kinds of code-
switching in these language pairs.

Index Terms: speech recognition, code-

switching, language identification

1 Introduction

Code-switching refers to the phenomenon where
bilingual speakers alternate between the languages
while speaking. It occurs in multilingual soci-
eties around the world. As Automatic Speech
Recognition (ASR) systems are now recognizing
conversational speech, it becomes important that
they handle code-switching. Furthermore, code-
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switching affects co-articulation and context de-
pendent acoustic modeling (Elias et al., 2017).
Therefore, developing systems for such speech re-
quires careful handling of unexpected language
switches that may occur in a single utterance. We
hypothesize that in such scenarios it would be de-
sirable to condition the recognition systems on the
type (Muysken, 2000) or style of language mixing
that might be expected in the signal. In this paper,
we present approaches to detecting code-switching
‘style’ from acoustics. We first define style of an
utterance based on two metrics that indicate the
level of mixing in the utterance: CodeMixing In-
dex(CMI) and CodeMixing Span Index. Based on
these, we classify each mixed utterance into 5 style
classes. We also obtain an utterance level acous-
tic representation for each of the utterances using
a variant of SoundNet. Using this acoustic repre-
sentation as features, we try to predict the style of
utterance.

2 Related Work

Prior work on building Acoustic and Language
Models for ASR systems for code-switched speech
can be categorized into the following approaches:
(1) Detecting code-switching points in an utter-
ance, followed by the application of monolingual
acoustic and language models to the individual
segments (Chan et al., 2004; Lyu and Lyu, 2008;
Shia et al., 2004). (2)Employing a shared phone
set to build acoustic models for mixed speech
with standard language models trained on code-
switched text (Imseng et al., 2011; Li et al., 2011;
Bhuvanagiri and Kopparapu, 2010; Yeh et al.,
2010). (3) Training Acoustic or Language mod-
els on monolingual data in both languages with lit-
tle or no code-switched data (Lyu et al., 2006; Vu
et al., 2012; Bhuvanagirir and Kopparapu, 2012;
Yeh and Lee, 2015). We attempt to approach this

Proceedings of The Third Workshop on Computational Approaches to Code-Switching, pages 7681
Melbourne, Australia, July 19, 2018. (©)2018 Association for Computational Linguistics



Class CMI Hi-En Utts | En-Es Utts
C1 0 6771 41624
C2 0-0.15 13986 2284
C3 | 0.15-0.30 492 2453
C4 | 0.30-0.45 8865 1025
C5 0.45-1 2496 1562

Table 1: Distribution of CMI classes for Hinglish
and Spanglish

problem by first identifying the style of code mix-
ing from acoustics. This is similar to the problem
of language identification from acoustics, which is
typically done over the span of an entire utterance.

Deep Learning based methods have recently
proven very effective in speaker and language
recognition tasks. Prior work in Deep Neural Net-
works (DNN) based language recognition can be
grouped into two categories: (1) Approaches that
use DNNs as feature extractors followed by sep-
arate classifiers to predict the identity of the lan-
guage (Jiang et al., 2014; Matejka et al., 2014;
Song et al., 2013) and (2) Approaches that em-
ploy DNNs to directly predict the language ID
(Richardson et al., 2015b,a; Lopez-Moreno et al.,
2014). Although DNN based systems outper-
form the iVector based approaches, the output de-
cision is dependent on the outcome from every
frame. This limits the real time deployment capa-
bilities for such systems. Moreover, such systems
typically use a fixed contextual window which
spans hundreds of milliseconds of speech while the
language effects in a code-switched scenario are
suprasegmental and typically span a longer range.
In addition, the accuracies of such systems, espe-
cially ones that employ some variant of iVectors
drop as the duration of the utterance is reduced. We
follow the approach of using DNNs as utterance
level feature extractors. Our interest is in adding
long term information to influence the recognition
model, particularly at the level of the complete ut-
terance, representing stylistic aspects of the degree
and style of code-switching throughout the utter-
ances.

3 Style of Mixing and Motivation

Multiple metrics have been proposed to quantify
codemixing (Guzman et al., 2017; Gambéck and
Das, 2014) such as span of the participating lan-
guages, burstiness and complexity. For our cur-
rent study, we categorize the utterances into dif-
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Class | Description | Hi-En | En-Es
S1 Mono En 5413 | 27960
S2 Mono Hi/Es 0 12749
S3 En Matrix 626 2883
S4 | Hi/Es Matrix | 36454 | 1986
S5 Others 8307 | 3345

Table 2: Distribution of span based classes for
Hinglish and Spanglish. Note that the term ‘Ma-
trix’ is used just here notionally to indicate larger
word span of the language.

ferent styles based on two metrics: (1) Code Mix-
ing index (Gamback and Das, 2014) which at-
tempts to quantify the codemixing based on the
word counts and (2) CodeMixed Span information
which attempts to quantify codemixing of an utter-
ance based on the span of participating languages.

3.1 Categorization based on Code Mixing
Index

Code Mixing Index (Gamback and Das, 2014) was
introduced to quantify the level of mixing between
the participating languages in a codemixed utter-
ance. CMI can be calculated at the corpus and ut-
terance level. We use utterance CMI, which is de-
fined as:

win (N () — maxp,er{te, }(z)) + wpP(x)

Cu(z) = 100 N

O]
where N is the number of languages, ¢, are the
tokens in language L;, P is the number of code
alternation points in utterance x and w,, and w),
are weights. In our current study, we quantize the
range of codemixed index ( 0 to 1) into 5 styles and
categorize each utterance as shown in Table 1. A
CMI of 0 indicates that the utterance is monolin-
gual. We experimented with various CMI ranges
and found that the chosen ranges led to a reason-
able distribution within the corpus. For example,
the C2 CMI class in Hindi-English code switched
data has utterances such as "T8RT U start fohdl & TRT
TeRT U IR AT ot o el §AT" (started at fifteen,
eleven or fifteen but buddy nothing has happened
so far’). The C4 class on the other hand, has ut-
terances such as “actual H 3717 g rainy season <hl
TIFH o7 A" (actually the weather today was like
rainy season, right?’). An example of a C5 utter-
ance is ”ohh English 3T=8T English T favourite
singer AT English #?" ("Ohh English, ok who
is your favorite English singer?”)



3.2 Categorization based on Span of
codemixing

While CMI captures the level of mixing, it does not
take to account the span information (regularity)
of mixing. Therefore, we use language span in-
formation (Guzman et al., 2017) to categorize the
utterances into 5 different styles as shown in Ta-
ble 2. We divide each utterance based on the span
of the participating languages into five classes -
monolingual English, monolingual Hindi or Span-
ish, classes where the two languages are dominant
(70% or more) and all other utterances. The classes
S3 and S4 indicate that the primary language in the
utterance has a span of at least 70% with respect
to the length of utterance. This criterion makes
these classes notionally similar to the construct of
‘matrix’ language. However, we do not consider
any information related to the word identity in this
approach. As we can see from both the CMI and
span-based classes, the distributions of the two lan-
guage pairs are very different. The Spanglish data
contains much more monolingual data, while the
Hinglish data is predominantly Hindi matrix with
English embeddings. The Hinglish data set does
not have monolingual Hindi utterances which is
due to the way the data was selected, as explained
in Section 4.1.

3.3 Style Modeling using Modified SoundNet

SoundNet (Aytar et al., 2016) is a deep convolu-
tional network that takes raw waveforms as input
and is trained to predict objects and scenes in video
streams. Once the network is trained, the activa-
tions of intermediate layers can be considered as
a high level representation which can be used for
other tasks. However, SoundNet is a fully convo-
lutional network, in which the frame rate decreases
with each layer. Each convolutional layer doubles
the number of feature maps and halves the frame
rate. The network is trained to minimize the KL
divergence from the ground truth distributions to
the predicted distributions. The higher layers in
SoundNet are subsampled too much to be used di-
rectly for feature extraction. To alleviate this, we
train a fully connected variant of Soundnet (Wang
and Metze, 2017): Instead of using convolutional
layers all the way up, we switch to fully connected
layers after the 5th layer. We have also change the
input sampling rate to 16 KHz to match the rate of
provided data.

78

Input Raw signal

convs

convéd

L poni2 o

o)

cony1P00l

Figure 1: Architecture for style modeling using
modified Soundnet

4 Experimental Setup

4.1 Data

We use code-switched Spanish English (referred
to as Spanglish hereafter) released as a part of Mi-
ami Corpus (Deuchar et al., 2014) for training and
testing. The corpus consists of 56 audio record-
ings and their corresponding transcripts of infor-
mal conversation between two or more speakers,
involving a total of 84 speakers. We segment the
files based on the transcriptions provided and ob-
tain a total of 51993 utterances. For Hinglish,
we use an in-house speech corpus of conversa-
tional speech. Participants were given a topic and
asked to have a conversation in Hindi with another
speaker. 40% of the data had at least one English
word in it, which was transcribed in English, while
the Hindi portion of the data was transcribed in De-
vanagari script. We split the data into Hindi and
Hinglish by filtering for English words, hence the
Hinglish data does not contain monolingual Hindi
utterances. Note that this data did contain a few
monolingual English sentences, but they were typ-
ically single word sentences. Such English utter-
ances were considered to be part of the Hinglish
class. The number of Hinglish utterances is 54279.

4.2 Style Identification

For style identification we perform the following
procedure: We first categorize the utterances into
5 styles based on the criteria described in section
3. We pass each utterance through pretrained mod-
ified SoundNet and obtain the representations at
all the layers. We use the representation from
7th (penultimate) layer as embedding for the utter-
ance. We experimented with combining the repre-
sentations at multiple layers but found that they do
not outperform the representation at the 7th layer
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Figure 2: Precision, Recall and F1 scores for 5 way style classification of Hinglish and Spanglish

alone. Therefore for the purposes of this paper, we
restrict ourselves to the representation at the penul-
timate layer. The embedding is obtained by per-
forming mean pooling on the representation. Fi-
nally, we train a Random Forest classifier using the
obtained embedding to predict the style of mixing.

4.3 Results and Discussion

Figure 2 shows the results for 5 class classification
for Hinglish and Spanglish based on CMI (classes
C1-C5) and span (classes S1-S5). Some classes
(Cl1, C2, C3, S1, S4 for Hi-En and C1, C4, C5, S1,
S4, S5 for En-Es) are easier to predict and are not
always the majority classes. In our current imple-
mentation, we use a two stage approach for feature
extraction and classification. We hypothesize that
there might be better approaches to perform each
of the components independently. It might also be
possible to incorporate a style discovery module in
an end to end fashion (Wang et al., 2018). As we
plan to include the predicted style information in
our recognition system, we also evaluate our ap-
proach using language models. For this, we build
style specific language models tested on style spe-
cific test sets and include the average perplexity
values for all of them in table 3. Ground Truth in-
dicates that the model was built on the classes seg-
regated based on approaches described in section
3. Predicted indicates that the language model was
built based on the classes predicted by the model
described in section 4.2. We also build a language
model on utterances from the majority class for
CMI and Span, as well as all the Spanglish data
with no style information. As can be observed, the
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perplexity has a considerable reduction when using
style specific information, while the majority style
does not lead to the same reduction over the model
with no style information. This further validates
our hypothesis that style specific models may help
decrease LM perplexities and ASR error rates.

Table 3: Language Model Experiments

Language Avg Ppl
GroundTruth 54.8

CMI  Predicted 56.2

Spanglish Majority Class 81.2
GroundTruth 59.1

Span Predicted 62.8

Majority Class 80.2

No Style Info 82.1

5 Conclusion

In this paper, we present a preliminary attempt at
categorizing code-switching style from acoustics,
that can be used as a first pass by a speech recog-
nition system. Language Model experiments indi-
cate promising results with considerable reduction
in perplexity for style-specific models. In future
work, we plan to improve our feature extraction
and classification models and test our language
models on code-switched speech recognition.
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Abstract

Bilingual speakers often freely mix lan-
guages. However, in such bilingual con-
versations, are the language choices of
the speakers coordinated? How much
does one speaker’s choice of language
affect other speakers? In this paper,
we formulate code-choice as a linguis-
tic style, and show that speakers are in-
deed sensitive to and accommodating of
each other’s code-choice. We find that
the salience or markedness of a language
in context directly affects the degree of
accommodation observed. More impor-
tantly, we discover that accommodation of
code-choices persists over several conver-
sational turns. We also propose an alter-
native interpretation of conversational ac-
commodation as a retrieval problem, and
show that the differences in accommo-
dation characteristics of code-choices are
based on their markedness in context.

1 Introduction

Code-switching (CS) refers to the fluid alter-
ation between two or more languages within a
conversation, and is a common feature of all
multilingual societies. (Auer, 2013). Multilin-
gual speakers are known to code-switch in spo-
ken conversations for a variety of reasons, moti-
vated by information-theoretic and cognitive prin-
ciples, and also as a result of numerous social,
communicative and pragmatic functions (Scotton
and Ury, 1977; Soderberg Arnfast and Jgrgensen,
2003; Gumperz, 1982).

Code-choice refers to a speaker’s decision of
which code to use in a given utterance, and in
case of a CS utterance, to what extent the differ-
ent codes are to be used. Depending on the soci-
olinguistic and conversational context, a speaker’s
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code-choice may be unexpected and noticed by
other speakers, and is likely to affect other speak-
ers’ subsequent code-choice. In other words,
speakers may accommodate to each other’s code-
choice, positively or negatively (Genesee, 1982).

In this work, we propose a set of metrics to
study the social accommodation of code-choice
as a sociolinguistic style marker. We build upon
the existing framework on accommodation by
Danescu-Niculescu-Mizil et al. (2011) and adapt
that for code-choice by introducing relevant fea-
tures for code-choice. We then motivate and illus-
trate the effect of code markedness on the degree
of accommodation - the more salient code is more
strongly accommodated for. We further generalize
the framework to also account for delayed accom-
modation, instead of only next-turn or immediate
accommodation.

In addition, we introduce an alternative view of
accommodation as a query-response task, and em-
ploy mean reciprocal rank, a well-understood met-
ric from the domain of Information Retrieval, as a
metric for latency of accommodation. We mea-
sure how quickly a style marker (code-choice in
our case) introduced by a speaker is retrieved by
the other speaker during the conversation. Our
approach is developed for analyzing code-choice
but is applicable to other dimensions of linguis-
tic style as well (Tausczik and Pennebaker, 2010).
This presents an alternative view of conversational
style accommodation and offers a simple but ef-
fective way of measuring, characterizing and even
predicting elements of conversational style.

We test this formulation on two CS conversa-
tional datasets - dialog scripts of bilingual Indian
movies (in English and Hindi) and a transcrip-
tion of real-world conversations between Spanish-
English bilinguals in Florida, US. In both the
corpora, we observe strong signals of interper-
sonal code-choice accommodation for the salient
or marked code. We also observe that on average,
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the marked code is accommodated within the first
three to four conversational turns, beyond which
the effect of accommodation on code-choice de-
cays gradually. Contextually-unmarked code is
less strongly accommodated for, even when it oc-
curs relatively infrequently within a conversation.

As far as we know, this is the first computa-
tional study of code-choice accommodation, and
first work that introduces and formalizes the con-
cept of delayed accommodation, that can be ap-
plied to other style dimensions as well.

The rest of the paper is organized as follows.
We describe the background and related work in
Section 2, which motivates the first formulation of
code-choice accommodation in Section 3. We im-
prove this by formulation by modifying the fea-
tures in Section 4. We generalize the formulation
to multiple turns and introduce the analogy to re-
trieval in Section 5, along with the results. We
wrap up with a discussion in Section 6 that we
conclude in Section 7.

2 Related Work

CS is employed by speakers to signal a common
multilingual identity(Auer, 2005), and can be ef-
fectively used to reduce (or increase) the perceived
social distance between the speakers (Camilleri,
1996). As a marker of informality, it has been
shown to lower interpersonal distance (Myers-
Scotton, 1995; Genesee, 1982).

Common structural patterns in CS as well as
the choice to switch between languages have
been the focus of many linguistic studies(Poplack,
1988)(Auer, 1995). As CS is typically used as a
conversation strategy by bilinguals who are profi-
cient in both languages (Auer, 2013), it is not sur-
prising that certain pragmatic and socio-linguistic
factors, such as formality of context (Fishman,
1970), age (Ervin-Tripp and Reyes, 2005), expres-
sion of emotion (Dewaele, 2010) and sentiment
(Rudra et al., 2016), are found to signal language
preference in CS conversations. A Twitter study
of CS patterns across several geographies (Rijh-
wani et al., 2017), also suggests that there might be
complex sociolinguistic reasons for code-choice.
Thus, CS, and the choice of language or code
in which one communicates during a multilingual
conversation, could be considered a marker of [in-
guistic style.

Communication accommodation theory (Giles
et al., 1973; Giles, 2007) states that speakers shift
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their linguistic styles towards (or away from) each
other in a conversation for social effect. In the
CAT framework, the interlocutors’ desire for ‘so-
cial approval’ results in an attempt to match each
other’s linguistic style. Accommodation has been
studied for many markers of linguistic style like
tense, negations, articles, prepositions, pronouns
and sentiment (Taylor and Thomas, 2008; Nieder-
hoffer and Pennebaker, 2002).

Since it is possible to convey the same semantic
content while widely varying the extent of CS, we
also consider code-choice as a linguistic style di-
mension. Therefore, we expect to observe accom-
modation in terms of code-choice in similar man-
ner to that of variables for other linguistic styles.
While there have been linguistic and small-scale
studies (Sachdev and Giles, 2004; Bourhis, 2008;
Bissoonauth and Offord, 2001; y Bourhis et al.,
2007) that argue for prevalence of code-choice ac-
commodation, there are no large-scale quantitative
or computational studies that corroborate this and
shed light on the various patterns of code-choice
accommodation. Further, these studies rely on
simple correlation-based measures.

The first computational study of linguistic style
accommodation (Danescu-Niculescu-Mizil et al.,
2011) shows that it is highly prevalent in Twit-
ter conversations. They use binary features for
the presence of various psychologically meaning-
ful word categories as described by the LIWC
method(Tausczik and Pennebaker, 2010) to iden-
tify stylistic variations in tweets. They then de-
fine a probabilistic framework that mathematically
models style accommodation in terms of the like-
lihood of an addressee to respond in the same style
as the speaker.

Though CS is similar enough to other kinds of
linguistic style to allow analysis using the same
framework, it also differs from them in being
a strong sociological indicator of identity (Auer,
2005) and in not being processed nonconsciously
(Levelt and Kelter, 1982). We demonstrate that a
model that does not account for these crucial dif-
ferences fails to capture the accommodative pat-
terns of code-choice. Because of being processed
consciously, code-choice also exhibits accommo-
dation over several conversational turns, an ef-
fect which is not observed as strongly for other
style dimensions (Danescu-Niculescu-Mizil et al.,
2011). Long-term effects in accommodation have
received very little attention, and have mostly



studied based on crude conversation-level correla-
tion values (Niederhoffer and Pennebaker, 2002).

3 Accommodation of Code-Choice as
Linguistic Style

As a first step, we adapt an existing framework
(Danescu-Niculescu-Mizil et al., 2011) that quan-
tifies accommodation of a given linguistic style.
Any linguistic feature is said to exhibit accommo-
dation if it is more likely to be expressed in re-
sponse to a dialog that also expresses it, than oth-
erwise. In other words, an accommodative feature
in a dialog begets the same feature in the next dia-
log. We use the term ‘dialog’ or ‘turn’ to refer to a
single spoken utterance or dialog within a conver-
sation, and the term ‘speaker’ to refer to conversa-
tion participants. This framework thus restricts the
definition of accommodation to only single-turn
effects.

3.1 Measuring Accommodation

Mathematically, let ' denote some binary feature
over a dialog (we describe the features themselves
in Section 3.2 below). F' is said to exhibit accom-
modation if the likelihood of a user expressing F'
increases when F' has been expressed in the previ-
ous dialog. We define the degree of accommoda-
tion as follows

Aem(F) = P(84r|4r ) = P(64r) (1)

Here, dialog d;—; immediately precedes dialog
d;, and 64 is the event that the dialog d exhibits F'.
The first term can be thought of as the reciprocity
over F. The second term is the fraction of dialogs
in the corpus for which F' = 1, which is also the
empirical probability of observing F' in a dialog d.

Instead of computing these likelihoods over the
entire corpus, we could also compute them in-
dividually for each speaker, and doing so yields
a fairer condition for accommodation. Different
speakers can have widely different base likeli-
hoods. This metric requires an average speaker to
reciprocate more than their own (individual) base-
line likelihood of expressing F', rather than sim-
ply more than the population baseline. Denoting
the event that a dialog d is spoken by a speaker s
as dg(q)—s> we redefine accommodation as follows

84

(Es denotes an expectation over all speakers s)
Acem*(F) = Es(Aem(F))
= B (P (5df 5S(d):s‘5df_1) )
— P(04r 35(ay=s))

3.2 Measuring Code-Choice

Our general hypothesis is that code-choice is re-
ciprocated in a bilingual conversation. To mea-
sure this, we introduce simple binary features for
presence of each code, along the lines of the bi-
nary features in (Danescu-Niculescu-Mizil et al.,
2011), with individual language expression substi-
tuting for the style dimensions. For each language
L, we define a feature F7, indicating, for a dialog
d, if the dialog contains words in the language L.
The event that dialog d is at least partially in L,
is denoted by d,r, . In other words, 55L is true if
the language L is expressed in dialog d, and false
otherwise.

3.3 Data

We employ two datasets of bilingual conversa-
tions, each in a different conversational context
and a different pair of languages, to test the oc-
currence of code-choice accommodation. Table 1
reports the number of dialogs and words for the
two datasets, and the fraction of words that are in
English.

Dataset Dialogs Words %En
Movies (En-Hi) 20.1K 240K 24.1
Bangor (Es-En) 18.5K 216K 629

Table 1: Conversational dataset overview

Hindi Movies

The data comprises of scripts of 32 Hindi movies
released between 2012 and 2017. 17 of these
scripts were collected by Pratapa and Choudhury
(2017) from scripts posted online!. We collected
15 scripts of our own from a similar online source”
and parsed them replicating the methodology of
Pratapa and Choudhury (2017).

All the scripts have word-level language tags
as created by the language identification system
from (Gella et al., 2013). The language labels on
manual inspection were found to have significant

"https: //moifightclub.com/category/scripts
*http://www.filmcompanion.in/category/fc-pro/scripts/



amount of noise, we corrected frequently observed
errors with manual supervision.

Each dialog is assumed to be in response to the
immediately preceding dialog within a scene. We
restrict our analysis to dialogs that are between no
more than two speakers, to avoid confounding ef-
fects of multi-party conversations on accommoda-
tion. This also filters out most dialogs in the scripts
which are not conversational in nature.

Movie conversations, even though imagined,
are designed to sound natural, and therefore, are
suitable for studying style accommodation, as
is argued in Danescu-Niculescu-Mizil and Lee
(2011), and also multilingualism (Bleichenbacher,
2008) and code-choice (Vaish, 2011). It is true
that movie dialogs promote stereotypes that may
affect characters’ expression of code-choice, how-
ever accommodative effects can still be expected to
play out largely independent of such stereotypes.
There have been several linguistic and quantitative
studies on Hindi-English CS in Hindi movies (Par-
shad et al., 2016; Losch, 2007; Pratapa and Choud-
hury, 2017).

Bangor Corpus

We use the Bangor Miami corpus® of word-
level language labeled transcripts of spoken con-
versations between Spanish-English bilinguals in
Florida, US. The original dataset contains 56 con-
versations, from which we selected 40 conversa-
tions that have non-trivial amount of English and
Spanish, and sufficient dialogs from each speaker.

Figure 1 shows the fraction of Spanish used by
a dyad of speakers in a sample conversation from
this dataset (the complement fraction being En-
glish). Intuitively, we expect our metrics to cap-
ture how coordinated two speakers are.

3.4 Results

Table 2 shows the metrics from Section 3.1 com-
puted over the features in Section 3.2 on the two
datasets.

While these numbers do suggest that accom-
modative effects are present, they seem to be fairly
weak. The rate of reciprocation is only slightly
higher than the base rate, and in some cases the
difference isn’t statistically significant.

However, looking at individual differences in
these values reveals an interesting observation.
For each speaker s in the Movies dataset, we

3http://bangortalk.org.uk/speakers.php?c=miami
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Figure 1: Fraction of Spanish over time in a con-
versation. The x-axis denotes consecutive dia-
log pairs, with dialog 7 above aligned with dialog
i + 1 below, so two aligned bars denote two con-
secutive dialogs.

O: | mlll Al

0.5

-0

Dataset | Code (L) | Acm(FL) | Aem*(FL)
Bangor En 0.067 0.04

Es 0.12 0.09
Movies En 0.10 0.06

Hi 0.027 -0.02+

Table 2: Accommodation values for different
codes. Values with a (}) are not significant. Sig-
nificance for Acm(F') is computed using Fisher’s
exact test, and significance for Acm*(F') is com-
puted using one-tailed paired t-test.

plot in Figure 2, the rate of accommodation by s,
Acemg(F), against the respective base rate P(d%),
for F' € {FEn, FHz}

Clearly, we see that a high base rate of expres-
sion corresponds to far less accommodation. In
other words, the instances of code-choice that are
uncommon and therefore unexpected within the
conversational context are likely to be accommo-
dated for. In a conversation that is predominantly
in Hindi, a dialog uttered in Hindi carries little
salience and doesn’t stand out. This code-choice is
unlikely to be registered as a communicative sig-
nal or a marked expression of any linguistic style,
and therefore wouldn’t elicit accommodation. En-
glish and Spanish are respectively less common in
Movies and Bangor, and indeed their rates of ac-
commodation are higher than the rates for the cor-
responding dominant languages.

Since the metrics in Section 3.1 compute like-
lihoods over all instances of code-choice irrespec-
tive of salience, the observed rates of accommoda-
tion are low. We borrow the notion of markedness
of code-choice, as described in Myers-Scotton
(2005), and incorporate it into our framework, as



1
]
505
C
=
©
©
£
= 0
o
3
<
-0.5

Base Rate
Figure 2: Variation of accommodation rate

against base rate. Observed rate (x + y) can
vary between 0 and 1. The highlighted region
denotes positive accommodation and a low base
rate (x < 0.5 and y > 0). In contrast, all other re-
gions, as demarcated by dashed lines, are sparser.

described in the next section.

4 Marked Code-Choice Features
4.1 Code Salience

As shown earlier, measuring accommodation
makes sense only over marked instances of code-
choice. Thus, for every conversation in our
dataset, we identify the marked language, and
measure accommodation only over that language.
We choose a conversation as the unit for decid-
ing if a code is marked because the set of speak-
ers and the conversation context typically dictates
code-choice in multilingual societies.

A language is considered marked if it is the
non-dominant language - we keep the threshold of
markedness at no more than 40% of total words in
the entire conversation. We discard highly mixed
conversations where none of the languages meets
the threshold. This consideration also makes the
calculation of accommodation more robust, as for
a high fraction of incidence of a code, the effect of
the previous turn would be harder to isolate.

4.2 Threshold of Occurrence

Another limitation of the formulation in Section
3 is that it doesn’t incorporate the extent of pres-
ence of each code in a dialog. Consequently,
even named entities, frequently borrowed words
and frozen expressions from the marked language,
would be considered as candidates for accommo-
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dation. The Bangor corpus came with named-
entity tags, and in the Movies corpus we removed
all character names from the dialogs, but we were
not aware of any NER system for Hindi-English
CS data that we could have used to remove other
named entities. Ideally, we would like to exclude
all such words from the triggers expected to elicit
accommodation, as their usage isn’t stylistically
marked (Auer, 1999). The word-level language
tags also have some amount of noise, and it is de-
sirable to use features that are resilient to it.

Besides, it is possible that a relatively high in-
cidence of marked code in a dialog is perceived
as a stronger style marker, and is perhaps accom-
modated for more strongly than a lower incidence.
We introduce a simple fraction-based thresholding
that allows us to test the same.

For every dialog d, we define feature F, - such
that @2~ = 1 if and only if (a) d is sufficiently
long and (b) fraction of words of d in the marked
language L is more than 7. We consider an ut-
terance to be sufficiently long if it contains more
than 4 words, as this is expected to filter out most
frozen expressions and named entities that may
be borrowed from one language to another. We
show results for accommodation of F. for 7 €
{0,0.2,0.5}. While F{ would capture presence of
even one word in a marked code, Fj 5 represents a
non-trivial occurrence and Fj 5 represents major-
ity occurrence of the marked code in context.

5 Beyond Immediate Accommodation

The metrics in Section 3 and those in Danescu-
Niculescu-Mizil et al. (2011) only consider the im-
mediate next turn as a candidate for reciprocation.
However, it is possible for accommodative effects
to span a few conversation turns. Consider the fol-
lowing snippet from one of the conversations in
Bangor (Spanish code is in bold and its translation
is in italics).

In cases like this, the content of the conversa-
tion prevents a possibility of accommodating im-
mediately, but the speaker Sarah still reciprocates
Faige’s code-choice at the first instance possible.
We can test if such cases of delayed accommoda-
tion are indeed common in the data, by extending
our formulation to an arbitrary number of turns.
We extend Equation (2) below, and Equation (1)
can be extended analogously.



Paige i wanna see them.
Sarah  pick. pick like (name) flowers or ...
Paige  ;ay qué lindo esta ese!
oh, how pretty that is!
ok, enter the date.
it will be ...
Sarah  may.
Paige may. ninth?
Sarah  ninth.
Paige two thousand and eight.
and then you put what you want.
(name) trip?
Sarah  no te cabe.
it doesn’t fit you.
just (name).

5.1 Generalization of Immediate
Accommodation

The baseline rate of a speaker s using a feature F'
across n (consecutive) turns is the likelihood that
at least one the n turns expresses F', and is given
by 1 — (1 — ps)™, where py is simply P(d%'). For a
speaker s, the rate of n-turn accommodation is the
increase in likelihood of occurrence of F' in either
of the n dialogs ds 1 to ds,, conditioned on the
event that the preceding dialog dy expresses F'.

Acmn o(F) = P(\/ (d)]af) 5
=1
- (1 —(1 _pS)n)
Aem’(F) = Ey(Acm, 5(F)) (4)

When n = 1, this resolves to Equation (2). Note
that d; to d, are the first n dialogs spoken by s
immediately after the dialog dy. As before, F
denotes expected value over all speakers.

5.2 Accommodation as Retrieval

Responding to marked code-choice with marked
code-choice can be thought of or reformulated as
a retrieval task. For a speaker s, each instance of
a dialog addressed to s with a feature ' would
be a query posed to s. The next n dialogs spo-
ken by s would be the top-n retrieved responses
to the query. We are interested in the retrieval of
responses that also have feature F', so we call a re-
sponse with feature F' to be relevant response and
irrelevant otherwise, in keeping with the standard
terminology in information retrieval. We consider
s to have retrieved a relevant response in n-turns
if at least one of the first n responses is relevant.
When formulated this way, the recall of s, the
probability of retrieving a relevant response, is
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precisely equal to the first term in Equation 3, the
probability using F in responding to a dialog ¢’
The second term in Equation 3 is the expected
value of recall under the independence assump-
tion, i.e., if s randomly introduces marked code
at every turn with probability ps. Therefore, a
speaker is accommodative if their recall is higher
than that of this random baseline.

A popular metric to evaluate retrieval systems
is the mean reciprocal rank (MRR). The recipro-
cal rank of a query response is the multiplicative
inverse of the rank of the first relevant response.
The MRR of a system is simply the mean of the re-
ciprocal ranks of all its responses. Since we expect
the accommodative speaker to have a higher recall
than the random baseline, we also expect the ac-
commodative speaker to have a higher MRR, with
the difference from baseline MRR being propor-
tional to its accommodativeness.

Not only does this present an alternative view
of accommodation and exposes well-studied for-
malisms and concepts from information retrieval,
but the ability to capture speakers’ styles as re-
sponse characteristics also facilitates predictive
conversational modelling.

Mean reciprocal ranks for the random baselines
can be computed analytically as follows. We first
compute the expected reciprocal rank r for any
given query as a function of the correctness prob-
ability ps. For the first relevant response to be at
rank ¢, all previous responses must be irrelevant.
Since each response is relevant with a probability
Ps, the probability of the i-th response being the
first relevant response is given by :

1 .
P(rp, =) =(1=p) txps ()

The baseline MRR of a speaker s, denoted by
Bases, is then the expected value of r, also as
function of p; :

Bases = E(rps)

_ 1—1 -
Ps
- In p,
1 — Ps np

The overall baseline MRR, Base is then simply
Es(Bases). We compare the observed MRR on
the data (denoted by Obs) with the expected MRR
of the random baselines (Base), with their differ-
ence being indicative of the degree and immediacy
of accommodation.
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Figure 3: Accommodation rates (Acm., (Fr .))
versus n. Red, green and blue lines indicate 7 =
0, 0.2 and 0.5 respectively. Accommodation of
Hindi is not significant.

5.3 Results and Observations

Figure 3 shows the trends in Acm; (F, ;) for dif-
ferent values of n, L and 7. Significance scores
are computed in the same way as for Table 2.

Table 3 shows the real and baseline MRR values
for each corpus over different values of 7.

It is evident that accommodation of code-choice
is a prevalent and robust phenomenon. The values
of accommodation are consistently positive for all
the different marked-code features, languages and
datasets, and for low values of n.

In Table 3, the less common codes in each
dataset, E's and En respectively, have a lower
baseline while having comparable or even higher
observed MRRs as their more common counter-
part. This reiterates that accommodation is more
pronounced for more marked codes.

From Figure 3, a higher fraction of marked code
(7 = 0.5) does not seem to elicit stronger accom-
modation than 7 = 0. However, it is important to
note that the base rate for Fjy is much higher than
that of Fj 5, so in relative terms, the latter exhibits
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Bangor Movies
MRR |\ ™ "Es [En [En | Hi
Obs 0 048 | 0.52 | 0.67 | 0.62
Base 0.18 | 0.34 | 0.32 | 0.40
Obs 02 0.46 | 0.54 | 0.57 | 0.45
Base | 77| 0.15 ] 0.26 | 0.25 | 0.35
Obs 0.5 046 | 049 | 0.54 | 0.4
Base | ~7 | 0.12 1 022 | 0.15 | 0.25

Table 3: Mean Reciprocal Ranks of the observed
responses (Obs) and the random baseline (Base)
for different features F’- and different corpora.

a stronger tendency to accommodate (since the in-
crease over respective base rate is identical). The
difference between the retrieval characteristics for
the different thresholds is more salient in Table 3
- higher thresholds correspond to a smaller aver-
age likelihood, and lower baseline MRRs. The dif-
ference between observed and baseline MRR does
slightly increase with 7, making higher fraction of
marked code somewhat more accommodated for.

In contrast to English, the accommodation for
Hindi code-choice in conversations dominated by
English is not significant. This suggests that Hindi
code isn’t marked even when it is the minority
code in a scene, an inference that aligns with the
claim from Myers-Scotton (2005) that Hindi is not
marked in Hindi movies, even when it is the non-
dominant language in context.

Hindi in Movies and English in Bangor have
a lower strength of accommodation than their re-
spective counterparts, even when measured over
conversations where they are uncommon. Not
only is accommodation stronger for Spanish, it
also persists for more number of turns as com-
pared to English. This suggests that the context
of markedness is larger than the immediate con-
versation, and the being the dominant language of
the corpus as a whole reduces markedness.

In most cases, accommodation is salient and
significant even after a few turns. Delayed accom-
modation is as prevalent as immediate accommo-
dation. And the likelihood of a given speaker re-
ciprocating code-choice in kind, remains signifi-
cant for several turns in a conversation.

6 Discussion

Accommodation is prevalent and robust, but not
universal. While it is observed across conver-
sations spanning different media and language



pairs, there is significant variation among speakers
within a dataset. As many as 18% of the speakers
exhibit what may be considered negative accom-
modation, or non-accommodation. Half of these
do so with a value of Acm(Fp) less than —0.10.

It is in fact known that accommodation or con-
vergence is neither a universal nor a positive in-
terpersonal strategy (Genesee and Bourhis, 1988;
Giles et al., 1991; Burt, 1994). In-group/out-group
identity as well as attitudes towards CS and the
languages involved can cause negative accommo-
dation as well as a negative perception of accom-
modation. Burt (1994) show that while conver-
gence is largely viewed positively, some multilin-
gual speakers may oppose it as either misplaced
solidarity with an in-group, or a slur on the lan-
guage capability of an interlocutor.

While we work under the assumption that code-
choice is a style dimension, largely independent of
content, it is in fact influenced by factors like topic
(Sert, 2005) and sentiment (Rudra et al., 2016).
These influences could either align or compete
with the socially accommodative code-choice, and
this explains several-turn accommodation - it is
not always possible to accommodate immediately.
The difference between code-choice and other lin-
guistic style markers is also indicated by the poor
results of Section 3, which naively applies the
style accommodation framework to code-choice.

It is worth noting that the baselines throughout
the paper assume that speakers do not adjust their
overall rate of employing a particular code, in or-
der to accommodate. This is in fact a fairly strict
assumption. In fact, the same speaker typically has
widely varying base rates in conversations with
multiple other speakers. The extent of marked
code to be used is itself often negotiated within
a conversation, and adjusting one’s base rate can
be construed as accommodation, and harder to an-
alyze. Nevertheless, this assumption gives us a
strong and realistic baseline to judge the observa-
tions against.

One limitation of our formulation is that we
do not look at individual words. Word or code
saliency in context is actually more complex that
just language saliency in current conversation.
Some words are more marked than others, with
borrowed words carrying very little salience. It
would be nice to have more complex features,
aware of the syntactic structure of dialogs. It
would also be worthwhile to apply this formula-
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tion to study conversation-wide accommodation
effects and convergence of code-choice at scale.

7 Conclusion

We demonstrate that code-choice is a marker of
linguistic style, and when it is marked in context,
it is interpersonally accommodated for. We extend
the probabilistic formulation to multiple conversa-
tion turns, and show equivalence with a retrieval
task, both facilitating better conversational analy-
sis of code-choice in particular and style interac-
tions in general.

In the future, we would like to use richer and
linguistically motivated features for code-choice,
including parts-of-speech, and indicators of bor-
rowing across languages. Another generalization
would be to also study LIWC words and markers
of sociolinguistic style in this framework. Finally,
longer-term accommodation effects, like conver-
gence being succeeded by divergence, or topical
effects on convergence, remain to be explored us-
ing a quantitative method like ours.
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Abstract

Code-switching (CS), the practice of alter-
nating between two or more languages in
conversations, is pervasive in most multi-
lingual communities. CS texts have a com-
plex interplay between languages and oc-
cur in informal contexts that make them
harder to collect and construct NLP tools
for. We approach this problem through
Language Modeling (LM) on a new Hindi-
English mixed corpus containing 59,189
unique sentences collected from blogging
websites. We implement and discuss dif-
ferent Language Models derived from a
multi-layered LSTM architecture. We hy-
pothesize that encoding language informa-
tion strengthens a language model by help-
ing to learn code-switching points. We
show that our highest performing model
achieves a test perplexity of 19.52 on
the CS corpus that we collected and pro-
cessed. On this data we demonstrate that
our performance is an improvement over
AWD-LSTM LM (a recent state of the art
on monolingual English).

1 Introduction

Code-switching (CS) is a widely studied linguis-
tic phenomenon where two different languages are
interleaved. This occurs within multilingual com-
munities (Poplack, 1980; Myers-Scotton, 1997;
Muysken, 2000; Bullock and Toribio, 2009). Typi-
cally one language (the matrix language) provides
the grammatical structure for CS text and words
from another language (the embedded language)
are inserted. However, CS data is challenging
to obtain because this phenomenon is usually ob-
served in informal settings. Data obtained from
online sources is often noisy because of spelling,
script, morphological, and grammatical variations.

* These authors contributed equally

92

These sources of noise make it quite challeng-
ing to build robust NLP tools (Cetinoglu et al.,
2016). Our goal is to improve LM for Hindi-
English code-mixed data (Hinglish) where simi-
lar challenges are apparent. The task of language
modeling is very important to several downstream
applications in NLP including speech recognition,
machine translation, etc. This is particularly im-
portant in domains that lack annotated data, such
as code-switching, where the need to leverage un-
supervised techniques is a must. We address the
task of language modeling in CS text with a dual
objective: (1) predicting the next word, and (2)
predicting the language of the next word.

In addition to the techniques used for mono-
lingual language modeling, providing information
about the language is a key component in CS do-
main. Our main goal in this paper is to examine
the effect of language information in modeling CS
text. We approach this systematically by experi-
menting with ablations of encoding and decoding
language IDs along with the word itself. In this
way, the model implicitly learns the switch points
between the languages. We achieve the least per-
plexity score using a combination of a language in-
formed encoder and a language informed decoder.

The current material begins with a review of LM
techniques for CS text in section 2. Then we de-
scribe our data collection and processing steps in
Section 3 and model architecture in Section 4.
Section 5 contains a brief quantitative and quali-
tative discussion of our observations and promis-
ing directions for future work. We then conclude
in section 6.

2 Related Work

The increased reach of Internet and social me-
dia has led to proliferation of noisy CS data
where earlier computational frameworks for code-
switching, such as Joshi (1982); Goyal et al.
(2003); Sinha and Thakur (2005); Solorio and Liu
(2008a,b), are not readily applicable. In recent
times, the community has focused on develop-
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ing a variety of NLP tools for CS data such lan-
guage models by Li and Fung (2013, 2014); Adel
etal. (2015, 2013a,b); Garg et al. (2017), POS tag-
gers by Vyas et al. (2014); Jamatia et al. (2015);
Cetinoglu and Coltekin (2016), automatic lan-
guage identification by Jurgens et al. (2017); King
and Abney (2013); Rijhwani et al. (2017); Jham-
tani et al. (2014), prediction of code-switch points
by Das and Gambick (2014), sentiment analysis
by Rudra et al. (2016) and also certain meta level
studies that include understanding metrics to char-
acterize code-mixing Patro et al. (2017); Guzmén
et al. (2017). The idea of including language iden-
tifier vectors on the input and/or output side has
become fairly common for other tasks as well, e.g.
in Johnson et al. (2016) for machine translation,
Ammar et al. (2016) for parsing, or Ostling and
Tiedemann (2016) for language modeling.

2.1 Code-Switched Language Models

There has been some recent focus on adapting
existing language models for CS text. Li and
Fung (2013, 2014) use a translation model to-
gether with the language model of the matrix lan-
guage to model the mixed language. The search
space within the translation model is reduced by
linguistic features in CS texts like inversion con-
straint and functional head constraint (Sankoff and
Poplack, 1981).

In another approach Adel et al. (2015), use a
Factored Language Model (FLM) that includes
syntactic and semantic features found in CS text
that are indicative of a switch e.g. trigger words,
trigger POS tags, brown cluster of function and
content words that result in significant reduction
in perplexity.

Another recent method called Dual Language
Model (DLM) (Garg et al., 2017), combines two
monolingual language models by introducing a
‘switch’ token common to both languages. Pre-
dicting this word in either languages acts a proxy
to the probability of a switch and the next word is
then predicted using the LM of the language that
was switched to.

Among neural methods, Adel et al. (2013a) use
a Recurrent Neural Network based LM to predict
the language of the next word along with the actual
word to model CS text. Following on these intu-
itions, our models are built on top of the AWD-
LSTM LM (Merity et al., 2017) that was chosen
due to its accessibility and high performance (re-
cently State of the Art) on the Penn-Tree Bank and
Wikitext-2 dataset (Merity et al., 2016). Extensive
work has been done on this model through investi-
gation on relative importance of hyper-parameters
(Merity et al., 2018).
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Criteria Train Dev Test

# Sentences 35513 11839 11837
Avg Length of Sentences 18.90 17.58 18.22
Multilingual Index 0.8892  0.8905 0.8914
Language Entropy 0.6635  0.6639  0.6641
Integration Index 0.3304 03314 0.3312
Unique Unigrams 35,769 18,053 19,330
Unique Bigrams 276,552 125,108 130,947
Unique Trigrams 553,866 219,098 229,967

Table 1: Hinglish Data Statistics

3 Data Analysis

Curating a reasonable dataset for CS text is an im-
portant challenge for researchers in this domain.
To the knowledge of the authors, there is no bench-
mark CS corpus for language modeling as there
is for English (Merity et al., 2016; Marcus et al.,
1994). The two potential source choices to gather
data include social media (such as Twitter and
Facebook) and blogging websites. We decided to
go with the latter due to comparatively lesser noise
and availability of more descriptive text. Our CS
LM data was collected after having crawled eight
Hinglish blogging websites', that were returned
by popular search engines (such as Google and
Bing) with simple code-switched queries in the
domains of health and technology. The topics cov-
ered in these CS texts include technical reviews
of electronic and general e-commerce products as
well as several health related articles.

These texts were tokenized at the sentence level
over which we ran a language identifier. Language
detection is performed both at the word level and
also at the sentence level by treating the entire
sentence as a sequence labeling problem. Naive
Bayes and Hidden Markov Models with Viterbi
Decoding were used respectively that gave an ac-
curacy of around 97% on a subset of our data.
Moreover, all the sentences that did not have at
least one word each from both languages were dis-
carded to channel our problem towards tackling
intra-sentential code-switching. This resulted in
a total of 59189 unique sentences. To estimate
the quality and extent of mixing and frequency
of switching in our data, we measured Multilin-
gual index (M-Index), Language Entropy and In-
tegration index (I-index) that were introduced in
the domain of CS by Guzmadn et al. (2017). These
metrics along with other n-gram statistics over our
data are presented in Table 1. A multilingual in-
dex of 1 indicates that there is equal extent of mix-

!Some Hinglish websites:
www.hinglishpedia.com,
www.hindimehelp.com,
www.pakkasolutionhindi.com



Hidden state

| LSTM H LSTM H LSTM H LS

™

Word
Decoder

Softmax over
the vocabulary

LSTM layers with

]

T

T
L

DropConnect and tralmed
with Nen-monotenie ASGD

|LSTM H LSTM H LSTM H LSTM |

T

[ 1

T

(@ © 0 06 00

[Lst™ |+ LsTM |—| LSTM || LsTM |

Lookup for word &
language embeddings

Q0000
Q0000
E PIom OOOOO

i piogm
i Buet
Z piopy
Z Buey
£ Bueq

Pure AWD-LSTM

o

Language Informed Encoder

]

Q0000

P oM

Softmax over the
language choices

# Buet

Language Informed Encoder & Decoder

B

Language Informed Decoder

[

Figure 1: Various CS LM models that we explored in this work

ing from both the participating languages. As we
can observe, the mixing is close to 0.8 which indi-
cates that both Hindi and English are participating
in the ratio 4:5. The metric itself does not reveal
about which is the embedded language and which
is the matrix language. Note that the CS metrics
for each of the train, validate and test splits of the
data are almost the same, indicating a similar ex-
tent of mixing in them.

4 Models and Experiments

There are a number of ways to frame the desire
for humans to switch between languages (Skiba,
1997; Moreno et al., 2002), however, we view the
human desire as out of scope for this work. In-
stead, our focus is on how we can incorporate
linguistic information while training a statistical
model for code-switched text. We discuss two
main choices as to where we can introduce this
information: either at the encoding stage or at the
decoding stage of an RNN language model.
Given a CS sentence X = (!, 2 ... , ™)
which has lexical level language sequence L.s =
(%, 12 ..., I™), our model has to predict the word
at the next time step. Note that this vector I is the
language of the ¢th lexical item trained in con-
cert with the model. This allows our model to en-
code the distributional properties of the language
switching. We experimented with encoding and
decoding the word and language embeddings for
this task. Oy, O, @Dy and Op, are the pa-
rameters for the word encoder, language encoder,
word decoder and language decoder respectively.
We identify four different model architectures
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(Figure 1) that could be useful in training code-
switched language models. In the first model, our
baseline, we have a sequence of words and we are
trying to predict the following word. This model
is identical to running a traditional RNN language
model on CS text.

For our baseline model we adapt the state-of-
the-art language model, the AWD-LSTM, for this
domain. This model is a 3 layered stacked LSTM
trained via Averaged SGD with tied weights be-
tween the embedding and the softmax layer. There
are several other important elements of this model,
all of which are detailed in (Merity et al., 2017).
The next word in this model is given by:

z = Encoder(Xcs, Og)

In our second model we extend our baseline
such that we have a sequence of words and their
language IDs and we try to predict the following
word. In this and all the subsequent models, lan-
guage ID is represented as a vector of length six-
teen. This model can be seen as a factored lan-
guage model operating with code-switched data.
So, the next word in this model is given by:

Decoder(Encoder(Xecs, Orx ), ODx )

In our third model we take a sequence of words
as an input and attempt to predict both the lan-
guage and the value of the following word. The
next word in this model is given by:

Decoder(Encoder(Xcs, Oy ) @Encader(Lcs, 0e)), 0Dy )



Model/Data Train Dev  Test

Base AWD-LSTM Model 10.08 19.73 20.92
Language Aware Encoder AWD-LSTM 10.07 19.00 20.18
Language Aware Decoder AWD-LSTM 11.60 20.72 22.01
Language Aware Encoder & Decoder AWD-LSTM  9.47 18.51 19.52

Table 2: Perplexity scores of different models

In our fourth model we take a sequence of
words and their corresponding language IDs as in-
put and attempt to predict both the language and
value of the subsequent word. In our third and
fourth models we operate with two loss values be-
ing calculated for (one for the word error, and one
for the language error multiplied by 0.1) and gra-
dients for both losses are propagated through the
network and are used to update the weights.

5 Results and Discussion

We trained 4 different models based on the de-
scription in Section 4. The results of these exper-
iments are presented in Table 2. We observe that
the Language Aware Encoding and Decoding with
the AWD-LSTM gives the least perplexity. This
aligns with our hypothesis that providing language
information of the current word at encoding and
enabling the model to decode the language of the
next word allows the model to learn a higher level
context of switch points between the languages.

5.1 Challenges and Future Work

Robustness of the language model also depends
on the diversity of context in which the words co-
occur. Since most of the articles belong to the top-
ics of e-commerce, latest technology and health,
this may be affected. Hence, we plan to use pre-
trained word embeddings based on large monolin-
gual corpora after aligning the embedding spaces
of both the participating languages such as MUSE
embeddings (Conneau et al., 2017). However, due
to the non-standardized spellings in the roman-
ized Hinglish text, most words that are incorrectly
transliterated will not be found in the MUSE em-
beddings and such errors from transliteration will
propagated through the subsequent parts of model.
To avoid this, we plan to extend this work by using
character encodings in future. Incorporating fac-
tors beyond language such as parts of speech, and
sentence level features like root words or code-
switching metrics could be another direction for
future work. Incidentally, the hyper-parameters
for our model were tuned on the Wikitext-2 dataset
and it would be interesting to tune them on the
Hinglish data itself. Lastly, and arguably most
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importantly, the accumulation and release of ad-
ditional CS data would be a significant contribu-
tion to this field. Much of the work involved in
this project was to properly clean, parse, and rep-
resent the CS data that was scraped from the online
sources discussed above that could not be released
because of copyright concerns. These sources re-
main limited in topic and variation and additional
sources of CS data would be the best way to im-
prove how well our model can generalize.

6 Conclusion

We hypothesize that incorporating the information
of language aids in building more robust language
models for code-switched text. This is substanti-
ated by experimenting with different combinations
of providing the language of the current word as
input and decoding the language of the next word
along with the word itself. We conclude that we
are able to improve the State-of-The-Art language
model for monolingual text by both explicitly pro-
viding the language information and decoding the
language of the next word to perform this task for
CS domain. We treat this problem as a multi-task
learning problem where the same embedding and
LSTM layers are shared. These two comparable
tasks are predicting the next word and predicting
the language of the next word. So far, our best
test perplexity is 18.51 on development and 19.52
on test sets. This is in comparison to the baseline
model which is 19.73 and 20.92 on development
and test sets respectively.

We believe that further research can be done to
not only improve perplexity, but to also improve
the quality of the training and testing dataset. Lan-
guage models are a core element in multiple tasks,
from speech recognition to machine translation
and we hope that this work will support future re-
search into the development of such NLP tools for
CS domain.
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Abstract

This paper describes our system submis-
sion to the CALCS 2018 shared task
on named entity recognition on code-
switched data for the language variant pair
of Modern Standard Arabic and Egyp-
tian dialectal Arabic. We build a a Deep
Neural Network that combines word and
character-based representations in convo-
lutional and recurrent networks with a
CRF layer. The model is augmented
with stacked layers of enriched informa-
tion such pre-trained embeddings, Brown
clusters and named entity gazetteers. Our
system is ranked second among those par-
ticipating in the shared task achieving an
FB1 average of 70.09%.

1 Introduction

The CALCS 2018 shared task (Aguilar et al.,
2018) is about performing named entity recogni-
tion (NER) on Modern Standard Arabic (MSA)
- Egyptian Arabic (EGY) code-switched tweets.
Unlike previous shared tasks on code-switching,
the data provided contains no code-switching an-
notation. Only nine categories of named enti-
ties are annotated using BIO tagging. While this
makes the task a “pure” NER task, the difficulty
is to design a model which can cope with the
noise introduced by code-switching, challenging
old systems tailored around MSA.

NER is a well-studied sequence labeling prob-
lem. Earlier work has applied standard supervised
learning techniques to the problem, such as Hid-
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den Markov Models (HMM) (Bikel et al., 1999),
Maximum-Entropy Model (ME) (Bender et al.,
2003; Curran and Clark, 2003; Finkel et al., 2005),
Support Vector Machines (SVM) (Takeuchi and
Collier, 2002), and Conditional Random Fields
(CRF) (McCallum and Li, 2003). Standard data
sets came from the English MUC-6 (Sundheim,
1995) and the multilingual CoNLL-02 (Tjong
Kim Sang, 2002) and 03 (Tjong Kim Sang and
De Meulder, 2003) shared tasks.

More recent work relies on neural networks. A
number of architecture variants have proven to be
effective (Huang et al., 2015; Lample et al., 2016;
Chiu and Nichols, 2016; Ma and Hovy, 2016;
Reimers and Gurevych, 2017). What they have
in common is that they use a bidirectional LSTM
(bi-LSTM) over vector representations of the input
words in order model their left and right contexts.
On top of the bi-LSTM, they use a CRF layer
to take the final tagging decisions. Other than a
softmax layer which would treat tagging decisions
independently, the CRF is able to model the lin-
ear dependencies between labels. This is essential
for NER, where for instance, B-LOCATION can-
not be followed by I-PERSON. The architectures
differ in their way of obtaining a vector represen-
tation for the input words. For instance, in Lam-
ple et al. (2016), each word embedding is obtained
as a concatenation of the output of a bidirectional
LSTM (bi-LSTM) over its characters and a pre-
trained word vector. Ma and Hovy (2016) use con-
volutions over character embeddings with max-
pooling for obtaining morphological features from
the character level, similar to Chiu and Nichols
(2016).
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Our system also relies on the bi-LSTM-CREF ar-
chitecture. As input representation, we use both
word embeddings and a character-level represen-
tation based on CNNs. Our system additionally
employs a Brown Cluster representation, oversam-
pling, and NE gazetteers.

The remainder of the paper is structured as fol-
lows in the following section, we provide a short
decription of the task and the data set. Sect. 3 de-
scribes our system in detail. Sect. 4 presents our
experiments, and Sect. 5 concludes the paper.

2 Task and Data Description

The shared task posed the problem of performing
named-entity recognition on code-switched data
given nine categories, namely PERSON, LOCA-
TION, ORGANIZATION, GROUP, TITLE, PROD-
UCT, EVENT, TIME, OTHER.

The training set contains 10,100 tweets and
204,286 tokens, with an average tweet length of
20.2 tokens and 91.5 characters. 11.3% of all to-
kens are labeled as named entities. The most fre-
quent category is PERSON with 4.3% of all to-
kens, followed by LOCATION (2.2%), GROUP and
ORGANIZATION (1.3% each), as well as TITLE
(1%). All other categories cover less than 1% of
all tokens each, the least frequent category being
OTHER (0.06%).

The validation set contains 1,122 tweets and
22,742 tokens, and exhibits similar average tweets
lengths, as well as a similar distribution of labels.

3 System Description

We used a DNN model which is mainly suited
for sequence tagging. It is a variant of the
bi-LSTM-CRF architecture proposed by Ma and
Hovy (2016); Lample et al. (2016); Huang et al.
(2015)." Tt combines a double representation of
the input words by using word embeddings and a
character-based representation (with CNNs). The
input sequence is processed with bi-LSTMs, and
the output layer is a linear chain CRF. The model
uses the following.

Word-level embeddings allow the learning algo-
rithms to use large unlabeled data to generalize be-
yond the seen training data. We explore randomly
initialized embeddings based on the seen training
data and pre-trained embedding.

'Our implementation is mostly inspired by the work of
Reimers and Gurevych (2017).
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We train our word embeddings using word2vec
(Mikolov et al., 2013) on a corpus we crawled
from the web with total size of 383,261,475
words, consisting of dialectal texts from Facebook
posts (8,241,244), Twitter tweets (2,813,016),
user comments on the news (95,241,480), and
MSA texts of news articles (from Al-Jazeera and
Al-Ahram) of 276,965,735 words.

Character-level CNNs have proven effective for
various NLP tasks due to their ability to extract
sub-word information (ex. prefixes or suffixes)
and to encode character-level representations of
words (Collobert et al., 2011; Chiu and Nichols,
2016; dos Santos and Guimaraes, 2015).

Bi-LSTM Recurrent neural networks (RNN)
are well suited for modeling sequential data,
achieving ground-breaking results in many NLP
tasks (e.g., machine translation).

Bi-LSTMs (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997) are capable of
learning long-term dependencies and maintaining
contextual features from both past and future
states while avoiding the vanishing/exploding
gradients problem. They consist of two separate
bidirectional hidden layers that feed forward to
the same output layer.

CRF is used jointly with bi-LSTMs to avoid
the output label independence assumptions of
bi-LSTMs and to impose sequence labeling
constraints as in Lample et al. (2016).

Brown clusters (BC) Brown clustering is an
unsupervised learning method where words are
grouped based on the contexts in which they
appear (Brown et al., 1992). The assumption is
that words that behave in similar ways tend to
appear in similar contexts and hence belong to
the same cluster. BCs can be learned from large
unlabeled texts and have been shown to improve
POS tagging (Owoputi et al., 2013; Stratos and
Collins, 2015). We test the effectiveness of using
Brown clusters in the context of named entity
recognition in a DNN model. We train BCs
on our crawled code-switched corpus of 380
million words (mentioned above) with 100 Brown
Clusters.

Named Entity Gazetteers We use a large collec-
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tion of named entity gazetteers of 40,719 unique
names from Attia et al. (2010), who collected
named entities from the Arabic Wikipedia, and
Benajiba et al. (2007), who annotated a corpus as
part of a named entity recognition system.

The architecture of our model is shown in
Figure 1. For each word in the sequence, the
CNN computes the character-level representation
with character embeddings as inputs. Then the
character-level representation vector is concate-
nated with both word embeddings vector and
feature embedding vectors (Brown Clusters and
Gazetteers) to feed into the bi-LSTM layer. Fi-
nally, an affine transformation followed by a CRF
is applied over the hidden representation of the bi-
LSTM to obtain the probability distribution over
all the named entity labels. Training is performed
using stochastic gradient descent with momentum
of 0.9 and batch size equal to 150. We employ
dropout (Hinton et al., 2012) and early-stopping
(Caruana et al., 2000) (with patience of 35) to mit-
igate overfitting. We use the hyper-parameters de-
tailed in Table 1.

The only preprocessing operation we conducted
on the data was to convert it into Buckwalter
transliteration (a character-to-character mapping)
in order to avoid the complexity of dealing with
UTF-8 characters.
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Layer Hyper-Parameters ~ Value
window size 4
Characters CNN number of filters 40
Bi-LSTM state size 100
Dropout dropout rate 0.5
Word Emb. dimension 300
Characters Emb.  dimension 100
Clustering Emb.  dimension 100
Gazetteer Emb. dimension 2
batch size 150

Table 1: Parameter fine-tuning

4 [Experiments

We conduct five experiments with different layers
stacked on top of each other, making use of word
embeddings, character representation, and other
features. The experiments are as follows:

Experiments f-score | f-score macro
Baseline 95.70 66.49
Word+Chars 96.06 69.60
Word+Chars 96.92 72.38
+Embed

Word+Chars 96.99 72.30
+Embed+BC

Word+Chars 96.92 73.05
+Embed+BC+0S

Word+Chars 97.33 77.97
+Embed+BC

+0OS+GZ

Results on - 70.09
Test set

Table 2: DNN experiments and Results

Baseline. We use word representations only
with randomly-initialized embeddings. It is to be
mentioned that the shared task baseline for the
test set is 62.71%.

Word+Chars. We add character representa-
tions in a one-dimensional CNN layer.

Word+Chars+Embed. We use pre-trained
embeddings for words trained on a corpus of about
380 million words (described above) consisting of
dialectal Egyptian and MSA data.

Word+Chars+Embed+BC. We add Brown
Clusters (BC) to the network.



Word+Chars+Embed+BC+0OS. We add
oversampling (OS) to the network. We conduct
oversampling by heuristically making 10-fold
repetitions of sentences containing minority
labels, in this case all classes other than the “O”
label.

Word+Chars+Embed+BC+GZ. We further
add a new layer for the named entity gazetteer
(G2).

Label Total | % of data | Accuracy %
O 20031 88.08 99.20
B-PER 705 3.10 92.34
I-PER 408 1.79 89.71
B-LOC 358 1.57 88.83
I-LOC 116 0.51 79.31
B-GROUP 191 0.84 81.68
I-GROUP 112 0.49 76.79
B-ORG 149 0.66 79.19
I-ORG 114 0.50 80.70
B-TITLE 115 0.51 69.57
I-TITLE 143 0.63 81.12
B-PROD 55 0.24 76.36
I-PROD 26 0.11 61.54
B-EVENT 69 0.30 43.48
I-EVENT 52 0.23 51.92
B-TIME 61 0.27 85.25
I-TIME 18 0.08 38.89
B-OTHER 17 0.07 82.35
I-OTHER 2 0.01 50.00

Table 3: Results breakdown on the validation set

The results in Table 2 are reported on the vali-
dation set (except for the last row), and they show
that the DNN model is incrementally improving
by adding more features and external resources.
The best result is obtained with the aggregation of
all features.

Table 3 shows a breakdown of our system per-
formance (in terms of accuracy) on the validation
set. It also shows the number of instances and
the ratio percentage for each label. As the table
shows, the category “other” accounts for 88% of
the entire data, while all other tags combined make
up the remaining 12% which shows an imbalance
in the representation of the other categories. Our
system performs best with ‘B-PER’, ‘I-PER’, ‘B-
LOC’ and ‘B-TIME’.

Our system is ranked second among those par-
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ticipating in the shared task achieving an FB1 av-
erage of 70.09% with the first scoring 71.62%,
which is a difference of about 1.5% absolute.

5 Conclusion

We have presented a description of our system par-
ticipating in the Shared Task on “Named Entity
Recognition on Code-switched Data”. We build
a deep neural network with multiple layers for ac-
commodating various features, such as pre-trained
word embeddings, Brown Clustering and named
entity gazetteers. We have not relied on any lin-
guistic rules, morphological analyzers or PoS tag-
gers. We also make the different layers as optional
plug-ins, which makes our system more adaptable
and scalable for languages that do not have similar
external resources.
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Simple Features for Strong Performance on
Named Entity Recognition in Code-Switched Twitter Data

Devanshu Jain
Rishabh Gupta

Abstract

In this work, we address the problem of
Named Entity Recognition (NER) in code-
switched tweets as a part of the Workshop
on Computational Approaches to Linguis-
tic Code-switching (CALCS) at ACL’18
(Aguilar et al., 2018). Code-switching is
the phenomenon where a speaker switches
between two languages or variants of the
same language within or across utter-
ances, known as intra-sentential or inter-
sentential code-switching, respectively.
Processing such data is challenging using
state of the art methods since such technol-
ogy is generally geared towards process-
ing monolingual text. In this paper we ex-
plored ways to use language identification
and translation to recognize named enti-
ties in such data, however, utilizing simple
features (sans multi-lingual features) with
Conditional Random Field (CRF) classi-
fier achieved the best results. Our exper-
iments were mainly aimed at the (ENG-
SPA) English-Spanish dataset but we sub-
mitted a language-independent version of
our system to the (MSA-EGY) Arabic-
Egyptian dataset as well and achieved
good results.

1 Introduction

Recently, social media texts such as tweets and
Facebook posts have attracted attention from
the Natural Language Processing (NLP) research
community. This content has many applications
as it provides clues to analyze sentiments of the
masses towards areas ranging from basic elec-
tronic products to mental health issues to even
national political candidates. These applications
have motivated the NLP community to rethink
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strategies for common tools, such as tokenizers,
named entity taggers, POS taggers, dependency
parsers, in the context of informal and noisy text.

As access to the internet becomes more and
more universal, a linguistically diverse population
has come online. Hong et al. (2011) showed that
in a collection of 62 million tweets, only a little
over 50% of them were in English. This multilin-
gualism has given rise to such interesting patterns
as transliteration and code-switching. The multi-
lingual behavior combined with the informal na-
ture of the content makes the task of building NLP
tools even harder.

In this paper, we solve the problem of Named
Entity Recognition (NER) for code-switched twit-
ter data as a part of the ACL'18 Computa-
tional Approaches to Linguistic Code-switching
(CALCS) Shared Task (Aguilar et al., 2018).
Code-switching is a phenomenon that occurs
when multilingual speakers alternate between two
or more languages or dialects. This phenomenon
can be observed across different sentences, within
the same sentence or even in the same word. This
shared task is similar to other social media tasks,
except that the data is explicitly chosen to con-
tain code-switching. The entities for the task are:
Event, Group, Location, Organization, Other, Per-
son, Product, Time, and Title. Below is an ex-
ample of some code-switched data, switching be-
tween English and Spanish:

My [Facebooklproa,  [glproa &
[Twitter] p,oq is hellaa dead yall Jk soy
yo que has no life!

In this example, there is a combination of English
and Spanish words and slang words within a tweet,
with 3 entities: Facebook, Instagram (commonly
referred to as ‘Ig’) and Twitter.

Proceedings of The Third Workshop on Computational Approaches to Code-Switching, pages 103-109
Melbourne, Australia, July 19, 2018. (©)2018 Association for Computational Linguistics



Value / Data Train Development Test
Total number of tweets 50,757 832 15,634
Total number of tokens 616,069 9,583 183,011
Average number of tokens per tweet 12.14 11.52 15.9
Standard deviation of the number of tokens per tweet 7.6 7.12 7.11

Table 1: (ENG-SPA) English-Spanish number of tweets and tokens for train, development, and test data

Value / Data Train Development Test
Total number of tweets 10,103 1,122 1,110
Total number of tokens 204,323 22,742 21,414
Average number of tokens per tweet 20.22 20.27 2191
Standard deviation of the number of tokens per tweet 6.63 6.76 6.18

Table 2: (MSA-EGY) Modern Standard Arabic-Egyptian number of tweets and tokens for train, devel-

opment, and test data

2 Related Work

NER is a fundamental part of the Information Ex-
traction pipeline. Most of the available off-the-
shelf systems are trained on formal content, and
consequently do not generalize well when eval-
uated on twitter data (Ritter et al., 2011). This
can be explained by the fact that such systems rely
on hand-crafted standard local features and some
background knowledge, which is not reliable in
data as noisy as tweets. With only a limited num-
ber of characters, people use a variety of creative
ways to express their thoughts, including emoti-
cons and novel abbreviations.

There have been few recent workshops and
shared-tasks on analysis of such noisy social
media data, such as Workshop on Noisy User-
Generated Text (WNUT) at EMNLP (2014, 2016,
2017), Workshop on Approaches to Subjectivity,
Sentiment and Social Media (WASSA) at NAACL
(2016), and Forum for Information Retrieval Eval-
uation (FIRE: 2015, 2016, 2017).

3 Experimental Setup

Here we describe the data, evaluation, and the
model we used.

3.1 Data

In our experiments, we focus primarily on the
English-Spanish (ENG-SPA) dataset. However,
we submitted our basic system results for Arabic-
Egyptian (MSA-EGY) dataset as well.
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The organizers provided annotated train and de-
velopment sets for each language. They also pro-
vided an unannotated set of test data, which we
annotated with our system, and submitted for eval-
uation. We never had access to the gold annotated
test set, before or after the evaluation.

Tables 1 and 2 provide information about the
data in terms of number of tweets and tokens for
the (EN-SPA) English-Spanish and (MSA-EGY)
Modern Standard Arabic-Egyptian language pairs.
Tables 3 and 4 provide statistics of the named
entities for both (EN-SPA) English-Spanish and
(MSA-EGY) Modern Standard Arabic-Egyptian
language pairs, where each cell can be interpreted
as Number (Percentage) and entity ‘O’ represents
all non-NE tokens. Please note that the data has
been tagged using the IOB scheme and data in Ta-
bles 3 and 4 is the result of grouping named enti-
ties according to the IOB scheme.

3.2 Evaluation

We used the standard harmonic mean F1 score to
evaluate the system performance. Additionally,
we used surface form F1 score as described in Der-
czynski et al. (2017). Both of these metrics were a
part of the evaluation in the CALCS shared task.

3.3 Method

We used the sklearn implementation of Condi-
tional Random Field (CRF)! (McCallum and Li,
2003) as the base model in our NER system.

lhttps ://sklearn-crfsuite.readthedocs.
io/



Entity Train Count Development Count
0] 597,526 (97%) 9,361 (97.68%)
Event 232 (0.04%) 4 (0.04%)
Group 718 (0.12%) 4 (0.04%)
Location 2,810 (0.46%) 10 (0.1%)
Organization 811 (0.13%) 9 (0.09%)
Other 324 (0.05%) 6 (0.06%)
Person 4,701 (0.76%) 75 (0.78%)
Product 1,369 (0.22%) 16 (0.17%)
Time 577 (0.09%) 6 (0.06%)
Title 824 (0.13%) 22 (0.23%)

Table 3: (ENG-SPA) English-Spanish named entities counts for train and development data

Entity Train Count Development Count
0) 181,230 (88.7%) 20,031 (88.08%)
Event 535 (0.26%) 69 (0.3%)
Group 1,799 (0.88%) 191 (0.84%)
Location 3,275 (1.6%) 358 (1.57%)
Organization 1504 (0.74%) 149 (0.66%)
Other 116 (0.06%) 17 (0.07%)
Person 5705 (2.79%) 698 (3.07%)
Product 538 (0.26%) 55 (0.24%)
Time 466 (0.23%) 61 (0.27%)
Title 896 (0.44%) 115 (0.51%)

Table 4: (MSA-EGY) Modern Standard Arabic-Egyptian entities counts for train and development data

System ENG-SPA MSA-EGY
Org. Baseline 53.28 62.70
Experiment 1 62.13 67.44
Top System 63.76 71.61

Table 5: (ENG-SPA) and (MSA-EGY) Our best
F1 scores on the test datasets compared with the
organizer’s baseline and the top performing sys-
tem in the Shared Task.

4 Experiments

This section gives an overview of our experiments.
First, we identify various local and global fea-
tures using a variety of monolingual tweets and
Gazetteers and train a CRF-based classifier on the
data. Second, we try to improve system recall us-
ing a 2-step NER process. Third, we convert the
convert the code-mixed data to monolingual data
using language identification (using a character-
based language model) and translation.
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Of the three experiments that we tried, the first
method gave the best results. We compare against
the best performing system in the shared task as
well as the organizer’s baseline in Table 5. The
baseline was provided by the organizers and used
Bi-directional LSTMs followed by softmax layer
(trained for 5 epochs) to infer the output labels.

The shared task used Surface Form F1 scores as
well, but we omit them from our results as they
were the same as harmonic mean F1 in all cases.
All scores are reported in Table 6. Detailed scores
are available in the appendix.

4.1 Experiment 1

Our first experiment used a standard set of fea-
tures, augmented with some task-specific ideas,
and defined as follows. Given a sequence of words
in a sentence: ..., W;—2 , Wi—1 , Wi , Wit] » Wit2 »
... and the current word in consideration is w; , we
used the following features:

e If w; is in the beginning of sentence



Development Data Test Data
Precision Recall F1 Precision Recall F1
Exp. 1 69.44 32.89 44.64 7275 5422 62.13
ENG-SPA  Exp. 2 71.29 47.37 56.92 46.22 64.66 5391
Exp. 3 66.27 36.18 46.81 71.88 54.00 61.67
MSA-EGY Exp. 1 (no Gaz) 83.29 7391 78.32 7443 61.65 67.44

Table 6: Results on all submissions. Bold

If w; is in the end of sentence

Lower-case version of w;

If w; is title-cased

Prefixes and Suffixes of length 4 of w;
Brown Clusters? (Cluster Size - 40) of w;
Word2Vec Clusters: We trained a Word2Vec
(Rehiifek and Sojka, 2010) model on the
combined tweets dataset (dimension: 100 ;
window: 7). Then, we clustered these em-
beddings into 40 clusters and used cluster IDs
as features.

Gazetteer: We used the Gazetteer (ex-
tracted from Wikidata by Mishra and Diesner
(2016)) labels as features.

For each word wy, in a context window of £2:

— The word wy, itself

— If wy, is upper case

— Shape and Short shape (where same
consecutive characters in the shape are
compressed to a single character) of wy
If wj, contains any special symbol like:
H.$,-,,.etc. or an emoji.

If wy, is alphabetic or alphanumeric
Emoji Description: We identified the
40 most common emojis present in our
dataset and manually labelled them with
representative words, such as smile,
kiss, sad, etc. These emoji description
(sense) of every context word were used
as another feature.

We also ran the experiment on the MSA-EGY
dataset (without the Gazetteer features).

4.2 Experiment 2

Following the first experiment, our main observa-
tion was that the recall was quite low. One reason
for this could be the presence of a large amount
of tokens tagged as ‘O’ (~97%). In contrast, the

https://github.com/percyliang/
brown-cluster

indicates best performance for that language.
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standard CONLL 2002 Spanish training NER cor-
pus (Tjong Kim Sang, 2002) had ~87% of the to-
kens tagged as ‘O’.

To solve this issue, we experimented with a 2-
step NER process (similar to (Eiselt and Figueroa,
2013)):

1. Train a CRF model to identify whether a to-
ken is ‘O’ or not

2. Train a CRF model to identify the type of
named-entity (if identified as non-‘0’)

As expected, we saw major improvements in re-
call, but these were offset by a substantial drop in
precision. Overall, this led to a lower F1 score than
before. In light of these results, we did not use the
2-step approach for any other experiments.

4.3 Experiment 3

In this experiment, we tried to eliminate the code-
switching by converting the data to a monolingual
form. Our method is to identify the language of
each token in the dataset and translate into a com-
mon language.

We collected training data for language iden-
tification using the Twitter API. We downloaded
tweets for English and Spanish and assumed that
each word in those tweets belonged to that partic-
ular language. The statistics for the downloaded
data is shown below:

1. 3000 Spanish tweets (7700 tokens ~56%)
2. 1900 English tweets (6100 tokens ~44%)

Then, we trained a character-level RNN-based
language model on this data to do language iden-
tification. In order to validate, we split our data
and used 80% for training and rest for validat-
ing, achieving an accuracy of 79% on this vali-
dation data. We used this model to identify the
language of all the tokens in dataset, then used
Google Translate API to translate English tokens
to Spanish.



Finally, we used the language identification and
the translation as features in our CRF model, in
addition to all the features used in experiment 1.

As compared to the results from experiment 1,
this improved the recall on both development and
test sets, but again, the loss in precision caused a
slight overall drop in performance.

5 Conclusion

Our submissions earned 4th place out of 8 submis-
sions in the ENG-SPA task, and 3rd place out of 6
submissions in the MSA-EGY task.

Surprisingly, our simplest NER model, trained
without using any language identification or trans-
lations, worked best. The other more sophisticated
experiments showed promise in improving the re-
call, but damaged the precision too much to im-
prove the F1 score.

One of the challenges we faced was dissimi-
larity between development and test dataset. Al-
though some of the techniques that we tried on the
development dataset improved the system perfor-
mance, the same effect was not seen in the test
dataset. For example, see the change in perfor-
mance between Table 7 and Table 8. The F1 score
on the development set jumped 12 points, but the
score on the test set dropped 9 points. This could
be explained by the very small size of the devel-
opment dataset, where a few errors or successes
could change the score dramatically. Without ac-
cess to the test data, we could not do any qualita-
tive error analysis.

Finally, since the 2-Step NER achieved such a
high recall, we believe that creating an ensemble
of 1-Step and 2-Step systems could achieve a bet-
ter overall F1 score.
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Appendices

A ENG-SPA detailed results

We show detailed results for ENG-SPA experiments in the following tables.

Development Data Test Data

Precision | Recall F1 | Precision | Recall F1
Event 0.00 0.00 | 0.00 41.67 | 11.11 | 17.54
Group 100.00 | 25.00 | 40.00 68.89 | 31.96 | 43.66
Location 66.67 | 40.00 | 50.00 72.16 | 68.16 | 70.1
Organization 100.00 | 11.11 | 20.00 51.11 | 22.77 | 31.51
Person 73.33 | 44.00 | 55.00 83.33 69.5 | 75.79
Product 58.33 | 43.75 | 50.00 66.41 | 45.19 | 53.79
Time 50.00 | 50.00 | 50.00 18.10 | 12.58 | 14.84
Title 100.00 455 | 8.70 47.57 | 22.17 | 30.25
Other 0.00 0.00 | 0.00 0.00 0.00 | 0.00
Overall 69.44 | 32.89 | 44.64 7275 | 54.22 | 62.13

Table 7: (ENG-SPA) Results for Experiment 1: simple features and gazetteers

Development Data Test Data

Precision | Recall F1 | Precision | Recall F1

Event 50.00 | 25.00 | 33.00 18.60 | 17.78 | 18.18
Group 100.00 | 25.00 | 40.00 25.34 | 38.14 | 30.45
Location 50.00 | 50.00 | 50.00 57.16 | 71.38 | 63.48
Organization 50.00 | 11.11 | 18.18 36.31 | 30.20 | 32.97
Person 7458 | 58.67 | 65.67 60.19 | 80.70 | 68.95
Product 62.50 | 62.50 | 62.50 50.64 | 51.17 | 50.90
Time 100.00 | 100.00 | 100.00 13.19 | 64.90 | 21.92
Title 66.67 9.09 | 16.00 28.23 | 31.67 | 29.85
Other 100.00 | 33.33 | 50.00 5.56 517 | 5.36
Overall 7129 | 4737 | 56.92 46.22 | 64.66 | 53.91

Table 8: (ENG-SPA) Results for Experiment 2: 2-step NER
Development Data Test Data

Precision | Recall F1 | Precision | Recall F1

Event 0.00 0.00 | 0.00 4545 | 11.11 | 17.86
Group 100.00 | 25.00 | 40.00 68.18 | 30.93 | 42.55
Location 55.56 50 | 52.63 70.97 | 67.80 | 69.35
Organization 50 | 11.11 | 18.18 48.78 | 19.80 | 28.17
Person 74.51 | 50.67 | 60.32 83.19 | 69.43 | 75.69
Product 53.85 | 43.75 | 48.28 65.54 | 45.45 | 53.68
Time 50.00 | 50.00 | 50.00 18.10 | 13.91 | 15.73
Title 0.00 0.00 | 0.00 4537 | 22.17 | 29.79
Other 0.00 0.00 | 0.00 0.00 0.00 | 0.00
Overall 66.27 | 36.18 | 46.81 71.88 | 54.00 | 61.67
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Table 9: (ENG-SPA) Results for Experiment 3: Language Identification + Translation




B MSA-EGY detailed results

We show detailed results for the one MSA-EGY experiment in the following table.

Development Data Test Data
Precision | Recall F1 | Precision | Recall F1
Event 66.67 | 43.48 | 52.63 67.57 | 35.71 | 46.73
Group 86.63 | 78.01 | 82.09 69.92 | 73.50 | 71.67
Location 87.14 | 75.70 | 81.02 76.64 | 57.95 | 66.00
Organization 74.24 | 65.77 | 69.75 68.75 | 61.60 | 64.98
Person 85.28 | 79.66 | 82.37 79.34 | 64.70 | 71.27
Product 79.17 | 69.09 | 73.79 66.67 | 54.55 | 60.00
Time 74.60 | 77.05 | 75.81 68.00 | 68.00 | 68.00
Title 77.11 | 55.65 | 64.65 26.32 | 50.00 | 34.48
Other 92.86 | 76.47 | 83.87 100.00 | 50.00 | 66.67
Overall 83.29 | 7391 | 78.32 7443 | 61.65 | 67.44

Table 10: (MSA-EGY) Results for Experiment 1 (without Gazetteer features)
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Abstract

We propose an LSTM-based model with
hierarchical architecture on named entity
recognition from code-switching Twitter
data. Our model uses bilingual charac-
ter representation and transfer learning to
address out-of-vocabulary words. In or-
der to mitigate data noise, we propose to
use token replacement and normalization.
In the 3rd Workshop on Computational
Approaches to Linguistic Code-Switching
Shared Task, we achieved second place
with 62.76% harmonic mean F1-score for
English-Spanish language pair without us-
ing any gazetteer and knowledge-based in-
formation.

1 Introduction

Named Entity Recognition (NER) predicts which
word tokens refer to location, people, organi-
zation, time, and other entities from a word
sequence. Deep neural network models have
successfully achieved the state-of-the-art perfor-
mance in NER tasks (Cohen; Chiu and Nichols,
2016; Lample et al., 2016; Shen et al., 2017) us-
ing monolingual corpus. However, learning from
code-switching tweets data is very challenging
due to several reasons: (1) words may have dif-
ferent semantics in different context and language,
for instance, the word “cola” can be associated
with product or “queue” in Spanish (2) data from
social media are noisy, with many inconsisten-
cies such as spelling mistakes, repetitions, and
informalities which eventually points to Out-of-
Vocabulary (OOV) words issue (3) entities may
appear in different language other than the matrix
language. For example “todos los Domingos en
Westland Mall” where “Westland Mall” is an En-
glish named entity.
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Our contributions are two-fold: (1) bilingual
character bidirectional RNN is used to capture
character-level information and tackle OOV words
issue (2) we apply transfer learning from monolin-
gual pre-trained word vectors to adapt the model
with different domains in a bilingual setting. In
our model, we use LSTM to capture long-range
dependencies of the word sequence and character
sequence in bilingual character RNN. In our ex-
periments, we show the efficiency of our model in
handling OOV words and bilingual word context.

2 Related Work

Convolutional Neural Network (CNN) was used
in NER task as word decoder by Collobert et al.
(2011) and a few years later, Huang et al.
(2015) introduced Bidirectional Long-Short Term
Memory (BiLSTM) (Sundermeyer et al., 2012).
Character-level features were explored by using
neural architecture and replaced hand-crafted fea-
tures (Dyer et al., 2015; Lample et al., 2016;
Chiu and Nichols, 2016; Limsopatham and Col-
lier, 2016). Lample et al. (2016) also showed
Conditional Random Field (CRF) (Lafferty et al.,
2001) decoders to improve the results and used
Stack memory-based LSTMs for their work in se-
quence chunking. Aguilar et al. (2017) proposed
multi-task learning by combining Part-of-Speech
tagging task with NER and using gazetteers to
provide language-specific knowledge. Character-
level embeddings were used to handle the OOV
words problem in NLP tasks such as NER (Lam-
ple et al., 2016), POS tagging, and language mod-
eling (Ling et al., 2015).

3 Methodology
3.1 Dataset

For our experiment, we use English-Spanish
(ENG-SPA) Tweets data from Twitter provided by
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Table 1: OOV words rates on ENG-SPA dataset before and after preprocessing

Train Dev Test

All Entity All Entity All
Corpus - - 1891% | 31.84% | 49.39%
FastText (eng) (Mikolov et al., 2018) | 62.62% | 16.76% | 19.12% | 3.91% | 54.59%
+ FastText (spa) (Grave et al., 2018) | 49.76% | 12.38% | 11.98% | 3.91% | 39.45%
+ token replacement 12.43% | 12.35% | 7.18% | 3.91% | 9.60%
+ token normalization 794% | 838% | 5.01% | 1.67% | 6.08%

Aguilar et al. (2018). There are nine different
named-entity labels. The labels use IOB format
(Inside, Outside, Beginning) where every token is
labeled as B-1abel in the beginning and follows
with T-1abel if it is inside a named entity, or O
otherwise. For example “Kendrick Lamar” is rep-
resented as B-PER I-PER. Table 2 and Table 3
show the statistics of the dataset.

Table 2: Data Statistics for ENG-SPA Tweets
Train Dev Test

616,069 | 9,583 | 183,011

# Words

Table 3: Entity Statistics for ENG-SPA Tweets

Entities | Train | Dev

# Person | 4701 75

# Location | 2810 10

# Product | 1369 16

# Title | 824 22
# Organization | 811 9
# Group | 718 4

# Time | 577 6
#Event | 232 4

# Other | 324 6

“Person”, “Location”, and “Product” are the
most frequent entities in the dataset, and the least
common ones are “Time”, “Event”, and “Other”
categories. ‘Other” category is the least trivial
among all because it is not well clustered like oth-
ers.

3.2 Feature Representation

In this section, we describe word-level and
character-level features used in our model.

Word Representation: Words are encoded
into continuous representation. The vocabulary is
built from training data. The Twitter data are very
noisy, there are many spelling mistakes, irregu-
lar ways to use a word and repeating characters.
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We apply several strategies to overcome the issue.
We use 300-dimensional English (Mikolov et al.,
2018) and Spanish (Grave et al., 2018) FastText
pre-trained word vectors which comprise two mil-
lion words vocabulary each and they are trained
using Common Crawl and Wikipedia. To create
the shared vocabulary, we concatenate English and
Spanish word vectors.

For preprocessing, we propose the following
steps:

1. Token replacement: Replace user hashtags
(#user) and mentions (@user) with “USR”,
and URL (https://domain.com) with “URL”.

. Token normalization: Concatenate Spanish
and English FastText word vector vocabulary.
Normalize OOV words by using one out of
these heuristics and check if the word exists
in the vocabulary sequentially

(a) Capitalize the first character
(b) Lowercase the word

(c) Step (b) and remove repeating charac-
ters, such as “hellooooo” into “hello”
or “lolololol” into “lol”

(d) Step (a) and (c) altogether

Then, the effectiveness of the preprocessing and
transfer learning in handling OOV words are ana-
lyzed. The statistics is showed in Table 1. It is
clear that using FastText word vectors reduce the
OOV words rate especially when we concatenate
the vocabulary of both languages. Furthermore,
the preprocessing strategies dramatically decrease
the number of unknown words.

Character Representation: We concatenate
all possible characters for English and Spanish, in-
cluding numbers and special characters. English
and Spanish have most of the characters in com-
mon, but, with some additional unique Spanish
characters. All cases are kept as they are.



3.3 Model Description

In this section, we describe our model architecture
and hyper-parameters setting.

Bilingual Char-RNN: This is one of the
approaches to learn character-level embeddings
without needing of any lexical hand-crafted fea-
tures. We use an RNN for representing the word
with character-level information (Lample et al.,
2016). Figure 1 shows the model architecture.
The inputs are characters extracted from a word
and every character is embedded with d dimension
vector. Then, we use it as the input for a Bidirec-
tional LSTM as character encoder, wherein every
time step, a character is input to the network. Con-
sider a; as the hidden states for word ¢.

)

where V is the character length. The represen-
tation of the word is obtained by taking @’ which
is the last hidden state.

1 2

\4
A1,0A¢, ..

a; = ( o Ay

___________

| BiLSTM |
| encoder |

________

&)

&
=
=
b

9
=
=

Figure 1: Bilingual Char-RNN architecture

Main Architecture:  Figure 2 presents the
overall architecture of the system. The input lay-
ers receive word and character-level representa-
tions from English and Spanish pre-trained Fast-
Text word vectors and Bilingual Char-RNN. Con-
sider X as the input sequence:

X = (z1,x2,...,ZN)

where N is the length of the sequence. We fix
the word embedding parameters. Then, we con-
catenate both vectors to get a richer word repre-
sentation u;. Afterwards, we pass the vectors to
bidirectional LSTM.

U = Tt D ag

). he = LST™(uy, i)

—  —

_>
ht = LSTM(Ut, htfl
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Bilingual
Char-RNN

S~

todos los Domingos en Westland Mall

Figure 2: Main architecture

Ctzm@ﬁt

where @ denotes the concatenation operator.
Dropout is applied to the recurrent layer. At each
time step we make a prediction for the entity of the
current token. A softmax function is used to cal-
culate the probability distribution of all possible
named-entity tags.

ect

T

,where j =1,..,T
j=1¢7

Yt =

2

where y, is the probability distribution of tags
at word ¢ and T is the maximum time step. Since
there is a variable number of sequence length, we
padded the sequence and applied mask when cal-
culating cross-entropy loss function. Our model
does not use any gazetteer and knowledge-based
information, and it can be easily adapted to an-
other language pair.

3.4 Post-processing

We found an issue during the prediction where
some words are labeled with O, in between
B-label and I-label tags. Our solution is
to insert I-label tag if the tag is surrounded
by B-label and I-label tags with the same
entity category. Another problem we found that
many I-label tags are paired with B-label
in different categories. So, we replace B—label
category tag with corresponding I-1label cate-
gory tag. This step improves the result of the pre-



Table 4: Results on ENG-SPA Dataset (I result(s) from the shared task organizer (Aguilar et al., 2018)

1 without token normalization)

F1 F1
Model Features Dev Test
Baseline? Word - 53.2802%
BiLSTMT Word + Char-RNN | 46.9643% 53.4759%
BiLSTM FastText (eng) 57.71174% 59.9098%
BiLSTM FastText (eng-spa) | 57.4177% 60.2426%
BiLSTM + Char-RNN 65.2217% 61.9621%
+ post 65.3865 % 62.7608 %
Competitors’
IIT BHU (1% place) - - 63.7628% (+1.0020%)
FAIR  (3"¢ place) - - 62.6671% (- 0.0937%)

diction on the development set. Figure 3 shows the
examples.

e () = ) () )
= =) (=)

Figure 3: Post-processing examples

3.5 Experimental Setup

We trained our LSTM models with a hidden size
of 200. We used batch size equals to 64. The
sentences were sorted by length in descending or-
der. Our embedding size is 300 for word and 150
for characters. Dropout (Srivastava et al., 2014)
of 0.4 was applied to all LSTMs. Adam Opti-
mizer was chosen with an initial learning rate of
0.01. We applied time-based decay of v/2 decay
rate and stop after two consecutive epochs without
improvement. We tuned our model with the devel-
opment set and evaluated our best model with the
test set using harmonic mean F1-score metric with
the script provided by Aguilar et al. (2018).

4 Results

Table 4 shows the results for ENG-SPA tweets.
Adding pre-trained word vectors and character-
level features improved the performance. Interest-
ingly, our initial attempts at adding character-level
features did not improve the overall performance,
until we apply dropout to the Char-RNN. The per-
formance of the model improves significantly after
transfer learning with FastText word vectors while
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it also reduces the number of OOV words in the
development and test set. The margin between
ours and first place model is small, approximately
1%.

We try to use sub-words representation from
Spanish FastText (Grave et al., 2018), however, it
does not improve the result since the OOV words
consist of many special characters, for example,
“/IAtrevido/Provocativo”, “Twets/wek”, and pos-
sibly create noisy vectors and most of them are not
entity words.

5 Conclusion

This paper presents a bidirectional LSTM-based
model with hierarchical architecture using bilin-
gual character RNN to address the OOV words is-
sue. Moreover, token replacement, token normal-
ization, and transfer learning reduce OOV words
rate even further and significantly improves the
performance. The model achieved 62.76% F1-
score for English-Spanish language pair without
using any gazetteer and knowledge-based infor-
mation.
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Abstract

Named Entity Recognition is an impor-
tant information extraction task that iden-
tifies proper names in unstructured texts
and classifies them into some pre-defined
categories. Identification of named enti-
ties in code-mixed social media texts is
a more difficult and challenging task as
the contexts are short, ambiguous and of-
ten noisy. This work proposes a Con-
ditional Random Fields based named en-
tity recognition system to identify proper
names in code-switched data and classify
them into nine categories. The system
ranked fifth among nine participant sys-
tems and achieved a 59.25% F1-score.

1 Introduction

With the increasing usage of social media, mi-
cro blogs and chats in various socio-economical
classes, ethnicities and genres in the global so-
ciety, a new category of informal short texts has
evolved in recent years. One of the important
phenomena that can appear in such texts is code-
mixing or code-switching (CS), where bi-lingual
users often switch back and forth between their
common languages during interactions. Process-
ing of such texts by automatic means encounters
several challenges due to the usage of mixed vo-
cabulary, misspellings, abbreviations, translitera-
tions, emojis, and many more. Furthermore, it is in
many cases difficult to interpret the texts because
of the short contexts.

The Natural Language Processing and text min-
ing communities have taken necessary initiatives
to encourage researchers through organizing var-
ious workshops and shared-tasks, and by open-
ing mainstream research tracks to develop re-
sources and novel approaches to processing code-
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mixed texts efficiently and for extracting valu-
able information from such messy contents. In
this direction, the CALCS 2018 Shared Task
(Aguilar et al., 2018) focused on identifying a
predefined set of nine Named Entity (NE) types:
Person, Location, Organization, Group, Title,
Product, and other. The NE
identification task addressed code-mixed texts of
Spanish-English (SPA-ENG) and Modern Stan-
dard Arabic-Egyptian (MSA-EGY); here we will
look at the first pair (SPA-ENG) only.

Previously, several machine learning techniques
have been applied to the NE recognition problem
such as Hidden Markov Models (HMM) (Bikel
et al., 1997), Maximum Entropy models (Borth-
wick, 1999), Conditional Random Fields (CRF)
(Lafferty et al., 2001), and Support Vector Ma-
chines (SVM) (Isozaki and Kazawa, 2002), as well
as deep neural network-based Long Short-Term
Memories (LSTM) (Limsopatham and Collier,
2016), Convolutional Neural Networks (CNN)
(Santos and Guimaraes, 2015), or hybrid combi-
nations (Chiu and Nichols, 2016).

In this work, the named entity recognition task
is considered as a sequence labeling problem, for
which CREF is a natural choice to identify entity
mentions from code-switched data and classify
them to one of the nine aforementioned NE cat-
egories. With initial named entity token and lan-
guage identification, a wide range of features (de-
scribed in Section 3) are explored for this purpose.
As per the overall ranking of the submitted sys-
tems under the shared task, our approach is rea-
sonably effective.

The paper is organized as follows: The shared
task datasets are presented in Section 2. The
named entity recognition system is described in
Section 3. Results are presented in Section 4, with
error analysis reported in Section 5. Section 6 ad-
dresses future work and concludes.

Event, Time,
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Dataset #Tweets #Named Entities
Training 50,238 12,365
Development 828 151

Test 15,634 -

Table 1: Code-switched dataset statistics

2 Datasets

The shared task organizers provided three differ-
ent datasets: training, development and test sets.
The statistics of the datasets are reported in Ta-
ble 1, with the total number of tweets and total
number of named entities. No gold standard anno-
tation of the test data was made available.

3 Named Entity Recognition

To identify and classify each token from the code-
switched data into nine categories (Person, Loca-
tion, Organization, Group, Title, Product, Event,
Time and Other), a supervised CRF-based (Laf-
ferty et al., 2001) approach was used. Different
features were extracted from external sources and
applied to recognize the target entities.

In a first step, each token was identified as ei-
ther being a named entity (called a mention) or
not. All the beginning and intermediate parts of
named entities (for all nine entity categories) were
converted into ‘B-mention’ and ‘I-mention’, re-
spectively, and a CRF-based model was applied to
identify the mentions.

In the next step, the identified mentions (‘B-
mention’ and ‘I-mention’) were used as features
along with other features described in subsections
3.1 and 3.2 to classify each token into one of the
nine categories. The ‘BIO’! notation was used to
represent the named entities.

The CRF-based mention and named entity iden-
tification models were implemented using CRF-
suite (python—crfsuite),2 which allows for fast
training by utilizing L-BFGS (Liu and Nocedal,
1989), a limited memory quasi-Newton algorithm
for large scale numerical optimization. The classi-
fier was trained both on features retrieved from ex-
ternal resources and on features directly extracted
from the training data, as detailed in the following
two subsections.

"Here ‘B’ represents the beginning of, ‘I inside, and ‘O’ out-
side of a named entity.

2www.chokkan.org/software/crfsuite/
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3.1 Features from external sources

The following features were extracted from other
external resources:

3.1.1 Language identification

The language identification data from the previous
code-switching workshop (Diab et al., 2016) was
collected and converted into ‘langl’, ‘lang2’ and
‘other’ (with ‘other’ grouping the labels ‘mixed’,
‘ne’, ‘fw’ and ‘unknown’). If any token of the
‘other’ categories was followed by ‘langl’, it was
assigned to ‘langl1’. If the token was followed by
‘lang2’, it was assigned to ‘lang2’. A model de-
scribed by Sikdar and Gambick (2016) was built
using the converted language identification data
and applied to the current shared task’s (Aguilar
et al., 2018) training and development sets to
get language information (‘langl’, ‘lang2’ and
‘other’) for each token. This language informa-
tion was then used as a feature for named entity
identification in the current shared task.

3.1.2 Named entity token identification

Only the tweets containing named entities were
extracted from the data from the previous code-
switched workshop, and a CRF based model was
built using these tweets with different features (lo-
cal context, suffix, prefix, all-upper-case, starts-
with-upper-case, and hash symbol) and applied
to the current shared task’s training, development
and test data to get named entity information for
each token.

3.1.3 Part-of-speech information

The Stanford tagger® was used to extract part-of-
speech (POS) information for training, develop-
ment and test data. First, the English version of the
Stanford tagger was applied to get English POS
tags, and then the Spanish version of the tagger
was applied. For tokens belonging to ‘langl’ or
‘other’, the English POS tag was considered. For
tokens belonging to ‘lang2’, the Spanish POS was
picked. The POS information for a word together
with its two preceding and two following tokens’
part-of-speech tags (i.e., a -2 to +2 window) were
used as features.

In addition, the first two characters of the cur-
rent word’s POS tag and those of the previous and
next two words’ POS tags (-2 to +2 tokens) were
used as features.

*https://nlp.stanford.edu/software/
tagger.shtml



3.14 Stem

The stem of each token was identified using the
Stanford parser.*

3.1.5 Noisy data named entity recognizer

The named entities of the current workshop’s
datasets were identified using the model for named
entity recognition in noisy user generated texts de-
scribed by Sikdar and Gambick (2017).

3.2 Features from training data

The following features were extracted from the
training data.

word itself: the current word.

word in lower case: all alphabetic characters
in the word converted to lower-case.

local context of word in lower-case (with a -2
to +2 window, i.e., from two preceding to two
following tokens).

all-upper-case:  binary feature checking
whether the current token only has upper-
case letters or not.

starts-with-upper-case: binary feature check-
ing whether the current token starts with a
capital letter or not.

word-length: binary feature set if the length
of a word is greater than a threshold (> 5).

o suffix: n-grams of the last 1, 2 or 3 characters.
prefix characters: n-grams of the first 1, 2 or
3 characters.

is-digit: binary feature checking whether the
current word contains any digit or not.
two-digit: binary feature set if the current
word contains two digits.

is-alphanumeric: current word contains both
digits and letters.

is-special-characters: binary feature set if the
current word contains either ‘# or ‘@’.
is-stop-word: the current word is on NLTK’s’
stop word list.

most-frequent-word: after removing all stop
words, a list was prepared based on high fre-
quency of words (1000 words from the train-
ing data). The feature is set if the current
word belongs to this high frequency word list.
word-normalization: the current word with
all lower-case letters replaced with ‘a’, all

*nttps://nlp.stanford.edu/
IR-book/html/htmledition/
stemming-and-lemmatization-1.html

Shttps://www.nltk.org/
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Data ‘ Precision Recall F-score
5-fold 80.64 71.82 75.95
Dev_Data 81.10 50.20 62.00

Table 2: Mention identification results (%)

Data F-score
5-fold 59.19
Dev_Data 41.70
Test 59.25

Table 3: Named entity recognition results (%)

Team F-score
IIT BHU 63.76
CAiRE++ 62.76
FAIR 62.66
Linguists 62.13
Flytxt 59.25
semantic 56.72
WallyGuzman 54.16
Fraunhofer FKIE | 53.65
Baseline 53.28

Table 4: Comparison with other systems (%)

upper-case letters replaced with ‘A’, all dig-
its replaced with ‘0’, and all other characters
left unaltered.
Pair-wise-mutual-information-score: ~ PMI
calculated based on the number of times the
current word belongs to each NE category di-
vided by the word’s total number of occur-
rences in training data.
beginning-of-the-word: binary feature
checking whether the current token belongs
to beginning of the sentence or not.
ending-of-the-word: binary feature checking
whether the current token belongs to end of
the sentence or not.

To identify the mentions, the above features
were used together. To identify named entities, the
predicted mentions along with contexts consisting
of the previous two and the next two tokens were
used as features, in addition to the other features
described in subsections 3.1 and 3.2.



EVENT GROUP LOC ORG OTHER PER PROD TIME TITLE (0)
EVENT 1 0 0 0 0 3 0 0 0 2
GROUP 0 2 1 0 0 0 0 0 0 2
LOC 2 0 7 0 0 1 0 0 0 6
ORG 0 0 0 0 0 4 5 0 0 1
OTHER 0 0 0 0 1 0 0 0 0 6
PER 0 0 1 0 0 52 0 0 0 42
PROD 0 0 0 0 0 2 11 0 0 8
TIME 0 0 0 0 0 0 0 6 0 3
TITLE 0 0 2 0 0 6 0 0 2 40
(0] 0 0 6 2 1 4 1 2 0 9348

Table 5: Confusion matrix for NER on the development data
4 Results sified into other categories, plausibly since those

The supervised learning approach was applied to
identify mentions. Identified mentions were taken
as features along with the other features men-
tioned in Section 3 to recognize named entities.
The classifiers were learned from the training data
and tested on the development data. 5-fold cross-
validation (CV) was applied to the training data.

The mention identification results are shown in
Table 2. The average precision, recall and F1-
score values of 5-fold CV on the training data were
80.64%, 71.82% and 75.95%, respectively. The
F1-score on the development data was 62.00% due
to a significant drop in recall.

The system was applied to named entity recog-
nition and results are shown in Table 3. The
average Fl-score of 5-fold cross-validation was
59.19%. When tested on the development data,
the system achieved an F-score of 41.70%.

The system was then applied to the unseen test
data and achieved an F1-score of 59.25%, which
is similar to the 5-fold CV F1-score.

Comparing our system (‘Flytxt’) to the other
systems participating in the shared task, Table 4
reports the results and shows that the system se-
cured fifth position and achieved clearly better
scores than the baseline system (‘Baseline’).

5 Error Analysis

When analyzing the output on the development
data for named entity recognition, it is clear that
many of the named entities are not identified at all
by the system. This might be due to the word it-
self and/or some the contexts word not occurring
in the training data.

Furthermore, some named entities are misclas-
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words occur in both named entity categories.

The confusion matrix for named entity recog-
nition is reported in Table 5, for each of the
nine classes (‘EVENT’, ‘GROUP’,'LOC’, ‘ORG’,
‘OTHER’, ‘PER’, ‘PROD’, ‘TIME’, ‘TITLE’).
The matrix was built using relaxed match, with the
‘B-" and ‘I-’ distinctions ignored for each named
entity class.

6 Conclusion

This paper proposed a Conditional Random Field
based approach to identifying and classifying
named entities. Compared to the baseline, the pro-
posed system achieved better results.

To investigate the effectiveness of the external
features, a feature ablation study should be the
next step. Most of the features have been extracted
directly from training data, but the features could
have been further optimized using grid search and
evolutionary approaches.

As an alternative to the feature-based classifier,
deep learning-based approaches such as LSTM
(Long Short-Term Memory), stack-based LSTM
and CNN (Convolution Neural Network) can be
explored to classify the proper names into the nine
categories.
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Abstract

This paper describes the system for the
Named Entity Recognition Shared Task
of the Third Workshop on Computational
Approaches to Linguistic Code-Switching
(CALCS) submitted by the Bilingual An-
notations Tasks (BATs) research group of
the University of Texas. Our system uses
several features to train a Conditional Ran-
dom Field (CRF) model for classifying in-
put words as Named Entities (NEs) us-
ing the Inside-Outside-Beginning (IOB)
tagging scheme. We participated in the
Modern Standard Arabic-Egyptian Arabic
(MSA-EGY) and English-Spanish (ENG-
SPA) tasks, achieving weighted average F-
scores of 65.62 and 54.16 respectively. We
also describe the performance of a deep
neural network (NN) trained on a subset
of the CRF features, which did not surpass
CRF performance.

1 Introduction & Prior Approaches

Named entity recognition (NER) and classifica-
tion are essential tasks in information extrac-
tion (Nadeau and Sekine, 2007). However, NER
in texts in which multiple languages are repre-
sented is not straightforward because NEs can be
language-specific (e.g., Estados Unidos in Span-
ish vs. United States) or language-neutral but re-
gionally specific (e.g., Los Angeles) or even mixed
(e.g., Nueva York in Spanish) (Cetinoglu, 2016;
Guzman et al., 2016). The task is further com-
plicated by the fact that names of companies, in-
stitutions and brands in one language can be com-
mon nouns in another (e.g, Toro is a brand name
for a U.S. company but toro in Spanish means
bull’). These challenges confound the already
difficult task of working with multilingual texts,
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which can be considered resource scarce’ with re-
spect to the availability of NLP tools (Riaz, 2010;
Zirikly and Diab, 2015; Sitaram and Black, 2016;
Guzmén et al., 2017). But NER in multilingual
communication is essential given that multilin-
gualism is common throughout the world, and, for
many speakers, language mixing is a shared prac-
tice and one that can be prevalent in social media
like Twitter (Jurgens et al., 2014; Jamatia et al.,
2015, 2016; Vilares et al., 2015).

2 Data Description

Over 62k Tweets were collected and manually
annotated for NEs to be used in this shared
task (Aguilar et al., 2018). The annotators la-
beled each NE using one of ten tags: PERSON,
LOCATION, ORGANIZATION, PRODUCT, GROUP,
EVENT, TIME, TITLE, OTHER, or NOT-NE. All to-
kens are tagged using the IOB scheme while ignor-
ing hashtags and @-mentions, i.e. Louis Vuitton is
tagged with B-ORG and I-ORG but @RideAlong
is tagged as 0. NEs can occur in all languages
and, since this is Twitter data, can frequently be
misspelled or missing orthographic features that
would ease identification. The Tweets were di-
vided into training, development, and test sets and
released to the participants of the shared task along
with tools for preprocessing of the Tweets.

3 Approach & Methodology
3.1 Conditional Random Field

One approach we used to perform NE recogni-
tion in this shared task was the usage of condi-
tional random fields (Lafferty et al., 2001), a tech-
nique used for sequence labeling. More specifi-
cally, python-crfsuite (Peng and Korobov, 2014)
was used, a Python wrapper around CRFsuite
(Okazaki, 2007), an implementation of CRFs in
C/C++. CRFs work by looking at several words
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and their features and expected classification (in
this case the NE classification) as examples and
using the information gained to predict classifica-
tions on future data that has not been seen before.
For our use of CRFsuite, the values of 1.0 for L1
and 0.001 for L2 regularization (from the NER ex-
ample provided by the package) were used with a
total of 150 training iterations. All other parame-
ters were left at their default values.

3.1.1 Features Used

Several different features of the tweets as whole
and individual tokens were used as input, some of
which rely on external resources to generate. Ini-
tially we developed our features on the ENG-SPA
dataset. Interestingly many of the features used for
ENG-SPA performed well on the MSA-EGY data.
Inspiration for the features used was drawn from
various papers from the First Workshop on CALCS
(Chittaranjan et al., 2014; Lin et al., 2014). The
features used can be grouped into five categories:

1. Word features: lowercase copy of the word,
its two last characters, length, whether it is
the first word or not, whether this word is all
alphanumeric characters (only for the MSA-
EGY dataset), if this word is made up of dig-
its or not, and if the word contains emoji.

. Capitalization: is the word all uppercase or
title case?

. Language tags: off-the-shelf taggers from the
Natural Language Toolkit (NLTK) (Bird and
Loper, 2004) were used to perform NE and
part of speech (POS) tagging on one tweet at
a time and the tags were applied to individual
tokens.

. Language detection: in the ENG-SPA
dataset only, language detection on entire
tweets was done using langdetect, a Python
port (Danildak, 2017) of language-detection
(Nakatani, 2010) originally written in Java.
Probabilities of the tweet being English or
Spanish rounded to 2 digits after the decimal
point were used. If the tweet was classified
as neither English or Spanish, the probabil-
ity was set to be 0. For example, “Quiero un
roadtrip asap” was falsely classified as Ro-
manian.

. Twitter functionality: does the overall tweet
contain an @mention or #hashtag? Is this
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word itself one of the two? Is this a URL?

A subset of the features mentioned above were
applied to the next and previous words and used
as features to classify the current word: the word
in lowercase form, its last two characters, if it is
the first word, title case, uppercase, a URL, @-
mention, or #hashtag, if it contains an emoji, its
NE and POS tag classification by NTLK.

Additional features have been experimented
with and their results are included in section 4.
These features include the last three characters of
the word, whether it contains a digit (not if it is
a digit itself), or if it is made up of exclusively
ASCII characters.

3.2 Deep/ Wide Model

The deep and wide architectures have had recent
success for the use of recommendation engines
(Cheng et al., 2016), but here we adapt it for the
use of NER. Deep and wide architectures have
the benefit of embedding categorical variables in
a vector space allowing for unseen feature combi-
nations and the use of cross-product feature trans-
formations for effective and interpretable features.
This combination of cross-product feature combi-
nations and dense embeddings allows for deep and
wide models to memorize and generalize to the
input data while reducing feature engineering ef-
forts.

)

9 Input Layer

| \ﬁ
\\ - 7 .\ Hidden Layer
| \ / \
D > 9 o Output Layer

Figure 1: layers in wide (left) and deep (right)
models

3.2.1 Training process

The model was trained using Tensorflow, an open-
source machine learning framework designed by
Google (Abadi et al., 2016). The classifier pro-
vides a general purpose wide and deep learning
model for users to train. The wide model is a
pre-built linear classifier which attempts to clas-
sify each word in a particular tweet based on val-
ues from their linear combinations.

The deep model used a pre-built neural net-
work to classify the data by letting its features



propagate through the network. Using Python,
Tweets from the tsv file were first parsed into a
internal data model where the features are com-
puted as properties of the individual words. The
model outputs a csv file with each feature listed
as a column that can be conveniently passed to
the DNNLinearCombinedClassifier. We
used a subset of the CRF features including the
word itself, capitalization of the word, word type,
and the adjacent words.

The wide portion of the model enables NER
tagging through linear properties. Features were
inputted as the base column to provide informa-
tion to the activation layer of the neural network.
Some features such as the word, word’s capital-
ization, word’s type were cross validated as a set
and hence would make the model recognize that
these grouped features would have dependencies
among themselves. Implementing a neural net-
work, the deep model greatly increased the train-
ing time with a ratio of roughly 1:20 per iteration.
The models did not perform well against the CRF
possibly due to a lack of features, hence the CRF
was used in the final submission of the project.

4 Results & Analysis
4.1 CRF Performance

Our submission for the shared task was evaluated
using both the harmonic mean F1 and the sur-
face forms F1 metrics (Derczynski et al., 2017)
on each dataset. In line with the baseline perfor-
mance, our system performs better on the MSA-
EGY data than the ENG-SPA data despite the
difference in data size. The scores on the two
challenges were 65.62 for MSA-EGY and 54.16
for ENG-SPA. After the shared task submission
closed, we continued experimenting with different
features. The Fl-scores (computed using scikit-
learn (Pedregosa et al., 2011)) of the CRF trained
on the training data set and evaluated on the test-
ing set using various configurations of features are
shown in table 2. These results are different from
those submitted to the competition as they were
evaluated on a different data set.

Inclusion or omission of certain features af-
fected the two sets of data differently: for exam-
ple including the ASCII feature improves scores
for ENG-SPA but decreases that for MSA-EGY.
The last row (special) shows an attempt to max-
imize the score by combining successful individ-
ual features and while scores do increase, this at-
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tempt does not perform as well as expected. For
ENG-SPA the submitted configuration excluding
POS and NE seems to work best while the submit-
ted configuration with a combination of changes
(shown in table 1) works best for MSA-EGY go-
ing by Fl-score.

Table 1 shows the features that were modified
for use. An asterisk (¥*) indicates that this is a
change compared to the submitted configuration
a. Rows not included are features that remained
unchanged throughout.

4.2 NN Performance

As shown in table 3, the Fl-score was subopti-
mal due to a low recall score. Two different mod-
els, one implementing only the wide portion and
the other implementing the deep and wide models
were trained with features extracted from the data
set. Three different variants of the features and the
results are displayed in table 2. Surprisingly, the
wide model showed an overall better performance
than the wide and deep model. This may be due
to a lack of the features extracted from the dataset
for the deep learning to build on. The lack of recall
may occur due to the same reason, which eventu-
ally leads to the rejection of this model.

5 Conclusion

In this paper, we described the University of Texas
BATSs research group’s submission for the CALCS
2018 Shared Task for NER. We found that some
features improved results of the CRF model on
one language combination, but not on the other. In
both cases, our CRF model outperformed the base-
line NER performance. However, training an NN
using the same features as the CRF did not signif-
icantly improve F1-scores, but further feature en-
gineering on or combination of both models could
improve the performance.



ENG-SPA MSA-EGY

Features a| b |c| dle|f]| g h a| b c d |e|f]|]g]| h
en prob VA IRV I VAR VA IRVA e
es prob VA " I VAR IRVA IRVA e

ar prob v'E vE
last 3 chars v'E vE vE vFE
has emoji VR VA VAN VA B IV e I IV VA BV VA O VA VA
ascii v'E v'E v'E

NE Ve AN AN BV e v * ANV VIV FE Y F
POS VIV vV Y v * VAN A VAR A BV B BV
two words v'F VIV Vv |V I|VIVv|F|V

Table 1: Feature configurations
ENG-SPA MSA-EGY

Configuration precision | recall | Fl-score | precision | recall | Fl-score

a (submission) 0.69 0.25 0.32 0.86 0.68 0.76

b (include last 3 characters) 0.67 0.26 0.33 0.84 0.7 0.76

¢ (toggle language probabilities) 0.49 0.24 0.31 0.86 0.68 0.76

d (check for ascii) 0.73 0.25 0.34 0.86 0.67 0.75

e (no emoji) 0.71 0.25 0.33 0.87 0.68 0.76

f (exclude POS and NE tags) 0.69 0.27 0.34 0.86 0.68 0.76

g (toggle surrounding two words) 0.50 0.23 0.30 0.84 0.65 0.73

h (special) 0.63 0.27 0.33 0.84 0.71 0.77

Table 2: Performance of CRF on various configurations

ENG-SPA (Wide model only) || ENG-SPA (Deep + Wide model)
Configuration precision | recall | Fl-score || precision | recall F1-score
original 0.23 0.03 0.05 0.22 0.0373 0.06
excluding next word 0.28 0.04 0.07 0.13 0.02 0.03
excluding next word and length 0.31 0.04 0.07 0.13 0.03 0.05

Table 3: Performance of NN on various configurations
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Abstract

Named Entity Recognition plays a ma-
jor role in several downstream applications
in NLP. Though this task has been heav-
ily studied in formal monolingual texts
and also noisy texts like Twitter data, it
is still an emerging task in code-switched
(CS) content on social media. This paper
describes our participation in the shared
task of NER on code-switched data for
Spanglish (Spanish + English) and Ara-
bish (Arabic + English). In this pa-
per we describe models that intuitively
developed from the data for the shared
task Named Entity Recognition on Code-
switched Data. Owing to the sparse and
non-linear relationships between words in
Twitter data, we explored neural architec-
tures that are capable of non-linearities
fairly well. In specific, we trained char-
acter level models and word level mod-
els based on Bidirectional LSTMs (Bi-
LSTMs) to perform sequential tagging.
We trained multiple models to identify
nominal mentions and subsequently used
this information to predict the labels of
named entity in a sequence. Our best
model is a character level model along
with word level pre-trained multilingual
embeddings that gave an F-score of 56.72
in Spanglish and a word level model that
gave an F-score of 65.02 in Arabish on the
test data.

1 Introduction

Named Entity Recognition (NER) is a challeng-
ing and one of the most fundamental tasks in
NLP. NER not only has stand alone applications
including search and retrieval but also aids as a
prior step for downstream NLP applications like

“Denotes equal contribution

126

question answering and dialog state tracking. It
has been fairly researched in the community us-
ing both supervised (Azpeitia et al., 2014) and
semi-supervised (Nadeau, 2007), (Nadeau, 2007)
techniques. Moreover, this has also been studied
on multiple languages including English (Lample
etal., 2016), Spanish (Zea et al., 2016) and Arabic
(Shaalan, 2014). The task is projected into an even
complex space when there are words from multi-
ple languages interleaved within and between sen-
tences. This phenomenon is commonly known as
code switching (CS).

CS is typically used in informal or semi-formal
communication and social media stages an acces-
sible platform to interact in this manner. This also
comes with additional nuances observed in social
media text that can be broadly characterized as
noisy text with spelling errors and ungrammati-
cal constructions. Often, the shorthand represen-
tations observed in this data are non-standardized
and are one to many functions of standard spelling
to a non-standard spelling. This makes this task
significantly different from NER on formal mono-
lingual texts and the techniques are not directly
transferable to the domain of CS text. Super-
vised techniques to address the task in the do-
main of noisy texts such as Twitter have been ex-
plored (Ritter et al., 2011), (Tran et al., 2017). We
leverage these techniques in order to deal with the
sparse distribution of entities.

In this paper, we discuss the techniques used
from the participation of our team in the shared
task of Named Entity Recognition of Code-
switched Data (Aguilar et al., 2018). We model
the problem at both word and character levels
along with attempting attention mechanism. We
discuss the intuitions from the data that motivate
the models. We have also explored ensembling
multiple models that cater to identification of the
named entity and labeling it with a tag. Our best
performing system is the combination of character
and word level representations (using pre-trained
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Spanglish Arabish

Criteria Train Dev Test Train Dev Test
# Tweets 41,024 832 15,634 | 10,091 1,121 1,110
# Unique Words 57,892 2,559 27,756 | 44,024 9,800 9,316
# Unique NEs 4,788 156 - 4,435 1,107 -
OOV with Train (%) 0 18.67 52.16 0 30.76 40.79
OOV of NEs with Train (%) 0 62.82 - 0 25.92 -
OO0V with MUSE (%) 64.43 20.94 57.23 99.74 99.82 97.44
OOV of NEs with MUSE (%) | 17.41 5.76 - 97.74 99.90 -

Table 1: Data Analysis

multilingual embeddings) in a Bi-LSTM that re-
sulted in an F1 score of 56.72 in Spanglish and a
word level Bi-LSTM that gave an F1 of 65.02 in
Arabish.

2 Related Work

NER is a fairly well researched topic and a lot
of literature (Nadeau and Sekine, 2007) is avail-
able with regard to this. In this section we focus
and present a comprehensive overview of the tech-
niques that lay motivations to our models and ex-
periments.

While traditionally hand crafted features are re-
liably used (Carreras et al., 2002), neural mod-
els have recently been emerging as effective tech-
niques to perform the task. This is owed to the sub-
stantial reduction of manual expense in building
hand-crafted features for each language. Qi et al.
(2009) leverages unannotated sentences to im-
prove supervised classification tasks using Word-
Class Distribution Learning. Passos et al. (2014)
were among the first to use a neural network
to learn word embeddings that leverage informa-
tion from related lexicon to perform NER. Col-
lobert et al. (2011) used convolution for embed-
dings with a CRF layer to attain alongside bench-
marking several NLP tasks including NER. Lam-
ple et al. (2016) achieves the state-of-the-art per-
formance on 4 languages by training models based
on BiLSTM and CRF by using word represen-
tations from unannotated text and character rep-
resentations from annotated text. This work has
been extended to transfer settings by Bharadwaj
et al. (2016) to multiple languages by representing
word sequences in IPA. Huang et al. (2015) use a
BiLSTM with a CRF layer in addition to making
use of explicit spelling and context features along
with word embeddings.

Aguilar et al. (2017) use a character level CNN
followed by a word level Bi-LSTM in a multi-task
learning setting and also emphasize the impor-
tance of gazetteer lists for the task. Multilingual
NER on informal text in Twitter was also stud-
ied by Etter et al. (2013). Zirikly and Diab (2015)
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explore the impact of embeddings and representa-
tions of words without gazetteer features on NER
for social media text in Arabic. Luo et al. (2017)
have also shown that attention based Bi-LSTM
with additional architecture achieves higher per-
formance than other state-of-the-art techniques to
recognize chemical named entities which lean to
low resource settings. We hypothesize that CS
also belongs to low resource settings and explore
the impact of attention. The task of NER becomes
harder especially in low resource settings (Tsai
et al., 2017), which is similar to CS setting.

3 Data Analysis

Code-switching is more prominently observed in
informal communication which is observed in so-
cial media platforms. Hence the organizers of the
shared task (Aguilar et al., 2018) have provided
us with English-Spanish (ENG-SPA) and Arabic-
English (MSA-EGY) tweets. In this section, we
present an overlap analysis of the tweets from the
train and the development set that lead to intuitions
of model performance.

An important characteristic of the nature of so-
cial media data is that the named entities are very
sparse. While table 1 shows that the training
data is comprised of 8.27% of unique named en-
tities, we observe that 2.93% of overall surface
form distribution belong to named entities. This
number is significantly smaller than the number
of named entities found in formal texts tradition-
ally used for training this task. For instance, a
widely standardized and accepted dataset that is
proposed by Tjong Kim Sang and De Meulder
(2003) for monolingual English contains 15.04%
tagged named entities. This makes the task harder
in social media settings.

In order to analyze the distribution of named en-
tities across the different splits in the data, we look
at the out of vocabulary (OOV) percentages with
respect to different sources. This is performed to
estimate the significance of that particular source
with respect to the task at hand. There is quite a
high OOV percentage of named entities from the



training data.

In Section 4 we elaborate on leveraging pre-
trained multilingual embeddings MUSE (Multi-
lingual Unsupervised or Supervised word Em-
beddings) (Conneau et al., 2017) which contain
multilingual embeddings based on Fast Text (Bo-
janowski et al., 2016). Table 1 presents these
statistics which helps provide intuitions on the ap-
proach that needs to be taken for this data. For
Spanglish data, there are 62.82% of named enti-
ties that are not present in training data and 5.76%
that are not present in the development data.

4 Models and Intuitions

Based on the three main observations in Section
3, we frame the following intuitions to build our
model architectures.

e Sparsity of named entities: Training a model
that classifies nominal entities from their coun-
terparts and using this information to tag them.
High OOV with training data:

— Character level models that are capable of
capturing sequential sub-word level informa-
tion

— External knowledge sources like gazetteer
lists and/or pre-trained word embeddings
such as MUSE.

4.1 Model Architecture

The first architecture is a simple bidirectional
LSTM (Bi-LSTM) at word level that captures se-
quential context information. In addition to this,
the second model also needs to learn sub-word
level information that is based on characters of
words. Soft combinations of character sequences
act as a proxy to the valid sequences of phonemes
allowed by a sentence. We have not used phonetic
features directly as performed by Bharadwaj et al.
(2016) due to the noisy nature of the text with mul-
tiple instances of shorthand notations. However,
we believe that this is an interesting direction and
plan to explore this beyond the scope of this paper.

Recurrent Neural Networks (RNNs) model se-
quential data and are capable of transforming the
current sequence into latent space. In our case, the
former is a sequence of words and the latter is a
sequence of Named Entity tags. While in theory,
RNNs are capable of learning dependencies rang-
ing over long distances, in practice this is hindered
due to vanishing or exploding gradients. Alterna-
tively, a variant of this model, LSTM (Gers et al.,
1999) is used to model the influence of the longer
range dependencies since it maintains a memory
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cell. At this point, we have a couple of options
to feed into this network. The first is to directly
feed the words into a Bi-LSTM and the second is
to include character level information as well.

In each word, each of the characters has a 50
dimensional embedding (let it be €). We pass it
through an LSTM to get the latent representation
z of the word, over which a tanh non-linearity is
applied. This character level modeling of the word
is concatenated with the 200 dimensional word
lookup embeddings to form the final word level
representation. These final modified word embed-
dings are fed into a Bi-LSTM which computes a

%
hidden left context representation h; and hidden

right context representation /; which are concate-
nated. Finally, this is fed into a fully connected
layer with a cross entropy loss function to predict
the sequence of tags. All the weights in the model
are initialized with Xavier distribution. The model
is trained with an Adam optimizer for minimum
validation loss for 10 epochs.

We then extended the model to explore the ef-
fect of attention over the Bi-LSTM model but it
did not show any improvements over the base
model.

Classifying Nominalization:

To deal with the problem of sparse distribu-
tion of named entities, we model the problem in 2
phases. The first phase is a binary classification of
named entities in a sequence of words. The sec-
ond phase is to add additional features based on
the prediction of the first network to the embed-
dings in the second network to label the tags. We
intentionally used the same network architecture
excepting for the final transformation layer to pre-
dict the tags. This is because we intend to pose this
as a Multi Task Learning (MTL) problem (Col-
lobert and Weston, 2008), where we can share the
bottom layers so the network can generalize bet-
ter with sparse distribution of tags. This idea is
similar to the work by Aguilar et al. (2017) but we
restrict to predicting the named entities since we
do not have POS information of the words. We
present the results of hierarchical phase formula-
tion of this method in Table 2 and leave the end
to end MTL training (where the first task is pre-
dicting whether it is an NE and the second task is
predicting the tag of NE which are jointly trained)
for future work.

Pre-trained multilingual Embeddings: Since
the data is too sparse, we leveraged pre-trained
multilingual word embeddings that are trained
based on fastText embeddings (Conneau et al.,
2017) and are aligned across multiple languages.



Spanglish Arabish
Models/Metrics Entity Surface Form | Entity Surface Form
Word Bi-LSTM 5234 51.34 73.05  60.80
Char Bi-LSTM + Word Bi-LSTM 5022 50.95 7395  61.38
Pre-trained MUSE + Char Bi-LSTM + Word Bi-LSTM | 5447  53.27 64.38  47.23
Attention + Word Bi-LSTM 36.50  35.19 68.11 53.86
NE v non-NE + Char Bi-LSTM + Word Bi-LSTM 49.48 49.61 70.70 10.87

Table 2: F scores of different models motivated by intuitions from the data

This boosted the F score by 2 points which is com-
paratively better performing model in our space of
models.

5 Results and Discussion

We have tried different models based on the intu-
itions from this domain of data that are explained
in Section 4. The F1 scores of these different ar-
chitectures are presented in table 2 for both Span-
glish and Arabish. As it is observed from the data,
the model that performed best is the character level
model with pre-trained MUSE embeddings (Con-
neau et al., 2017) and a word level Bi-LSTM for
Spanglish data. However, this is not the case with
Arabish data where a simple word level Bi-LSTM
performed better. This can be explained from Ta-
ble 1 as there are 99.82% of vocabulary that is not
present in the MUSE embeddings.

Based on automatic as well as a brief manual
analysis of the entity wise scores on the develop-
ment set, we identify that our models do not per-
form very well on TITLE entities. One interesting
challenge for this category is that the word level
composition of the entities comprise of several
common terms. Examples of this include ‘High
School Musical’, ‘Oh My God’ etc., which are
very hard to be identified as named entities. This
category can co-occur in similar contexts of other
named entities. For example ‘Keep calm and en-
joy your GYPSY SUMMER’, where ‘GYPSY SUM-
MER’ is a named entity (which could have easily
been ‘drink’).

We annotated the development data to under-
stand and motivate the need to build an NER
for CS contexts as opposed to using monolingual
NERs. The annotation is done in the perspective of
whether the words belong to one of the following 4
categories: English, Spanish, Mixed and Ambigu-
ous, which are 156, 54, 4 and 5 respectively. This
might give a naive impression that an NER trained
on English is sufficient to perform reasonably well
for this data as well. This in in contrary to the re-
sults that Stanford NER (Finkel et al., 2005) per-
formed on this data by giving an Entity F1 of 10.89
and Surface F1 of 11.96. Hence we need to train
the models explicitly for the switched language by
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treating it as a new language or by transferring
learning from both the individual languages.

As described in Section 4, we experimented
with combining multiple neural models perform-
ing different tasks (predicting a binary named en-
tity or not, and labeling the sequence). This model
did not improve the performance on development
set. The binary model predicts 42 named entities
correctly that the best model is unable to capture
in comparison to 16 by the character model. How-
ever, the binary model gets a lot of false positives
in the sense that 39 tokens are predicted as named
entities incorrectly while this number for the em-
bedding model is 7. The possible solution to lever-
age this model more accurately is either thresh-
olding the softmax scores of the binary model to
only get the predictions of named entities with
high confidence or perform MTL where weights
are updated by the loss from both the tasks.

The huge gap between entity and surface form
for the Arabish data that is observed by the char-
acter model along with the binary features (based
on the predictions of whether it is an NE or not),
is due to a large number of invalid sequences.

Among the true named entities that are wrongly
predicted in Spanglish data, 154 of them are occur-
ring in training data. This implies that the context
information can be leveraged better to improve the
models since the contexts in which these entities
are embedded are very broad.

6 Conclusion and Future Work

Developing intuitions from the data to build mod-
els is necessary for domains that do not have
other NLP tools such POS taggers, parsers etc,.
Based on these intuitions, a character level model
along with pre-trained multilingual word embed-
dings from MUSE with a Bi-LSTM has given an
F score of 56.72 on Spanglish and word level Bi-
LSTM that gave an F score of 65.02 on Arabish.
We believe that there is a lot of potential in explor-
ing the attention model in synergy with predicting
whether a term is named entity or not as a Multi
Task Learning problem.



Language/Metrics Event | Group | Location | Org Other | Person | Product | Time | Title
Entity 0.00 33.33 57.14 30.77 | 0.00 69.57 60.00 28.57 | 0.00
Spanglish Surface Form | 0.00 33.33 57.14 36.36 | 0.00 68.29 55.56 33.33 | 0.00
Entity 51.85 | 71.73 74.97 57.61 | 68.75 81.89 64.22 66.67 | 56.74
Arabish Surface Form | 42.11 58.43 57.71 48.73 | 42.86 71.55 53.57 59.70 | 52.76
Table 3: F scores of best models for Spanglish and Arabish
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simple word level Bi-LSTM), which are discussed
in detail in the paper.
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Abstract

This paper describes our system submis-
sion for the ACL 2018 shared task on
named entity recognition (NER) in code-
switched Twitter data.  Our best re-
sult (F1 = 53.65) was obtained using a
Support Vector Machine (SVM) with 14
features combined with rule-based post-
processing.

1 Introduction

Named Entity Recognition (NER) is a part of in-
formation extraction and refers to the automatic
identification of named entities in text. The ACL
2018 shared task invited participants to extract
and classify the following named entities in code-
switched data obtained from Twitter: person, lo-
cation, organization, group, title, product, event,
time, and other (Aguilar et al., 2018). The Tweets
are either Spanish-English or Modern Standard
Arabic-Egyptian, and participants were free to
participate in either language pair. This paper de-
scribes our system for the Spanish-English NER
task.

This particular NER task is challenging for two
reasons. Firstly, NER has proved to be more dif-
ficult for Tweets than for longer text, as accuracy
in NER ranges from 85-90% on longer texts com-
pared to 30-50% on Tweets (Derczynski et al.,
2015). One of the reasons for this difference
is that Tweets contain non-standard spelling, un-
usual punctuation, and unreliable capitalization.
Fromheide et al. (2014) also point out that another
difficulty stems from the rapidly changing topics
and linguistic conventions on Twitter. The 2015
and 2016 shared tasks for NER on Noisy User-
generated Text (W-NUT) reported F1 scores be-
tween 16.47 and 52.41 for identifying 10 different
NE categories (Baldwin et al., 2015; Strauss et al.,
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2016). NER methods range from bidirectional
long short-term memory (LSTM) (Limsopatham
and Collier, 2016) and Conditional Random Fields
(CRF) (Toh et al., 2015), to Named Entity Link-
ing (Yamada et al., 2015). The second added chal-
lenge for the data in this task is that the Tweets
contain English and Spanish named entities. Both
languages need to be taken into account in order
to accurately identify the NEs in this data.

2 Data sets

The organizers provided three different English-
Spanish data sets: a training set, a development
set, and a test set. The data consists of multilin-
gual Spanish-English Tweets and contains NEs in
both languages. Table 1 provides an overview of
the data and the total number of NEs available in
each of the sets (Aguilar et al., 2018). The gold
standard for the test set was not distributed and we
are therefore not aware of the distribution of NEs
in the test set.

Data set #Tweets | #Tokens | #NEs
Train 50,757 616,069 | 12,366
Development | 832 9583 152
Test 15,634 183,011 | -

Table 1: Number of Tweets, tokens and Named

Entities in the Spanish-English data sets.

3 System description

We used scikit-learn 0.19 (Pedregosa et al., 2011)
to train and test five different types of classifiers
using eight-fold cross validation:

e Support Vector Machine (SVM) (Chang and
Lin, 2011)

e Decision Trees (DT)
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e K-nearest Neighbors (KNN)
e AdaBoost (Ada) (Freund and Schapire, 1995)
e Random Forest (RF) (Breiman, 2001)

We trained the classifiers with different training
corpus sizes of 80.000, 120.000, 200.000, 300.000
and 550.000 tokens, and we reserved 10% of each
size for testing to avoid overfitting on the training
data. The best classifier is the Support Vector Ma-
chine using the default scikit-learn parameters and
a Radial Basis Function (RBF) Kernel, which is
defined as
lw — 2|
202 )

The results are obtained using the pre- and post-
processing steps that are described in further detail
in sections 3.1 and 3.3.

K(x,2") = exp(— (1

3.1 Pre-processing

Early experiments showed that reducing the orig-
inal tag set from two tags per category to one tag
per category improved overall classification. ’B-
LOC’ refers to either the first word in a multi-
word NE or a single word NE, and "I-LOC’ refers
to any tokens in a multi-word NE that follows the
initial ’B-’ token. The information specific to the
location of the NE within an NE sequence was re-
moved and both tags are reduced to *X-’. This im-
proved classification performance as it reduced the
number of different possible tags from 19 to 10
(one per NE category plus the ”O” tag) and was
easily reverted in the post-processing stage.

3.2 Feature selection

After testing numerous different features, and dis-
carding ones such as ’proceeded by preposition
or possessive pronoun’ and ’difference in rank
in the frequency dictionaries’, we found that the
features described below achieved the best result.
There are three different types of features: token-
centered features (1-5), context related features
(6-9), and rank dictionary lookup features (10-
14). To reduce dimensionality and computational
workload, we condensed several mutually exclu-
sive boolean features into common functions re-
turning different integer values according to their
outcome. For example, for the capitalization fea-
ture, rather than returning a boolean outcome for
each of the four possible capitalization options (all
lowercase, all uppercase length greater than 3, all
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uppercase length less than 3, first letter capital-
ized), they are combined into one feature that re-
turns [0,1,2,3].

All rank features are obtained by sorting the
corresponding list in order of frequency, with the
most frequent occurrence in rank one. We normal-
ized the ranks so that the value stays between 0 and
1, where O denotes the absence in the ranked lists
and the closer the figure is to 1, the more highly
ranked the token is.

For each feature, the possible outcomes that
are inserted into the vector are provided in square
brackets, where ’int’ denotes the absolute rank,
pairs of [0-1] boolean outcomes, and lists of num-
bers correspond to the exclusive outcomes of the
function.

1. Capitalization — Check if the token is: all
lowercase, all uppercase with length greater
than 3, all uppercase with length less or equal

to 3, or first letter only uppercase [0,1,2,3]
. Token length - Returns the token-length [int]

. Contains non-ASCII - Does the token contain
non-ASCII characters? [0,1]

. Token first or last in Tweet - Check if token
is: first token, last token, or other [0,1,2]

. Token in majority language - Check if the
token language is the majority language of
the tweet. Determined with a lexical lookup
in frequency-ranked word lists for English
and Spanish extracted from Wikipedia [0,1]
(Claeser et al., 2018)

. Code-switch - Returns true if the token’s
language is different from that of the token
before [0,1] (Claeser et al., 2018)

. Previously tagged as, single-word - The most
common tag associated with the token in the
training set. The outcome is either one of the
nine NE categories or the token is not present
in the training data [0-9]

. Previously tagged as, multi-word - Same
as above but for multi-word expressions [0-9]

. Is multi-word time - Regular expressions to
capture multi-word time expressions such as
’23 de mayo’ and ’april 29th’ [0,1]

10. Rank in family names - Rank in list of last

names extracted from the Wikipedia page



"Living people’ [int]

11. Rank in first names - Rank in list of first
names extracted from the Wikipedia page

"Living people’ [int]

12. Rank in cities list - Rank in list of all United
States census designated places (2016)

ordered descending by population [int]

13. Rank in Spanish Dictionary - Rank in word

list from Spanish Wikipedia [int]

14. Rank in English Dictionary - Rank in word

list from English Wikipedia [int]

3.3 Post-processing

The first step in post-processing was to restore
all the named entity categories that were simpli-
fied during the training of the SVM. All categories
were reduced, for example, from B-PER’ and ’I-
PER’ to X-PER in a pre-processing step, and were
changed back to the original annotation.

The second step in post-processing was to ad-
dress the misclassified multi-word tokens. For ex-
ample, in a sequence of 'B-TITLE’, 'I-TITLE’,
’I-TITLE’, if the middle token is misclassified as
not being an NE, the tags shift to ’'B-TITLE’, "O’,
’B-TITLE’ and the entire multi-word NE would
therefore be misclassified.

To solve this issue, we used a dictionary lookup
approach and compared possible multi-word NE
sequences to lists of multi-word tokens based on
the types of tokens present in the training data.
The ’-GROUP’, *-PERSON’ and ’-OTHER’ lists
stems from Wikipedia, and the *-TITLE’ list con-
tains titles of video games available from Steam.
We found post-processing to be most effective
when the multi-word NE consisted of at least two
tokens and was no longer than five tokens. We
started by checking the longest NEs first, so that,
for example, "Tomb Raider’ would not split the
longer NE ’Rise of the Tomb Raider’. If a match
was found in any of the lists, the tags gained
from post-processing replaced those tagged by the
SVM.

The final step addresses specific tokens that are
very frequent in many of the categories and are
therefore not learned correctly by the classifiers.
The Spanish particle *de’, was often classified as
an NE, but should have been classified as ’O’. So,
if ’de’ was tagged as an NE, but not proceeded by a
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Classifier Macro F1 | FB1
Support Vector Machine | 0.49 0.48
Decision Tree 0.61 0.43
KNN 0.50 0.44
Random Forest 0.59 0.45
AdaBoost 041 0.39

Table 2: Results for the train/test set without post-
processing (Macro F1) and the held-out test set
(FB1).

token with a ’B-’, the NE tag was removed. A sim-
ilar rule applies to the article "the’, which was fre-
quently tagged as O’, and caused issues for multi-
word NEs starting with “the’. If "the’ is followed
by a NE, the tag is switched to match the rest of
the tokens in the multi-word sequence.

4 Results

Table 2 shows the best result obtained with a train-
ing size of 550.000 tokens for each of the five clas-
sifiers using 8-fold cross validation and the results
of those five classifiers when applied to the held-
out test data. Note that all figures are without post-
processing. We only performed post-processing
on the SVM to achieve the final result of 53.56.
Table 2 shows that the Macro F1, which is the per-
formance of the classifiers when splitting the train-
ing data into 90% train and 10% test, is higher for
the Decision Tree, KNN and Random Forest clas-
sifiers. However, when applying the classifiers on
the held-out test set, the FB1 is highest for the
SVM. It is also clear that while a certain degree
of overfitting is to be expected, it is much higher
for the Decision Tree based classifiers than for the
SVM. For the SVM, the Macro F1 and the FB1 is
very similar, in contrast to the Decision Tree clas-
sifier where the difference is much larger.

Size | SVM | DT | KNN | RF | Ada
30k | 025 | 033|034 | 040 |0.23
80k | 0.38 | 039|039 | 043 0.27
120k | 0.43 | 0.45 | 044 | 048 | 0.28
200k | 0.40 | 048 | 0.45 | 0.48 | 0.28
300k | 0.43 | 0.56 | 0.49 | 0.58 | 0.33

Table 3: Performance of the classifiers with the
different training sizes.

We also tested the classifiers with different sizes
of training data. Table 3 provides the Macro



Category | Precision | Recall FB1

EVENT | 31.25% 11.11 % | 16.39
GROUP | 5882 % | 20.62 % | 30.53
LOC 58.88% | 58.14 % | 58.51
ORG 32.99 % 15.84 % | 21.40
OTHER 100.00 % | 3.45% | 6.67

PER 75.32% | 58.91 % | 66.11
PROD 71.19% | 43.64 % | 54.11
TIME 5714 % | 2.65% | 5.06

TITLE 22.45 % 1493 % | 17.93

Table 4: Results of best performing SVM per cat-
egory including post-processing.

F1 from our train/test split data for the training
sizes 30.000, 80.000, 120.000, 200.000, 300.000
and 550.000 tokens. The performance of all five
classifiers improves significantly with increased
amounts of training data.

The evaluation of the results per named entity cat-
egory using the best performing SVM show that
some of the categories were classified more accu-
rately than others. The best results were obtained
for person (66.11), location (58.51) and product
(54.11). The most challenging categories were
time (5.06) and other (6.67).

5 Discussion

The large variation in F1 per category, for example
in ’-TIME’, is partly due to the inconsistent anno-
tation of tokens. Table 5 below shows the days
of the week present in the training data in both
Spanish and English and all the tags associated
with these tokens. It shows that all of these tokens
are inconsistently annotated in that they are some-
times annotated as *-TIME’ and sometimes anno-
tated as *O’. For example in Tweets (1) and (2) be-
low, "Happy Friday’ is used in the same context,
but is only tagged as ’'B-TIME’ in the first Tweet.

(1) Happy Friday Familia!!! #ElvacilonDe-
LaGatita #battingcage #HappyHour 17
ave NW 7 Calle http://t.co/fbPkOsERO5

(2) RT @isazapata : Challenge yourself and
move away from your comfort zone!
Happy Friday!! http://t.co/OK320hNQ

Some variation in the annotation of tokens such
as 'Friday’ is to be expected, as the token may
not always refer to a day of the week but a ti-
tle or another type of named entity, but the SVM
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will discard the information from the feature vec-
tor if "Friday’ is ’tagged as O’ more often than
-TIME’.

TOKEN -TIME | O
lunes 21 74
monday 7 11
martes 23 51
tuesday 2 3

miercoles 20
wednesday 4

jueves 18 68
thursday 10
viernes 48 87
friday 13 35
sabado 6 21
saturday 6 9

domingo 34 63
sunday 16 18

Table 5: Number of times the tag *-TIME’ occurs
for the days of the week in the training Tweets.

Whilst training the classifiers, we noticed a
large amount of variation in the results for the
train/test data. To find out exactly how much the
results fluctuate, we used the random split func-
tion in scikit-learn and split the training data into
two chunks: 90% training and 10% testing and re-
trained the classifier with the new version of the
training data. Consequently, the intermediate re-
sults for each of the classifiers was always on a
different 10% test set. The difference between
the best and the worst result can be up to an in-
crease in macro F1 of 0.12 with the same classifier
and the same size training set. The results also
showed that by increasing the number of tokens in
the training data, the performance of the classifiers
improved.

To illustrate why this may be the case, table
6 below contains the number of overlapping NEs
for three different splits for each training size. It
shows the large amount of variance in the results
depending on how the random split occurred. We
counted all types that were tagged as an NE in the
training data in total, compared to how many of
those NEs were in the train and test sets. For ex-
ample, for the first random 30.000 tokens split,
there were 456 NEs in the training data, and 65
NEs in the training test set. A total of 17 NEs in
the training test set were also present in the train-
ing data, meaning that the SVM had already en-



countered these tokens. Depending on how the
data was split, the overlap already encountered
in the training data varies from 0.19 to 0.26 for
30.000 tokens. This difference is not as large for
550.000 tokens, where it varies between 0.6 and
0.63.

Size | Total | Train | Test | Overlap
30k | 504 | 456 65 0.26
30k | 504 | 464 51 0.22
30k | 504 | 454 62 0.19
80k | 1096 | 1003 | 142 | 0.35
80k | 1096 | 1007 | 147 | 0.39
80k | 1096 | 996 169 | 0.41
120k | 1561 | 1443 | 215 | 045
120k | 1561 | 1439 | 227 | 0.46
120k | 1561 | 1440 | 223 | 0.46
200k | 2262 | 2085 | 362 | 0.51
200k | 2262 | 2066 | 408 | 0.52
200k | 2262 | 2092 | 365 | 0.53
300k | 3074 | 2818 | 545 | 0.53
300k | 3074 | 2824 | 550 | 0.55
300k | 3074 | 2822 | 557 | 0.55
550k | 4705 | 4369 | 854 | 0.61
550k | 4705 | 4390 | 857 | 0.63
550k | 4705 | 4331 | 927 | 0.60

Table 6: Distribution of NEs in the training data.
The overlap refers to the percentage of types that
was present in both the training set and the test set
extracted from the training.

Table 6 also illustrates that the number of overlap-
ping tokens increases immensely when the num-
ber of tokens in the training data increases. It
ranges from .19 to .63, which means that the
higher the number of tokens in the training set, the
likelihood that NEs in the test set are also present
in the training data increases. Therefore, the clas-
sifier does not need to classify as many unseen to-
kens and overall performance increases.

6 Conclusion and Future Work

We presented a named entity recognition system
for Spanish-English code-switched Tweets based
on a combination of classical machine learning al-
gorithms and post-processing. The best perform-
ing classifier was a Support Vector Machine with
an RBF kernel, allowing it to be flexible and less
prone to overfitting compared to other classifiers
on the held-out test data. We used a small set of
features which were selected based on frequency

observations in the training data. This provides a
classifier with low computational costs and could
allow for easy adaptation for other language pairs.
Overall, the task of recognizing named entities in
multilingual Twitter data proved to be quite chal-
lenging. We managed to achieve an overall F1 of
53.65 and thus modestly outperformed the base-
line provided by Aguilar et al. (2018). The re-
sults show that there is a large amount of vari-
ation in classifier performance depending on the
specific NEs present in the training and test sets.
The classifiers could be improved by incorporat-
ing gazetteer resources more specific to Spanish-
speaking countries, for example for geographical
entities similar to that of the United States census
list. Currently, the focus lies on English NEs as
there are more resources available. Furthermore,
the current approach relies heavily on gazetteer-
ing, and the wider context of a token could be
taken into account by, for example, determining
correlations of certain types of NEs with related
verbs in the same Tweet.
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Abstract

In the third shared task of the Compu-
tational Approaches to Linguistic Code-
Switching (CALCS) workshop, we fo-
cus on Named Entity Recognition (NER)
on code-switched social-media data. We
divide the shared task into two com-
petitions based on the English-Spanish
(ENG-SPA) and Modern Standard Arabic-
Egyptian (MSA-EGY) language pairs. We
use Twitter data and 9 entity types to estab-
lish a new dataset for code-switched NER
benchmarks. In addition to the CS phe-
nomenon, the diversity of the entities and
the social media challenges make the task
considerably hard to process. As a re-
sult, the best scores of the competitions
are 63.76% and 71.61% for ENG-SPA and
MSA-EGY, respectively. We present the
scores of 9 participants and discuss the
most common challenges among submis-
sions.

1 Introduction

Code-switching (CS) is a linguistic behavior that
occurs on spoken and written language. CS hap-
pens when multilingual speakers move back and
forth from one language to another in the same
discourse. The growing incidence of social media
in the way we communicate has also increased the
occurrences of code-switching on informal written
language. As a result, there is a prevalent demand
for more tools and resources that can help to pro-
cess such phenomenon.

In the previous versions of the Computa-
tional Approaches to Linguistic Code-Switching
(CALCS) workshop, we focused on providing
an annotated corpora for language identification
(Solorio et al., 2014; Molina et al., 2016). In this
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occasion, we extend the annotations to the Named
Entity Recognition (NER) level. The goal of this
shared task is to provide a code-switched NER
dataset that can help to benchmark NER state-
of-the-art approaches. This will directly impact
the performance of higher-level NLP applications
where the code-switching behavior is commonly
found.

ENG-SPA Tweet

Original: @ _xoxoBecky Imao ni ganas tengo de llorar

&, the last movie that made me cry was [Pineapple
Express]ririe '€ me dejo llorando de risa &&
English: @ _xoxoBecky Imao I don’t even want to cry

&, the last movie that made me cry was [Pineapple

Express]ririe © it left me crying with laughter &

MSA-EGY Tweet

Buckwalter Encoding: wAy mErkp Dd [AldAxlyp]orc
[wAmn Aldwlp]orc hbqY sEydp byhA

Arabic: A g (i g A i A yae ST

Lo Bibiaw aua

English: Any controversy against the Interior Ministry

and State Security Service will make me feel happy

Figure 1: Examples of the CALCS 2018 dataset.
In the English-Spanish data, the highlighted words
represent a movie, tagged as TITLE. While in the
MSA-EGY data, the bolded words represent gov-
ernment agencies, tagged as ORGANIZATION

We had a total of 9 participants from which
we received 8 submissions on English-Spanish
and 5 submissions on Modern Standard Arabic-
Egyptian. The best F1-score reported for ENG-
SPA! was 63.76% by the IIT BHU team (Trivedi
et al., 2018) whereas in MSA-EGY? was 71.61%

'"ENG-SPA competition https://competitions.
codalab.org/competitions/18725

MSA-EGY competition https://competitions.
codalab.org/competitions/18724

Proceedings of The Third Workshop on Computational Approaches to Code-Switching, pages 138—147
Melbourne, Australia, July 19, 2018. (©)2018 Association for Computational Linguistics



by the FAIR team (Wang et al., 2018).

2 Task definition

The task consists of recognizing entities in a rel-
atively short code-switched context. The entity
types for this task are person, organization, loca-
tion, group, title, product, event, time, and other.
We describe each entity type on Section 3.1. Since
NER is a sequential tagging task, we use the
I0B scheme to identify multiple words as a sin-
gle named entity. The addition of this scheme du-
plicates the number of entities in the task yielding
a B(eginning) and I(nside) variations of each of
them. This leaves us with 19 possible labels for
the classification task.

The evaluation of the task uses two versions of
the F1-score. The first is the standard F1, and the
second is the Surface Form Fl-score introduced
by Derczynski et al. (2014). The Surface Form
F1-score captures the rare and emerging aspects of
the entities. We average both metrics to determine
the positions in the leaderboard. Additionally, the
shared task was conducted on the Codalab plat-
form>, where participants are able to directly eval-
uate their approaches against the gold data.

3 Datasets

In this section we provide the definition of our
labels, describe the annotation process and show
the distribution of the ENG-SPA and MSA-EGY
datasets.

3.1 Entity instructions

The named entities have been annotated using the
instructions below. Note that the definitions of the
entity types apply to both language pairs.

e Person: This entity type includes proper
names and nicknames that can identify a per-
son uniquely. We ignore cases where a per-
son is referred by nouns with adjectives that
are not necessarily a nickname. Single artists
and famous people are treated as person.

Organization: This entity type includes
names of companies, institutions and corpo-
rations, i.e. every entity that has employ-
ees and takes actions as a whole. If the NE
can potentially be any other type, the context
should be sufficient to support whether it is

3The competitions will be permanently open for future
benchmarks
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organization or not (e.g., Facebook as orga-
nization vs. Facebook as the website applica-
tion).

Location: This NE refers to physical places
that people can visit. It includes cities, coun-
tries, addresses, facilities, touristic places,
etc. This entity type is not to be confused
with organization. For instance, when peo-
ple use organization names to refer to places
that can be visited (e.g., restaurants), those
entities must be tagged as location.

Group: This NE includes sports teams, mu-
sic bands, duets, etc. Group and organiza-
tion are not to be confused. For example, the
Houston Astros as a team (i.e., group) is dif-
ferent from the Houston Astros institution.

Product: This NE refers to articles that have
been manufactured or refined for sale, like
devices, medicine, food produced by a com-
pany, any well-defined service, website ac-
counts, etc.

Title: This type includes titles of movies,
books, TV shows, songs, etc. Very often, ti-
tles can be sentences (e.g., the movie We're
the Millers). Titles usually refer to media and
must not be confused with the product type.

Event: This type refers to situations or sce-
narios that gather people for a specific pur-
pose such as concerts, competitions, confer-
ences, award events, etc. Events do not con-
sider holidays.

Time: This NE includes months, days of the
week, seasons, holidays and dates that hap-
pen periodically, which are not events (e.g.,
Christmas). It excludes hours, minutes, and
seconds. ‘Yesterday’, ‘tomorrow’, ‘week’
and ‘year’ are not tagged as time.

Other: This type includes any other named
entity that does not fit in the previous cate-
gories. This may include nationalities, lan-
guages, music genres, etc.

The motivation behind these entity types partly
lies on the contextual difference in which they
appear. For instance, when an organization can
be lexically confused with a product, the context
should break down the ambiguity. Additionally,



Classes ENG-SPA MSA-EGY

Train Dev Test Train Dev Test
Person 6,226 95 1,888 8,897 1,113 777
Location 4,323 16 803 4,500 474 332
Organization 1,381 10 307 2,596 263 179
Group 1,024 5 153 2,646 303 139
Title 1,980 50 542 2,057 258 18
Product 1,885 21 481 795 81 54
Event 557 6 99 902 121 81
Time 786 9 197 578 79 28
Other 382 7 62 122 19 2
NE Tokens 18,544 219 4,532 23,093 2,711 1,610
O Tokens 614,013 9,364 178,479 181,229 20,031 19,804
Tweets 50,757 832 15,634 10,102 1,122 1,110

Table 1: The named entity distribution of the training, development and testing sets for both language
pairs. Note that the NE tokens row contains the B(eginning) and I(nside) tokens of the datasets following
the IOB scheme. The O Tokens row refers to the non-entity tokens.

we tried to include entity types that have an impact
on higher-level NLP applications under similar so-
cial media scenarios.

3.2 ENG-SPA

Data annotation: We use the English-Spanish
language identification dataset introduced in the
first CALCS shared task (Solorio et al., 2014). We
build upon this dataset to generate the entity la-
bels. To annotate the data, we designed a Crowd-
Flower* job from scratch’. The interface of the job
is described in Figure 2. The job allows annotators
to select one or many words for a single NE. When
the annotators select a word the tool suggests to in-
corporate words surrounding the current selection.
When the selection of a whole entity is done, the
annotators can add the entity to the second step
where the type is determined. The annotators re-
peat this process until no more named entities can
be identified in the tweet. The output of our cus-
tomized job contains the entity type of one or mul-
tiple words that identify an NE according to the
criteria of the annotators. The annotators are re-
quired to know both English and Spanish, and the
job is constrained to reach an accuracy of at least
80%. We also required 3 annotators per tweet. Ad-
ditionally, the job was launched in geographic lo-
cations were both English and Spanish are reason-
ably common. Some of these places were USA,

*nttps://crowdflower.com/
>The JavaScript code and HTML/CSS can be found
here: https://github.com/tavo9l/ner_annot
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Mexico, Central America, Puerto Rico, Colombia,
Venezuela, Chile, Uruguay, Paraguay and Spain.
After getting the output data from CrowdFlower,
we reviewed the results to correct any possible
mistakes.

Data distribution: The entity types along with
their distribution are listed in Table 1. We provide
training, development and testing® sets containing
50,757, 832 and 15,634 tweets, respectively. The
development and testing splits are inherited from
previous CALCS Shared Tasks, whereas training
uses the original split with the addition of 40,000
tweets. We added more tweets to the original
training set to increase the number of samples per
entity type since the NER datasets are naturally
skewed. From Table 1, it is worth noting that
the total number of NE training tokens is 18,544
whereas the non-entity tokens add up to 614,013.
This means that only 3% of the tokens of the
training set are NE-related. Likewise, the ratio
of tokens for the development and testing sets are
2.3% and 2.5%, respectively. This skewed distri-
bution poses a great challenge considering that the
datasets are further separated by 18 fine-grained
entity types (i.e., each entity type has a beginning
and inside variations from the IOB scheme). How-
ever, we think that the skewness can be reason-
ably handled with the provided data. Moreover,
the training, development and testing sets draw a

®We do not provide the annotations of the test set be-
cause we want the CodaLab competition to be used for public
benchmark in the future



Amsterdam coffee is very bueno . @ Amsterdam , Netherlands

https://t.co/rZBELJCfeo

Can you identify any NE in the tweet?
O Yes
No

Do the following steps to add a single NE:
1. Click on the word(s) that constitute the NE
2. Once the words have been selected, click on the "Add NE" button
3. Select the NE type of your NE added below
4. Repeat the process if there are more NEs

Add NE

Amsterdam coffee ORGANIZATIOI %

NOTE: Institutions, associations, companies or any kind of corporation
that has employees and has well-defined services or products. Do not
confuse with locations when it's about going to a restaurant, for
example.

Remove NE

A
v

Amsterdam, Netherlands LOCATION

NOTE: Geographic locations, monuments, restaurants, etc. Basically,
anything that you can visit and has a unique name

Remove NE

Figure 2: The CrowdFlower interface that we de-
veloped to annotate the ENG-SPA dataset. The
green-highlighted words are the entities selected
by the annotator. The words in the same green
area describe a single entity. Once the NE selec-
tion has been added, the annotators have to select
the type of the entities.

very similar data distribution, which can also help
to adapt the learning from training to testing.

3.3 MSA-EGY

Validating old tweets: For the Modern Standard
Arabic-Egyptian Arabic Dialect (MSA-EGY) lan-
guage pair, we combined the training, develop-
ment, and test sets that we used in the EMNLP
2016 CS Shared Task (Molina et al., 2016) to cre-
ate the new training corpora for the NER Shared
Task. The data was harvested from Twitter. We
apply a number of quality and validation checks
to insure the quality of the old data. Therefore,
we retrieved all old tweets using the the new ver-
sion of the Arabic Tweets Token Assigner which is
made available through the Shared Task website ”.
One of the main reasons for the re-crawling step is

"https://code-switching.github.io/
2018/
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to eliminate the tweets that have been deleted, or
the tweets that belong to the users whose accounts
are suspended by Twitter. The other reason is that
some tweets may cause encoding issues when they
are retrieved using the crawler script. Thus, all
these tweets were removed and eliminated. Af-
ter performing the validation checks, we accepted
and published 11,224 tweets (10,102 tweets for the
training set, and 1,122 tweets for the development
set).

Data creation and annotation: Since we com-
bined the test set used in the EMNLP-2016
CS Shared Task (Molina et al., 2016) with the
dataset used in the EMNLP-2014 CS Shared Task
(Solorio et al., 2014) to form the new training and
development sets, we needed to crawl and anno-
tate a new test set for our new Shared Task. We
resorted to using the Tweepy library to harvest the
timeline of 12 Egyptian public figures. We ap-
plied the same filtration criteria when crawling and
building the test set used in the 2016 CS shared
task (Molina et al., 2016). We divided the old com-
bined tweets into training and development sets as
follows: 80% train set and 10% development set.
Thus, we needed ~ 1,110 tweets, which represents
the 10% of the new test set. As we did in the previ-
ous Shared Task, we wanted to consider choosing
tweets from public figures whose tweets contain
more code-switching points. Therefore, we re-
sorted to using the Automatic Identification of Di-
alectal Arabic (AIDA2) tool (Al-Badrashiny et al.,
2015) to perform token-level language identifica-
tion for the MSA and EGY tokens in context. Pub-
lic figures with more than 35% of code-switching
points in their tweets were considered. The an-
notation work of the MSA-EGY dataset was done
in-lab by two trained Egyptian native speakers.
Our annotation team followed the Named Entity
Annotation Guidelines for MSA-EGY, which is
made available through the Shared Task website
8. In the two previous editions of the CS Shared
Task (Solorio et al., 2014; Molina et al., 2016),
we used a Named Entity (“ne”) tag. The “ne”
tag was defined as a word or multi-word that rep-
resents names of a unique entity such as peo-
ple’s names, countries and places, organizations,
companies, websites, etc. The AIDA2 tool (Al-
Badrashiny et al., 2015) was used to assign initial
automatic tags for highly confident data categories

8https://codeswitching.github.i0/2018/
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(i.e., URL, Punctuation, Number, etc) in addition
to named entities. Then, we extracted and pre-
pared all the tweets that contained “ne” for anno-
tation. As we mentioned earlier, the IOB scheme
is used as an annotation scheme to identify multi-
ple words as a single named entity. All the URLs,
Punctuation and Numbers tags are deterministi-
cally converted to “O” tag, while the tweets that
include “ne” tags were given to our in-lab annota-
tors for validation and re-annotation if needed.

Quality checks and data distribution: We com-
puted the Inter-Annotator Agreement (IAA) on
10% of the dataset to validate the performance and
agreement among annotators. One of our annota-
tors is a specialist linguist who carried out adju-
dication and revisions of accuracy measurements.
We approached a stable Inter Annotator Agree-
ment (IAA) of over 92% pairwise agreement. The
workflow of the annotation process for MSA-EGY

142

is shown in Figure-3.

The total number of tweets in MSA-EGY
dataset is 12,334 tweets. It is divided into three
sets train, development, and test sets (10,102,
1,122, 1,110 tweets, respectively). Table 1 shows
that the total number of NE training tokens is
23,093. It means that NE tokens represent 11.3%
of the total number of tokens. Similarly, the per-
centages of NE tokens in the development and test
sets are 7.5%, 11.9%, respectively. As we men-
tioned earlier, the MSA-EGY tweets were har-
vested from the timeline of 12 Egyptian politicians
public figures. Generally, politicians tend to use
NEs more often when they write their tweets. This
explains why the percentage of the NE tokens in
MSA-EGY dataset is higher than the percentage
of the NE tokens in ESP-ENG dataset.

4 Approaches

In this section, we briefly describe the systems of
the participants and discuss their results as well as
the final scores.

o IIT BHU (Trivedi et al., 2018). They pro-
posed a “new architecture based on gating of
character- and word-based representation of
atoken”. They captured the character and the
word representations using a CNN and a bidi-
rectional LSTM, respectively. They also used
the Multi-Task Learning on the output layer
and transfer the learning to a CRF classifier
following Aguilar et al. (2017). Moreover,
they fed a gazetteers representation to their
model.

CAIRE++ (Winata et al., 2018). They used a
bidirectional LSTM model for characters and
words. They primarily focused on OOV us-
ing the FastText library (Bojanowski et al.,
2016).

FAIR (Wang et al., 2018). They proposed a
joint bidirectional LSTM-CRF network that
uses attention at the embedding layer. They
also preprocessed the data before feeding the
network.

Linguists (Jain et al., 2018). They used a
Conditional Random Fields with many hand-
crafted features. Their focus was primarily
on English-Spanish data.

Flytxt (Sikdar et al., 2018). This team
also employed a Conditional Random Fields.



Team Preproc Ext Res Hand Feats CNN B-LSTM CRF  Other
IIT BHU v v v v MTL
CAiRE++ v FastText
FAIR v v v Attention
Linguists v v v

Flytxt v v

semantic v v

BATs v v v

Fraunhofer FKIE v v SVM
GHHT v v v

Table 2: The table shows the main component and strategies used by the participants. Ext Res means
external resources such as pre-trained word embeddings, gazetteers, etc. Hand Feats means handcrafted

features such as capitalization.

They fed the CRF with features from both ex-
ternal and internal resources. Additionally,
they incorporated the language identification
labels of the datasets from the previous ver-
sions of this workshop.

semantic (Geetha et al., 2018). They jointly
trained a Bidirectional LSTM with a Condi-
tional Random Fields on the output layer.

BATSs (Janke et al., 2018). They used a Con-
ditional Random Fields with multiple fea-
tures. Some of those features were also used
for neural network, but they got better results
with the CRF approach.

Fraunhofer FKIE (Claeser et al., 2018).
They used a Support Vector Machine (SVM)
classifier with a Radial Basis kernel. They
handcrafted a lot of features and also in-
cluded gazetteers.

GHHT (Attia and Samih, 2018). They
trained a BLSTM-CRF network using pre-
trained word embeddings, brown clusters and
gazetteers.

Baseline. We used a simple Bidirectional
LSTM network with randomly initialized
embedding vectors of 200 dimensions. We
also used dropout operations on each direc-
tion of the BLSTM component.

5 Evaluation and results

5.1 Evaluation

The evaluation of the shared task was conducted
through Codalab, where the participants were
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able to obtain immediate feedback of their submis-
sions. The metrics used for the evaluation phase
were the standard harmonic mean F1-score and
the Surface Form F1 variation proposed by Der-
czynski et al. (2014). Additionally, to have a sin-
gle leaderboard per language pair, we unified both
metrics by averaging them. The average values are
the ones described in Table 3.

As stated by (Derczynski et al., 2014), the idea
of the Surface Form Fl-score is to capture the
novel and emerging aspects that are usually en-
countered in social media data. Those aspects de-
scribe a fast-moving language that constantly pro-
duces new entities challenging more the recall ca-
pabilities of state-of-the-art models than the preci-
sion side.

5.2 Results and Error analysis

Although all the scores reported by the partici-
pants outperformed the baselines in both ENG-
SPA and MSA-EGY language pairs, the results
are arguably low considering that the current state-
of-the-art systems achieve around 91.2% of F1-
score on well-formatted text (Lample et al., 2016;
Ma and Hovy, 2016; Liu et al., 2017). As
mentioned before, the best performing systems
reached 63.76% (Trivedi et al., 2018) and 71.61%
(Wang et al., 2018) for ENG-SPA and MSA-EGY,
respectively. These low outcomes are aligned with
the challenges that come along with social media
data and the addition of more heterogeneous entity
types (Ritter et al., 2011; Augenstein et al., 2017;
Derczynski et al., 2014; Aguilar et al., 2018).
Most of the MSA-EGY tweets are related to
politics because they were harvested from the



Team ENG-SPA
IIT BHU 63.7628
CAiRE++ 62.7608
FAIR 62.6671
Linguists 62.1307
Flytxt 59.2501
semantic 56.7205
BATSs 54.1612
Fraunhofer FKIE 53.6514
Baseline 53.2802
MSA-EGY
FAIR 71.6154
GHHT 70.0938
Linguists 67.4419
BATSs 65.6207
semantic 65.0276
Baseline 62.7084

Table 3: The results of the participants in both
ENG-SPA and MSA-EGY language pairs. The
scores are based on the average of the standard
and the Surface form F1 metrics. The highlighted
teams are the best scores of the shared task.

timeline of number of Egyptian politician public
figures. Generally, these kinds of tweets encom-
pass more NEs in comparison with other kinds of
tweets. This explains why the percentage of the
NE tokens in MSA-EGY dataset is high compared
to the NEs’ percentage in ESP-ENG data set. This
high percentage of NE tokens helps the submitted
systems to see and learn more examples and pat-
terns. Thus, systems can generalize more effec-
tively.

According to the results of the participants in
the ENG-SPA shared task, the top three most chal-
lenging entity types were event, title, and time. It
is worth noting that these three classes are more or
less the least frequent types in the dataset (see Ta-
ble 1), which suggests that having more data sam-
ples would produce better results. However, in the
case of title, there are 1,980 samples against 1,381
samples of organization, and the performance is
significantly better for the latter one (19% vs. 35%
of F1-scores). Additionally, looking at Table 4, the
entity Orange is the New Black was not recognized
by participants as a title. This is an example of
what we refer to heterogeneous entity type, mean-
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N | ENG-SPA Samples

1 | Retiro totalmente lo dicho sobre Orange
is the New Black. Temporada terminada
y holly sh*t. HOLLY SH*T.

2 | Love Man by Otis Redding, found with
@Shazam. Listen now: como me hubiese
gustado ver a mis padres bailando esto ...

3 | Michael Jackson revivié en los
Billboard 2014

4 | @fairy0821 en el show de shamu !!!

Table 4: Challenging samples from the test set.
The bold words are the ground truth samples and
the underscored words are the predictions of the
best performing systems.

ing that the entity instances are flexible in format
that can even describe independent sentences (i.e.,
a homogeneous type is person). The entities Love
Man (title), Billboard 2014 (event), and show de
shamu (event) also describe the same pattern and
they were hardly identified by participants.

Unlike English and Spanish language pair
which can be considered as two distinct languages,
Modern Standard Arabic and Egyptian are more
closely related which makes the task of identifying
NE tokens more challenging. This is mainly due
to the fact that Modern Standard Arabic and Egyp-
tian are close variants of one another and hence
they share considerable amount of lexical items.
Some of the challenges faced by the participants
include words that still have punctuation attached
to them (e.g. J.m) , (mSr, (Egypt ) . In or-
der to mitigate these issues, some participants pre-
processed these cases by, for example, removing
any leading and trailing punctuation from those to-
kens. Other participants normalized these cases by
unifying all the attached punctuations, while the
remaining participants decided to keep them and
let their model learn them. Table 5 and the follow-
ing examples show some challenges faced by the
submitted systems:

e Clitic attachment can obscure tokens, e.g.
4431 g wAllh “and-God” or ”swear”.

e Clitic attachment can obscure tokens, e.g.
(o 9 wmnY “and-Mona” or “swear”.



MSA-EGY Samples
Buckwalter Encoding:[wAllh]per
OnA HAss bghr In [EIA’ Ebd AlftAH |ppr
[wmnY lpgr [syf]per bytHAkmwA
wfy AlqfS
Arabic: £ Me o) ygds el BT 4l
i (s 9 il e
uadl ‘:’3 9 leSsliia
English: I swear I feel angry
knowing that Ala Abdulfatah
and-Mona are tried and jailed
Buckwalter Encoding: kl wAHd
ySOl Al—n :[(er]Loc
rAyHp Ely fyn ?)
Arabic: © (¥ Jliw usl g JS
(5 o e Bl yuas)
English: Everyone asks himself

where is Egypt going to go?

Table 5: Challenging samples from the MSA-
EGY test set. The bold words are the ground truth
samples.

6 Related work

Before the CALCS workshop series, the code-
switching behavior was studied from different per-
spectives and for many languages (Toribio, 2001;
Solorio and Liu, 2008a,b; Piergallini et al., 2016;
AlGhamdi et al., 2016). Most of them focused
on either exploring this phenomenon or solving
core code-switching tasks from the NLP pipeline.
More recently, researchers have been considering
the sentiment analysis task on code-switching set-
tings (Lee and Wang, 2015; Vilares et al., 2015).
However, the lack of resources at the core level of
the NLP pipeline greatly reduces the chances of
improving higher-level applications. In this line,
we aim at providing two datasets for named entity
recognition benchmarks on the English-Spanish
and Modern Standard Arabic-Egyptian language
pairs.

It worth noting that there are some contributions
of CS corpora, such as a collection of Turkish-
German CS tweets (Calzolari et al., 2016), a large
collection of Modern Standrd Arabic and Egyp-
tian Dialectal Arabic CS data (Diab et al., 2016)
and a collection of sentiment annotated Spanish-
English tweets (Vilares et al., 2016). Named en-
tity recognition has been vastly studied along the
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years (Sang and Meulder, 2003). More recently,
however, the focus has drastically moved to social
media data due to the great incidence that social
networks have in our daily communication (Ritter
et al., 2011; Augenstein et al., 2017). The work-
shop on Noisy User-generated Text (W-NUT) has
been a great effort towards the study of named en-
tity recognition on noisy data. In 2016, the or-
ganizers focused on named entities from different
topics to evaluate the adaptation of models from
one topic to another (Strauss et al., 2016). In
2017, the organizers introduced the Surface Form
F1-score metric and collected data from multiple
social media platforms (Derczynski et al., 2014).
The challenge not only lies on the entity types and
the social media noisy but also in the distribution
of the datasets and their different data domain pat-
terns.

7 Conclusion

We presented the setup and results of the 3rd
shared task of the Computational Approaches to
Linguistic Code-Switching workshop. We intro-
duced a named entity recognition dataset focused
on code-switched social media text for two lan-
guage pairs: English-Spanish and Modern Stan-
dard Arabic-Egyptian. We received submissions
from nine teams, eight of them submitted to ENG-
SPA and six to MSA-EGY. Similar to the pre-
vious sequence tagging tasks of our workshop,
the predominant aspect among the approaches
was the Conditional Random Fields. Addition-
ally, the combination of the CRF with a bidirec-
tional LSTM (with some variations) yielded the
best results among participants. The best F1-
score for ENG-SPA was 63.7628% and for MSA-
EGY was 71.6154%. Compared to monolingual
formal text (i.e., newswire), the reported scores
are significantly lower due to the code-switching
phenomenon as well as the noise of SM envi-
ronment. This serves as strong evidence that we
need more robust approaches that can detect and
process named entities in such challenging condi-
tions.
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Abstract

This paper describes the best performing
system for the shared task on Named En-
tity Recognition (NER) on code-switched
data for the language pair Spanish-English
(ENG-SPA). We introduce a gated neural
architecture for the NER task. Our final
model achieves an F1 score of 63.76%,
outperforming the baseline by 10%.

1 Introduction

Named Entity Recognition (NER) is an important
Natural Language Processing task, which involves
extracting named entities (i.e., Names of Persons,
Entities, Organizations etc.) from the provided
text, and the classification of entities into a certain
number of predefined categories. The extracted
entities provide us with the important information
about the content of the text (Nadeau and Sekine,
2007). For example, “New Delhi is famous for its
historical past.”. The extracted entity (New Delhi)
gives us an idea that the text is associated with the
location called New Delhi. The ability of NER to
extract this useful information makes it an essen-
tial part of the Information Extraction pipeline.
The social media platforms like Twitter, Reddit
etc. have become a massive source of information
due to their growth in the recent past. Perform-
ing NER on social texts can be challenging due
to the unstructured and colloquial nature of social
texts. Various attempts have been made in the past
to solve the problem of NER on social texts (Der-
czynski et al., 2017; Strauss et al., 2016). How-
ever, most of the previous systems were developed
to work with monolingual texts (Ritter et al., 2011;
Lin et al., 2017), ignoring the phenomena of code-
switching (i.e., switching between different lan-

* These authors have equal contribution to the paper
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guages within a sentence), which is quite prevalent
in social media texts.

This paper describes our system for Named En-
tity Recognition Shared Task on English-Spanish
Code-switched tweets held at the ACL 2018
Workshop on Computational Approaches to Lin-
guistic Code-switching. The task involves catego-
rizing a token into 19 different categories. More
details about the task can be found in the task de-
scription paper (Aguilar et al., 2018).

We use a novel architecture based on gating
of character-based representations and word-based
representations of a token (Yang et al., 2016). The
character-based representation is generated using
a ‘Char CNN’ (Zhang et al., 2015) and the word-
based representation is generated using an LSTM
(Hochreiter and Schmidhuber, 1997). Further-
more, the activations from the last but one layer of
the neural networks, trained with different hyper-
parameters, are ensembled and then are passed
as features to a Conditional Random Field (CRF)
classifier for final predictions. We make use of
English Twitter embeddings (Godin et al., 2015),
aligned with the Spanish embeddings (Bojanowski
et al., 2016) as described in Section 2.1.

Our final submitted system achieves the best re-
sult on the shared task with 63.76% F1-score.

2 Proposed Approach

This section describes feature representations,
model description and the ensembling technique
in detail.

2.1 Feature Representation

The following representations are used to capture
overall information for each token: Word, Charac-
ter and Lexical representations.

Word Representation: Word representations are
created using concatenation of two separate repre-
sentations, one based on the pre-trained word vec-
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Figure 1: Final Architecture Of The System

tors and the other based on Part-of-Speech (POS)
tag embeddings.

For the word vector representation, we use
Spanish FastText word vectors (Bojanowski et al.,
2016) of 300-dimensions, trained on Wikipedia
and pre-trained word embeddings (Godin et al.,
2015) of 400-dimensions, trained on 400 million
tweets. We use a Principal Component Analy-
sis (PCA) based algorithm suggested by Raunak
(2017) to reduce the dimensions of the Twitter
word vectors. Since these word vectors are in dif-
ferent vector spaces, we use Singular Value De-
composition (SVD) (Smith et al., 2017) for align-
ing these two embeddings to represent them in a
single vector space.

For POS tagging, we use the CMU Part-of-Speech
tagger (Owoputi et al., 2013). Each POS tag is
represented as a vector of dimension dim. The
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vectors corresponding to the POS tags are ini-
tialized randomly with uniform distribution range
{ V/3/dim, \/S/dim} as suggested by He et al.
(2015). The word vector corresponding to the to-
ken is concatenated with the vector corresponding
to the POS tag of the token to obtain the final vec-
tor representation.

For obtaining the label for each token, we pro-
vide a composite vector as an input to the model.
The composite vector is generated by concatena-
tion of word representations of adjacent tokens
(one on each side) with its own, same as a trigram.
Character Representation: At the character
level, we represent each token as a sequence of
character embeddings. These embeddings are ini-
tialized randomly with uniform distribution range,
similar to POS tag embeddings. In the model, they
are kept trainable to learn the representation cor-



responding to each character. Each token is either
truncated or post-padded to generate a token of 20
characters.

Lexical Representation: We use the gazetteer
provided by Mishra and Diesner (2016) and some
Spanish gazetteers of our own to provide world
knowledge to our model. Top 1000 celebrity Twit-
ter handles from this list! are also added. We rep-
resent gazetteer input for a token as a 19 dimen-
sional vector, one binary value corresponding to
each class. The binary bit represents the presence
(1) or absence (0) of the token in the gazetteer (i.e.
word list) of the respective class.

2.2 Model Description

BiLSTM for Word Representation: We use
Bidirectional LSTM (Dyer et al., 2015) in the
model to learn the contextual relationship between
the words. Word representations described earlier
are used as input to this layer. The BiLSTM layer
consists of two LSTM layers having 3 units each.
With one layer connected in the forward direction
and the other layer connected in the backward di-
rection, this captures the information from the past
and the future (Ma and Hovy, 2016). The outputs
of both forward and backward LSTM are then con-
catenated to produce a final single embedding for
the input token. We vary recurrent dropouts (Gal
and Ghahramani, 2016), input dropouts and out-
put dropouts as shown in the Table 1, across three
different models. The gate layer is fed with the
output of this layer (X,,).

Convolution Network for Character Repre-
sentation: We use a CNN-architecture to learn
the character based representation of a word. The
character embeddings of a token, denoted as RAxE
where d is the dimension of a single character’s
embedding and !/ is the max length of the token,
is fed to a 2-stacked convolutional layer, both
activated using ReLU function. Its results are
then pushed into a pooling layer. We applied
two different pooling techniques, specified in the
Table 1, across different models. The output of
the pooling layer serves as an input to a dense
layer, whose activation function (Char dense layer
activation) is varied as shown in Table 1. Finally,
we use the output of the dense layer (X.;) as an
input to the gate layer.

'https://gist.github.com/mbejda/
9¢c3353780270e7298763
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Gate Layer: The concatenation of word
representations and POS tag embeddings is used
as input to a sigmoid dense layer. The value of the
sigmoid output controls the relative contribution
of the character and word representation in the
final representation of the token. Following the
work of Miyamoto and Cho (2016), the output
of this layer g is used to take the weighted
average of Bi-LSTM network output (X ) and the
convolutional network output (X,p):

g= U(U;FXQ +by)
X = (1 - g)Xch + ng

where v, is the trainable weight vector, b, is the
bias and o (-) is the sigmoid function. The result of
this layer X is then concatenated with the gazetteer
embeddings of the token.

Fully Connected Network: We use two fully
connected networks after the concatenation of the
gate network output and gazetteer embeddings.
The number of dense units is kept fixed to 100
each. The activation function is varied according
to Table 1 for producing different models.

Multitask Learning: Multitask learning has
been shown as a good way to regularize models
(Baxter, 2000; Collobert and Weston, 2008). Fol-
lowing the work of Aguilar et al. (2017), we split
the task into Named Entity (NE) categorization
(classifying a token into one of the NE classes)
and NE segmentation (classifying token as NE or
Not-NE). We passed the dense layer’s output as in-
put to these final classification layers. A softmax
layer with 19 classes is used for the categoriza-
tion task and a single sigmoid neuron is used for
the segmentation task as depicted in Figure 1. The
cross-entropy losses for these tasks are added to
yield total loss for the model.

2.3 Conditional Random Fields and
Ensembling

Linear-chain CRF classifier takes advantage of the
sequence information to tag a token with the most
probable label (Lafferty et al., 2001). Following
Aguilar et al. (2017), we use the activations of
second common dense layer as input feature vec-
tor for the CRF classifier. The CRF classifier pro-
duces better results than the normal softmax clas-
sification and also reduces the number of invalid
predictions (i.e., I-PER tag without a B-PER tag).
For preparing the model ensemble, we make use of



Table 1: Hyper-parameters for the Models and Ensemble Results

Hyper-Parameters Model-1 Model-2 Model-3
POS and character embeddings dropout 0.500 0.500 0.247
POS embeddings dimension 50 128 128
Character embeddings dimension 100 128 128
Pooling layer *GAP GAP TtGMP
Char dense layer activation ReLU ReLLU tanh
Recurrent dropouts 0.500 0.500 0.823
BiLSTM input dropout - - 0.0654
BiLLSTM output dropout 0.500 0.500 0.018
Dense layer activation ReLU ReLU tanh
Preprocessing of Test-data X Y Y
Optimiser #nadam  nadam  rmsprop
Results ( F1 score ) 61.18% 61.89% 60.23%
Overall Ensemble of Modell + Model2 + Model3 (F1 Score) 63.76%

*(G AP:Global Average Pooling TG M P:Global Max Pooling
#nadam is adam rmsprop with nesterov momentum (Dozat, 2016)

unweighted averaging of the activations generated
by the networks described in Table 1.

2.4 Experimental Settings
2.4.1 Pre-processing

The data is pre-processed by doing the following
replacements: All URLs are replaced with (url).
All hashtags are replaced with (hashtag). Digits
are replaced with the (number) token. Apostro-
phes are removed. Finally, emoticons are replaced
with their respective meaning, for example, ‘:-)’
with (smile).

2.4.2 Hyper-parameters

Different hyper-parameters are used to produce
different models for ensembling. We set the fol-
lowing parameters as the same across all the mod-
els: 64 filters, kernel size of 3 and ReLU activation
in convolutional network (Section 2.2), along with
50 hidden units in the BiLSTM network (Section
2.2).

Other hyperparameters are set according to the
Table 1 for the respective models. All models are
trained for 15 epochs with a batch size of 512. The
CREF classifier is used with the following param-
eters: L1 penalty: 1.0, L2 penalty: le-3 for 80
epochs.

Hyper-parameters for Model-3 are obtained by a
random search using hyperas®. Hyper-parameters
for the other two models are set based on our
own experimental observations. All our models

https://github.com/hyperopt/hyperopt

are implemented using the Deep Learning library
Keras>.

3 Results and Discussion

We compare our final results with the RNN base-
line, which is the official baseline of the task
(Aguilar et al., 2018). The major highlights of our
results are described below.

Table 2: Results in Different Categories

Models Used Precision Recall F1
Event 37.50% 13.33% 19.67%
Group 38.36% 28.87% 32.94%

Location 7031% 72.45% 71.37%

Organization  58.14%  24.75% 34.72%
Other 11.11% 1.72% 2.99%
Person 79.26%  77.87% 78.56%

Product 63.43% 44.16% 52.07%
Time 30.67%  30.46% 30.56%
Title 31.85% 19.46% 24.16%

Overall 68.73% 59.47% 63.76%

Baseline - - 53.28%

e Our model achieves an F1-score of 63.76%,
which beats the baseline by around 10% on
the test set. Our results depict the eftective-
ness of the use of gated neural architecture
for Named Entity Recognition. Our system
ranked first among the 8 systems submitted
for the task.

*https://github.com/keras-team/keras
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e The system performance on the various class
of entities is displayed in Table 2. Our model
shows poor performance in Title, Other and
Event categories. This may be attributed to
both the diverse set of patterns present, and
the unavailability of a large number of sam-
ples of these categories.

4 Conclusion

In this paper, we describe a gated neural network
for performing NER on code-switched social me-
dia text. Our model involves the usage of SVD to
align word representations of English and Span-
ish words. Furthermore, we also describe a novel
way of ensembling activations of the last but one
layer for achieving better results. Our model is
described in full detail in this paper to ensure the
replication of results. The final system performs
the best among all the participating systems.

In future, we would like to experiment with vari-
ous other ways of combining character and word
representations (e.g. Fine Grained Gating (Zhang
et al., 2015), Highway Networks (Liang et al.,
2017) etc.) for the NER task.
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Abstract

We describe our work for the CALCS
2018 shared task on named entity recog-
nition on code-switched data. Our system
ranked first place for MS Arabic-Egyptian
named entity recognition and third place
for English-Spanish.

1 Introduction

The tendency for multilingual speakers to engage
in code-switching—i.e, alternating between multi-
ple languages or language varieties—poses impor-
tant problems for NLP systems: traditional mono-
lingual techniques quickly break down with input
from mixed languages. Even for problems such
as POS-tagging and language identification, which
the community often considers “solved”, perfor-
mance deteriorates proportional to the degree of
code-switching in the data. The shared task for
the third workshop on Computational Approaches
on Linguistic Code-Switching concerned named
entity recognition (NER) for two code-switched
language pairs (Aguilar et al., 2018): Modern
Standard Arabic and Egyptian (MSA-EGY); and
English-Spanish (ENG-SPA). Here, we describe
our work on the shared task.

Traditional NER systems used to rely heavily
on hand-crafted features and gazetteers, but have
since been replaced by neural architectures that
combine bidirectional LSTMs and CRFs (Lample
et al., 2016). Equipped with supervised character-
level representations and pre-trained unsupervised
word embeddings, such neural architectures have
not only come to dominate named entity recog-
nition, but have also successfully been applied
to code-switched language identification (Samih
et al., 2016), which makes them highly suitable
for the current task as well.
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In this paper, we exploit recent advances in
neural NLP systems, tailored to code-switching.
We use high-quality FastText embeddings trained
on Common Crawl (Grave et al., 2018; Mikolov
etal., 2018) and employ shortcut-stacked sentence
encoders (Nie and Bansal, 2017) to obtain deep
token-level representations to feed into the CRF. In
addition, we make use of an embedding-level at-
tention mechanism that learns task-specific atten-
tion weights for multilingual and character-level
representations, inspired by context-attentive em-
beddings (Kiela et al., 2018). In what follows, we
describe our system in detail.

2 Approach

The input data consists of noisy user-generated
social media text collected from Twitter. Code-
switching can occur between different tweets in
the training data, with many tweets being mono-
lingual, but can also occur within tweets (e.g.
“[USER]: en los finales be like [URL]”) or even
morphologically within words (e.g. “pero esta
twitteando y pitchandome los textos™). The goal
is to predict the correct IOB entity type for the fol-
lowing categories:

BI|-PER: Person

BI|-LOC: Location

BI|-ORG: Organization

BI]-GROUP: Group

]
]
]
]
BIJ-TITLE: Title
]
]
]

BI|-PROD: Product

BI|-EVENT: Event

BI|-TIME: Time

[BI]-OTHER: Other

O: Any other token that is not an NE

[
[
[
[
[
[
[
[
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The train/valid/test split for MSA-EGY was
10102/1122/1110. The train/valid/test split for
ENG-SPA was 50757/832/15634.

The first work to combine CRFs with modern
neural representation learning for NER is, to our
knowledge, by Collobert et al. (2011). Our archi-
tecture is similar to more recent neural architec-
tures for NER, e.g. Huang et al. (2015); Lample
et al. (2016); Ma and Hovy (2016). Instead of
using a straightforward bidirectional LSTM (BiL-
STM), we use several layers and add shortcut
connections. Instead of simply feeding in word
(and/or character) embeddings, we add a self-
attention mechanism.

2.1 Embedding Attention

We represent the input tweets on the word level
and character level. For all available words in
the data, we obtained FastText embeddings trained
on Common Crawl and Wikipedia' for each lan-
guage. For every word, we try to find an exact
match in the FastText embeddings, or if that is not
available we check if it is present in lower case.
When a word embedding is available in one lan-
guage but not in the other, it is initialized as a
zero-vector in the second language. Totally un-
seen words are initialized uniformly at random in
the range [—0.1,0.1]. Thus, for every language
pair, we obtain word embeddings w,.

On the character level, we encode every word
using a BiLSTM, to which we apply max-pooling
to obtain the token-level representation. That is,
for a sequence of T characters, {c'};—; _ r a stan-
dard BiLSTM computes two sets of 1" hidden
states, one for each direction. The hidden states
are subsequently concatenated for each timestep
to obtain the final hidden states, after which a
max-pooling operation is applied over their com-
ponents:

ﬁ >

h? = LSTM;(c', ..., c")
%

hf = i:STMt(ct,. .ch)

—
Wehar = max({[hfy hﬂ}t:l,...,T)

We take inspiration from context-attentive em-
beddings (Kiela et al., 2018), in that we learn
weights over the embeddings, but do not include
the contextual dependency for reasons of effi-
ciency given the shared task’s tight deadline. That

!Available at https://fasttext.cc/docs/en/
crawl-vectors.html.
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is, we combine the language-specific word embed-
dings wy,, and wp,, with the character-level word
representation via a simple self-attention mecha-
nism:

a; = softmax(U tanh(V [wr,, Wr,, Wehar])),

Wuword+char = [alel y QW a3wchar]

2.2 Capitalization

Additionally, we concatenate an embedding to
indicate the capitalization of the word, which
be either no-capitals, starting-with-capitals or all-
capitals:

W = [Wword—i-chara Wcap]

This is already captured by the character-level en-
coder, but made more explicit using this method.

2.3 Shortcut-Stacked Sentence Encoders

The final word representations w are fed into a
stacked BiLSTM with residual connections (i.e.,
“shortcuts™). This type of architecture has been
found to work well for text classification, in con-
junction with a final max-pooling operation (Nie
and Bansal, 2017). Denoting the input and hidden
state of the i-th stacked BILSTM layer at timestep
t as x! and h! respectively, we have:

{

2.4 CREFs for NER

The hidden states of the last stacked BiLSTM
layer are fed into a CRF (Lafferty et al., 2001).
CRFs are used to estimate probabilities for entire
sequences of tags s corresponding to sequences of
tokens x:

1=1
Shith i1

Wi

[Wt,h%,..

i _
Xti

exp(w - ®(x,s))

p(sx; w) = 5

s exp(w - O(x,s'))
(W 95(x, 5851, 85))
e e W 65(%, 4,551, 55)
T exp(@5(w, %, 4, s-1, 55))
— S T e (w,x, 5,8y 5))

To make the CRF tractable, the potentials must
look only at local features. We experiment with
two different score functions ;. One that uses bi-
grams:




Xj + By g,

¢j (Wa X, j7 b, Q) = WF;MI#]

where W € RISIXISIXH g w but unflattened,
|S| is the number of possible tags, H is the di-
mensionality of the encoder’s features x and B €
RISIXIS| i a bias matrix; and a smaller score func-

tion with unigrams:

w] (W, X7j7p7 q) = WFq7;]Xj + B[I’yQ]'

where instead W € RISI*# | The terms in the
score function can be thought of as the emission
and transition potentials, respectively.

3 Implementational Details

3.1 Preprocessing

The noisy nature of the data makes it necessary to
apply appropriate preprocessing steps. We apply
the following steps to the Twitter data:

e Replaced URLs with [url]

Replaced users (starting with @) with [user]

Replaced hashtags (starting with # but not
followed by a number) with [hash_tag]

Replaced punctuation tokens with [punct]

Replaced integer and real numbers by [num]

Replaced [num]:[num] with [time]

Replaced [num]-[num] with [date]

e Replaced emojis” by [emoji]

In addition, we found that the Arabic tokenizer
may have been imperfect: some words still had
punctuation attached to them. In order to mitigate
this, we removed any leading and trailing punctu-
ation from tokens for MSA-EGY.

3.2 Training

The LSTMs are initialized orthogonally (Saxe
et al., 2013), and the attention mechanism is ini-
tialized with Xavier (Glorot and Bengio, 2010).
Word embeddings are kept fixed during training,
but character embeddings and capitalization em-
beddings are updated. We set dropout to 0.5
and optimize using Adam (Kingma and Ba, 2014)
with a learning rate of 4e¢~* and batch size of

>We used the emojis in https:/pypi.org/project/emoji/.
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Model Dev F1 Test F1
Baseline 68.17 60.28
Ours 67.74 62.39

Table 1: Results for ENG-SPA.

Model Dev F1 Test F1
Baseline 79.55 70.08
Ours 81.41 71.62

Table 2: Results for MSA-EGY.

64. We shrink the learning rate with a factor
or 0.2 every time there has been no improve-
ment for one epoch, until a minimum learning
rate of le™®. We early stop on the valida-
tion set, optimizing for F1. We sweep over the
two CRF types and BiLSTM hidden dimensions
via grid search, trying [128, 128], [128, 128, 128],
[64,128], [64,128,128], [64,64,128,128] and
(64,128,128, 128].

4 Results & Discussion

For both tasks, we compare the proposed model to
a simpler baseline where we simply concatenate
the FastText embeddings as input to the network.

Table 1 shows the results for ENG-SPA. We ob-
serve that our system outperforms the baseline on
the test set. The dev set for this task was very
small (832, versus a test set of 15.6k), which ex-
plains the discrepancy between dev set and test set
performance—this discrepancy also made it diffi-
cult to tune hyperparameters properly for this task.
We also tried a very simple ensembling strategy,
where we took our top three models and randomly
sampled a response, which only marginally im-
proved test score performance to 62.67. We did
not pursue proper ensembling due to time con-
straints. The best performing model had hidden
dimensions [128,128,128] and used the bigram
CRFE.

The results for the MSA-EGY task are reported
in Table 2. While English and Spanish are two
distinct languages, Modern Standard Arabic and
Egyptian are more closely related, leading to inter-
esting challenges. We observe a similar improve-
ment in this task. As noted in the previous section,
we did find that this task required slightly differ-
ent preprocessing. We did not try any ensembling
strategies on this task. The best performing model



Precision Recall Entity F1
EVENT 56.25  20.00 29.51
GROUP 69.77  30.93 42.86
LOC 70.75  69.23 69.98
ORG 62.50 27.23 37.93
OTHER 14.29 1.71 3.08
PER 76.52  68.15 72.09
PROD 63.76  47.53 54.46
TIME 51.58  37.09 43.24
TITLE 49.14  25.79 33.83
Overall 70.62  55.88 62.39

Table 3: ENG-SPA test performance breakdown.

had hidden dimensions [64, 64, 128, 128] and used
the unigram CRF.

While developing our system, we made some
interesting observations. For instance, we noticed
that performance on the Event and Time cate-
gories was greatly improved through preprocess-
ing the numbers and splitting out patterns into date
and time categories. Adding explicit capitalization
features improved performance on the Person, Lo-
cation and Organization categories. Tables 3 and
4 show a breakdown of the performance per task
by category on the respective test sets. It is inter-
esting to observe that the Title category is consis-
tently hard for both tasks. The Other category was
perfectly handled for MSA-EGY, while this was
very bad for ENG-SPA — this could however also
be an artifact, since that category was quite small.

We felt that we could have benefited from hav-
ing a strong gazetteer, but also believe that this
would kind of defeat the purpose of our gen-
eral neural network architecture, which should not
have to rely on those kinds of features.

5 Conclusion

Dealing with code-switching is a prominent prob-
lem in handling noisy user-generated social media
data. The tendency for speakers to code-switch
poses difficulties for standard NLP pipelines.
Here, we described our work on the shared
task: we introduced a system that performs self-
attention over pre-trained or character-encoded
word embeddings together with a shortcut-stacked
sentence encoder. The system performed impres-
sively on the task. In the future, we would like
to analyze the system to see whether it has indeed
learned to “code-switch” via embedding attention.
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Precision Recall Entity F1
EVENT 78.18 61.43 68.80
GROUP 69.77  76.92 73.17
LOC 76.19  67.84 71.78
ORG 66.14  67.20 66.67
OTHER 100.00 100.00 100.00
PER 7729  69.53 73.21
PROD 76.47  78.79 77.61
TIME 64.29  72.00 67.92
TITLE 31.58  60.00 41.38
Overall 7395 69.42 71.62

Table 4: MSA-EGY test performance breakdown.
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