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Abstract

We explore a novel approach for Seman-
tic Role Labeling (SRL) by casting it as
a sequence-to-sequence process. We em-
ploy an attention-based model enriched
with a copying mechanism to ensure faith-
ful regeneration of the input sequence,
while enabling interleaved generation of
argument role labels. Here, we apply this
model in a monolingual setting, perform-
ing PropBank SRL on English language
data. The constrained sequence generation
set-up enforced with the copying mecha-
nism allows us to analyze the performance
and special properties of the model on
manually labeled data and benchmarking
against state-of-the-art sequence labeling
models. We show that our model is able
to solve the SRL argument labeling task
on English data, yet further structural de-
coding constraints will need to be added
to make the model truly competitive. Our
work represents a first step towards more
advanced, generative SRL labeling setups.

1 Introduction

Semantic Role Labeling (SRL) is the task of
assigning semantic argument structure to con-
stituents or phrases in a sentence, to answer the
question: Who did what to whom, where and
when? This task is normally accomplished in two
steps: first, identifying the predicate and second,
labeling its arguments and the roles that they play
with respect to the predicate. SRL has been for-
malized in different frameworks, the most promi-
nent being FrameNet (Baker et al., 1998) and
PropBank (Palmer et al., 2005). In this work we
focus on argument identification and labeling us-
ing the PropBank (PB) annotation scheme.

Figure 1: An input sentence (top), its PropBank
predicate-argument structure (middle) and its lin-
earized labeled sequence produced by our system.

Recent end-to-end neural models considerably
improved the state-of-the-art results for SRL in
English (He et al., 2017; Marcheggiani and Titov,
2017). In general, such models treat the problem
as a supervised sequence labeling task, using deep
LSTM architectures that assign a label to each to-
ken within the sentence.

SRL training resources for other languages are
more restricted in size and thus, models suf-
fer from sparseness problems because specific
predicate-role instances occur only a handful of
times in the training set. Since annotating SRL
data in larger amounts is expensive, the use of a
generative neural network model could be ben-
eficial for automatically obtaining more labeled
data in low-resource settings. The model that
we present in this paper is a first step towards a
joint label and language generation formulation
for SRL, using the sequence-to-sequence architec-
ture as a starting point.

We explore a sequence-to-sequence formulation
of SRL that we apply, as a first step, in a classical
monolingual setting on PropBank data, as illus-
trated in Figure 1. This constrained monolingual
setting will allow us to analyze the suitablility of
a sequence-to-sequence architecture for SRL, by
benchmarking the system performance against ex-
isting sequence labeling models for SRL on well
known labeled evaluation data.



208

Sequence-to-sequence (seq2seq) models were
pioneered by Sutskever et al. (2014), and later en-
hanced with an attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015). They have been
successfully applied in many related structure pre-
diction tasks such as syntactic parsing (Vinyals
et al., 2015), parsing into Abstract Meaning Rep-
resentation (Konstas et al., 2017), semantic pars-
ing (Dong and Lapata, 2016), and cross-lingual
Open Information Extraction (Zhang et al., 2017).

When applying a seq2seq model with attention
in a monolingual SRL labeling setup, we need to
restrict the decoder to reproduce the original input
sentence, while in addition inserting PropBank la-
bels into the target sequence in the decoding pro-
cess (see Figure 1). To achieve this, we encode
each input sentence into a suitable representation
that will be used by the decoder to regenerate word
tokens as given in the source sentence and intro-
ducing SRL labels in appropriate positions to la-
bel argument spans with semantic roles. In order
to avoid lexical deviations in the output string, we
add a copying mechanism (Gu et al., 2016) to the
model. This technique was originally proposed
to deal with rare words by copying them directly
from the source when appropriate. We apply this
mechanism in a novel way, with the aim of guid-
ing the decoder to reproduce the input as closely
as possible, while otherwise giving it the option of
generating role labels in appropriate positions in
the target sequence.

Our main contributions in this work are:
(i) We propose a novel neural architecture for

SRL using a seq2seq model enhanced with atten-
tion and copying mechanisms.

(ii) We evaluate this model in a monolingual set-
ting, performing PropBank-style SRL on standard
English datasets, to assess the suitability of this
model type for the SRL labeling task.

(iii) We compare the performance of our model
to state-of-the-art sequence labeling models, in-
cluding detailed (also comparative) error analysis.

(iv) We show that the seq2seq model is suited
for the task, but still lags behind sequence labeling
systems that include higher-level constraints.

2 Model

We propose an extension to the Sequence-to-
Sequence model of (Bahdanau et al., 2014) to per-
form SRL.1 The model will learn to map an unla-

1In this work we restrict ourselves to argument labeling.

beled source sequence of words (x1...xTx) into a
target sequence (y1...yTy) consisting of word to-
kens and SRL label tokens (see Figure 2). The
source sentence, represented as a sequence of
dense word vectors, is fed to an LSTM encoder
to produce a series of hidden states that represent
the input. This information is used by the decoder
to recursively generate tokens step-by-step, con-
ditioned on the previous generated tokens and the
source by attending the encoder’s hidden states as
proposed in Bahdanau et al. (2014). On top of
this architecture, we add the copying mechanism
(Gu et al., 2016), which helps the model to avoid
lexical deviations in the output while still having
the freedom of generating words and SRL labels
based on the context. The attention-based gener-
ation and copying mechanism will be competing
with each other so that the model learns when to
copy directly from the source and when to gener-
ate the next token.

In our current setup we restrict role labeling to
a single predicate per sentence. If a sentence has
more than one predicate, we create a separate copy
for each predicate; the same setting was applied
in Zhou and Xu (2015). In each sentence copy
the predicate whose roles are to be labeled is pre-
ceded by a special token <PRED> that marks the
position of the predicate under consideration. This
helps the decoder to focus on generating argument
labels for that specific predicate (see Table 1.)

2.1 Vocabulary

We assume a unique vocabulary for both en-
coder and decoder that comprises the words oc-
curring during training, the out-of-vocabulary to-
ken, and the special symbol used to mark the po-
sition of the predicate, thus V = {v1, ..., vN} ∪
{UNK,< PRED >}. In addition, we employ
a set L = {l1, ..., lM} with all the possible la-
beled brackets and a set X = {x1..., xTx}, a per-
instance set containing the Tx words from the cur-
rent source sequence. Thus, our total vocabulary
is defined for each instance as V ∪ L ∪ X .

The label set L contains one common opening
bracket (# for all argument types to indicate the
beginning of an argument span, and several label-
specific closing brackets, such as P0:A1), which
indicates in this case that the span for argument
A1 is ending (see also Table 1).
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Figure 2: A sequence-to-sequence model for SRL. A score for copying and a score for generating tokens
is computed at each time step and a joint softmax determines the probability of the next token over the
extended vocabulary of words V , labels L and current instance words X .

2.2 Encoder

We use a two-layer bi-RNN encoder with LSTM
cells (Hochreiter and Schmidhuber, 1997) that
outputs a series of hidden states hj =

[−→
hj ;
←−
hj

]
where each hj contains information about the sur-
rounding context of the word xj . We refer to the
complete matrix of encoder hidden states as M,
since it acts as a memory that the decoder can use
to copy words directly from the source.

2.3 Attention Mechanism

We use the global dot product attention from Lu-
ong et al. (2015) to compute the context vector ci:

ci =
∑Tx

j=1 αijhj ; αij =
exp(ei,j)∑Tx

k=1 exp(ei,k)
(1)

where ei,j is the dot product function between de-
coder state si−1 and each encoder hidden state hj .

2.4 Decoder

The role of the decoder (a single-layer recurrent
unidirectional LSTM) is to emit an output token
yt from a learned distribution over the vocabulary
at each time step t given its state st, the previous
output token yt−1, the attention context vector ct,
and the memory M. To get this distribution it is
necessary to compute two separate modes: one for
generating and one for copying.

To obtain the probability of generating yt we
use the context vector produced by the attention
to learn a score ψg for each possible token vi of

being the next generated token. We define ψg as:

ψg(yt = vi) =Wo[st; ct], viεV ∪ L (2)

where WoεRN×2ds is a learnable parameter and
st, ct are the current decoder state and context vec-
tor respectively. This means that the model com-
putes a generation score for both words and labels,
based on what it is attending on at the current step.

For the probability of copying yt we compute
the score ψc of copying a token directly from the
source as:

ψc(yt = xj) = σ(hTj Wc)st, xjεX (3)

where WcεRdh×ds is a learnable parameter, hj is
the encoder hidden state representing xj , st is the
current decoder state, and σ is a non-linear trans-
formation; we used tanh for our experiments.

Using the two scoring methods, the decoder will
have two competing modes: the generation mode,
used to generate the most probable subsequent to-
ken based on attention; and the copying, used to
choose the next token directly from the encoder
memory M, which holds both positional and con-
tent information of the source. A final mixed dis-
tribution is calculated by adding the probability of
generating yt and the probability of copying yt:

p(yt|st, yt−1, ct,M) = p(yt,g|st, yt−1, ct)+
p(yt, c|st, yt−1,M) (4)

We use a softmax layer to convert the two scores
into a joint distribution that represents the mixed
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Source-1: The trade figures <PRED> turn out well , and all those recently unloaded bonds spurt in price .
Target-1: (# The trade figures P0:A1) (# turn out P0:V) (# well P0:A2) , and all those recently unloaded bonds spurt in price .

Source-2: The trade figures turn out well , and all those recently <PRED> unloaded bonds spurt in price .
Target-2: The trade figures turn out well , and all those (# recently P0:AM-TMP) (# unloaded P0:V) (# bonds P0:A1) spurt in price .

Source-3: The trade figures turn out well , and all those recently unloaded bonds <PRED> spurt in price .
Target-3: The trade figures turn out well , and (# all those recently unloaded bonds P0:A1) (# spurt P0:V) (# in price P0:AM-ADV) .

Table 1: A single sentence with three labeled predicates is converted into three different source-target
pairs. The symbol <PRED> in each source marks the predicate for which the model is expected to
generate a correct predicate-argument structure.

likelihood of generating and copying yt. Again
following Gu et al. (2016), we define this as:

p(yt,g|·) =
{

1
Z e

ψg(yt) ytεV ∪ L
0 otherwise

p(yt, c|·) =

{
1
Z

∑
j:xj=yt

eψc(xj) ytεX
0 otherwise

(5)

where Z is the normalization term shared by the
two modes, Z =

∑
vεV e

ψg(v) +
∑

xεX e
ψc(x).

Since a single softmax is applied over the copying
and generating modes, the network learns by itself
when it is proper to copy a word from the source
and when it needs to generate a label.

During training, the objective is to minimize
the negative log-likelihood of the target token yt
for each time-step for both generate mode (given
previous generated tokens) and copy mode (given
source sequence X). We calculate the loss for the
whole sequence as:

loss = − 1

Ty

Ty∑
t=0

logP (yt|y<t, X) (6)

3 Experimental Setup

3.1 Datasets and Evaluation Measures

We test the performance of our system on
the span-based SRL datasets CoNLL-052 and
CoNLL-12.3 These datasets provide the gold
predicate as part of the input. Since we focus
on argument identification and classification, we
provide this information in the input to the sys-
tem. We use the standard training, development

2http://www.lsi.upc.edu/˜srlconll/
home.html

3http://conll.cemantix.org/2012/data.
html

and test splits and use the official CoNLL-05 eval-
uation script on both datasets. We compare our re-
sults with Collobert et al. (2011); FitzGerald et al.
(2015); Zhou and Xu (2015) and He et al. (2017)
who use the same datasets and evaluation script.
We show results separately for the Brown and WSJ
portion of the CoNLL-05 test dataset.

The CoNLL-05 Shared Task4 evaluation script
computes precision, recall and F1 measure (the
harmonic mean of precision and recall) for the pre-
dicted arguments. The script expects prediction-
gold pairs that have the same number of words in
order to consider them comparable, and only if this
is the case, it computes a score. Furthermore, an
argument is only considered correct if the words
spanning the argument as well as its role label
match with gold (Carreras and Màrquez, 2005).
This means that it is essential to predict perfect
argument spans besides the correct role label.

3.2 Pre-processing

For our seq2seq model we need to provide sources
and targets in a linearized manner. The sequences
are sentences with zero or more predicates. Fol-
lowing Zhou and Xu (2015), if a sentence has np
predicates we process the sentence np times, each
one with its corresponding predicate-argument
structure. As shown in Table 1, we linearize the
target side by converting the CoNLL format into
sequences of tokens that include brackets indicat-
ing the span of the argument and the argument la-
bel on the closing bracket. We inform the model
about the predicate that it should focus on by
adding the special token <PRED> to the source
sequence immediately before the predicate word.
This process is entirely reversible and thus we con-
vert the system outputs back to CoNLL format and
evaluate the results with the official script.

4http://www.lsi.upc.edu/˜srlconll/
soft.html

http://www.lsi.upc.edu/~srlconll/home.html
http://www.lsi.upc.edu/~srlconll/home.html
http://conll.cemantix.org/2012/data.html
http://conll.cemantix.org/2012/data.html
http://www.lsi.upc.edu/~srlconll/soft.html
http://www.lsi.upc.edu/~srlconll/soft.html


211

CoNLL-05 CoNLL-12
Dev WSJ Brown Dev Test

Seq2seq ( attention-only)

same length 29.19 29.98 32.24 - -
brackets 95.25 94.93 94.24 - -

Seq2seq (w/ Attention & Copying)

same length 96.71 97.15 97.24 97.46 96.07
brackets 99.91 99.82 99.88 99.97 99.93

Table 2: Quality of reproducing words and SRL
brackets with seq2seq: Attention-only vs. Atten-
tion & Copying, on CoNLL-05 and CoNLL-12
datasets: percentage of correctly reproduced sen-
tence length and percentage of balanced brackets.

3.3 Training
Since we process as many copies of sentences as
it has predicates, the final amount of sequences is
approximately 94K for CoNLL-05 and 185K for
CoNLL-12 training sets. We keep linearized se-
quences up to 100 tokens long and lowercase all
tokens. Given this limit, we omit 30 (CoNLL-
05) and 900 (CoNLL-12) sequences from train-
ing. We initialize the model with pre-trained
100-dimensional GloVe embeddings (Pennington
et al., 2014) and update them during training.5 All
the tokens that are not covered by GloVe or that
appear less frequently than a given threshold6 in
the training dataset are mapped to the UNK em-
bedding. We keep track of this mapping to be able
to post-process the sequence and recover the rare
tokens. Our vocabulary size is set to |V| ≈ 20K
words for CoNLL-05 and |V| ≈ 18K words for
CoNLL-12.

We use Adam optimizer (Kingma and Ba,
2014), a learning rate lr = 0.001 and gradient
clipping at 5.0. Both encoder and decoder have
hidden layer of 512 LSTMs. We use dropout (Sri-
vastava et al., 2014) of 0.4 and train for 4 epochs
with batch size of 6.

4 Evaluation and Results

Initially, we trained a model using attention only,
and it learned to generate balanced brackets (ev-
ery opening bracket has a corresponding closing

5We also experimented with word2vec word embed-
dings (Mikolov et al., 2013) but found GloVe6B (trained
on Wikipedia2014+Gigaword5) embeddings to perform
better. Available at https://nlp.stanford.edu/
projects/glove/

6We used a threshold of 10 for CoNLL-05 and 15 for
CoNLL-12.

CoNLL-05 CoNLL-12
dev test WSJ Brown dev test

Collobert 72.29 74.15 - - - -
FitzGerald 78.3 - 79.4 71.2 79.2 79.6
Zhou & Xu 79.55 81.27 82.84 69.41 81.07 81.27
He 81.6 81.6 83.1 72.1 81.5 81.7
Ours (min) 76.05 76.7 78.13 66.28 73.4 73.61
Ours (max) 77.29 77.87 79.23 68.39 75.05 75.43

Table 3: F1 measure for argument role labeling
of our seq2seq model w/ Attention & Copying on
CoNLL-05 and CoNLL-12 dev and test sets, com-
pared to Collobert w/o parser, FitzGerald single
model, Zhou & Xu, and He single model .

bracket within the sequence) without further con-
straints. Yet, due to its generative nature, many
target sequences diverged from the source in both
length and token sequences. This was expected,
because the system has to learn to generate not
only the labels at the correct time-step but also to
re-generate the complete sentence accurately. This
is a disadvantage compared to the sequence label-
ing models where the words are already given.

By adding copying mechanism the model suc-
cessfully regenerates the source sentence in the
majority (up to 99%) of cases, as shown in Ta-
ble 2. Such behavior also enables us to measure
the performance of the model as an argument role
classifier against the gold standard. Thus, we can
benchmark its labeling performance against previ-
ous architectures built to solve the SRL task.

Table 3 displays the overall labeling perfor-
mance of our copying-enhanced seq2seq model in
comparison to previous neural sequence labeling
architectures. For sequences that do not fully re-
produce the input, we cannot compute appropriate
scores against the gold standard. We compute two
alternative scores for these cases: oracle-min, by
setting the score for these sentences to 0.0 F1, and
oracle-max, by setting their results to the scores
we would obtain with perfect (= gold) labels. With
these scores, we can better estimate the loss we
are experiencing by non-perfectly reproduced se-
quences (see Table 2.)

As seen in Table 3, our model achieves an F1
score of 76.05 on the CoNLL-05 development set,
and 73.4 on CoNLL-12 (min-oracle), and 77.29
and 75.05 (max-oracle), respectively. While these
scores are still low compared to the latest neural
SRL architectures, they are above the relatively
simple model of Collobert et al. (2011). Note also

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Figure 3: Example of the alignments learned by
the attention mechanism.

that in contrast to the stronger models of FitzGer-
ald et al. (2015); Zhou and Xu (2015) and He et al.
(2017), our architecture is very lean and does not
(yet) employ structured prediction (e.g. Condi-
tional Random Field), to impose structural con-
straints on the label assignment. While this is cer-
tainly an extension we are going to explore in fu-
ture work, here we will conduct deeper investiga-
tion to learn more about the kind of errors that our
unconstrained seq2seq model makes. We report
the analysis on CoNLL-05 development set.

4.1 Analysis

Argument Spans The model needs to generate
labeled brackets at the appropriate time-step, in
other words, the prediction of correct spans for
arguments. To verify how well it is doing this,
we measure how much overlap exists between the
generated spans and the gold ones. This is equiva-
lent to computing unlabeled argument assignment.
We found that 77.5% of the spans match the gold
spans completely, 21.2% of spans are partially
overlapping with gold spans, and only 1.2% of the
spans do not overlap at all with gold.

Argument Labels Recall from Section 2 that
our model is labeling the sentences as in a trans-
lation task. It learns to use information from rel-
evant words in the source sequence, aligning the
labels to the argument words via learned attention
weights as it is shown in Figure 3. This allows
us to see where the model is looking when gen-
erating the labeled bracket. The confusion ma-
trix in Figure 4 shows predicted vs. gold labels
for all correctly assigned argument spans (i.e., the
spans that match the gold boundaries). We observe
that the model does very well for A0 and A1 gold
roles, and that it causes only few misclassifications
for A2. However, it frequently predicts core ar-

Figure 4: Confusion matrix showing percentage
of predicted labels compared to the gold labels on
the CoNLL-05 development set.

Figure 5: Percentage of sentences with 0,1,2 or
more missing (blue) or excess (orange) arguments
(seq2seq w/Copying, CoNLL-05, dev set).

gument roles A0–A3 for non-argument roles, and
also tends to mix predictions among non-core ar-
guments. Since A0 and A1 roles are most frequent
in the data, this indicates that the seq2seq model
would benefit from more training data, particularly
for less frequent roles, to better differentiate roles,
and this is more prominent for the ones that are
marked with prepositions.

Role co-occurrence and role set constraints
Despite the absence of more refined decoding con-
straints, our model learns to avoid generating du-
plicated argument labels in most of the sequences.
We find duplicated argument labels in less than
1% of the sequences. Figure 5 shows that the
majority (about 70%) of sentences do not involve
any missing or excess arguments; about 24/20%
of sentences experience a single missing/excess
role, and only 5/4% of the sentences experience
a higher amount of missed/excess roles. Overall,
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Figure 6: Performance of the model based on the
number of tokens that the sequence has.

Figure 7: F1 score of arguments in buckets of in-
creasing distances from their predicate, with dis-
tance normalized by sentence length (CoNLL-05,
dev). We compare our model with He et al. (2017).

missed vs. excess arguments are balanced.
Sequence Length Another characteristic of the

seq2seq model is that it encodes within a single
sequence both words and labeled brackets. This
increases the length of the sequences that need to
be processed, and it is a well known problem that
sequence length affects performance of recurrent
neural models, even with the use of attention.

To measure the labeling performance difficulty
with increasing sequence length, we partitioned
the system outputs in six different bins containing
groups of sentences of similar length (see Figure
6). As expected, the F1 score degrades propor-
tionally to the length of the sequence, especially
in sentences with more than 30 tokens.

Distance to predicate He et al. (2017) show

Figure 8: Error ratio of arguments in different re-
gions of the sequences (CoNLL-05, dev).

that the surface distance between the argument and
the predicate is also proportional to the amount of
labeling errors. In our model, the distance between
argument words and the predicate is even longer
because of labeled brackets embedded in the se-
quence. Figure 7 displays the F1 score for differ-
ent token distances between predicate and the re-
spective argument. We see that the seq2seq model
follows the same trend as the sequence labeling
model, despite the fact that our model has access
to the hidden states from the encoded input sen-
tence; however, the real distance between predi-
cate and argument in the decoder is also bigger.

Distance from sentence beginning. With each
token that the model generates in decoding, the
distance to the end position of the encoded sen-
tence representation grows. While intuitively we
would expect the model performance to degrade
with larger distance to the input, it is also true that
the model could be more prone to making mistakes
at the beginning of the sequence, when the decoder
has not yet generated enough context. To investi-
gate this, we traced the ratio of errors that occur
in several ranges of the sequence. We can see in
Figure 8 that the first intuition was correct, the dis-
tance to the encoded representation is proportional
to the mistakes that the model makes. We com-
pare the error ratio to He et al. (2017) and show
that the seq2seq system follows a similar trend but
degrades faster with sequence length.

5 Related Work

Semantic Role Labeling. Traditional approaches
to SRL relied on carefully designed features and
expensive techniques to achieve global consis-
tency such as Integer Linear Programming (Pun-
yakanok et al., 2008) or dynamic programming
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(Täckström et al., 2015). First neural SRL at-
tempts tried to mix syntactic features with neural
network representations. For example, FitzGerald
et al. (2015) created argument and role representa-
tions using a feed-forward NN, and used a graphi-
cal model to enforce global constraints. Roth and
Lapata (2016), on the other hand, proposed a neu-
ral classifier using dependency path embeddings
to assign semantic labels to syntactic arguments.

Collobert et al. (2011) proposed the first SRL
neural model that did not depend on hand-crafted
features and treated the task as an IOB sequence
labeling problem. Later, Zhou and Xu (2015) pro-
posed a deep bi-directional LSTM model with a
CRF layer on top. This model takes only the orig-
inal text as input and assigns a label to each in-
dividual word in the sentence. He et al. (2017)
also treat SRL as a IOB tagging problem, and
use again a deep bi-LSTM incorporating highway
connections, recurrent dropout and hard decod-
ing constraints together with an ensemble of ex-
perts. This represents the best performing sys-
tem on two span-based benchmark datasets so far
(namely, CoNLL-05 and CoNLL-12). Marcheg-
giani et al. (2017) show that it is possible to con-
struct a very accurate dependency-based SRL sys-
tem without using any kind of explicit syntactic
information. In subsequent work, Marcheggiani
and Titov (2017) combine their LSTM model with
a graph convolutional network to encode syntactic
information at word level, which improves their
LSTM classifier results on the dependency-based
benchmark dataset (CoNLL-09).

Sequence-to-sequence models. Seq2seq mod-
els were first discovered as powerful models for
Neural Machine Translation (Sutskever et al.,
2014; Cho et al., 2014) but soon proved to be use-
ful for any kind of problem that could be repre-
sented as a mapping between source and target se-
quences. Vinyals et al. (2015) demonstrate that
constituent parsing can be formulated as a seq2seq
problem by linearizing the parse tree. They obtain
close to state-of-the-art results by using a large
automatically parsed dataset. Dong and Lapata
(2016) built a model for a related problem, seman-
tic parsing, by mapping sentences to logical form.
Seq2seq models have also been widely used for
language generation (e.g. Karpathy and Li (2015);
Chisholm et al. (2017)) given their ability to pro-
duce linguistic variation in the output sequences.

More closely related to SRL is the AMR pars-

ing and generation system proposed by Konstas
et al. (2017). This work successfully constructs a
two-way mapping: generation of text given AMR
representations as well as AMR parsing of natural
language sentences. Finally, Zhang et al. (2017)
went one step further by proposing a cross-lingual
end-to-end system that learns to encode natural
language (i.e. Chinese source sentences) and to de-
code them into sentences on the target side con-
taining open semantic relations in English, using a
parallel corpus for training.

6 Conclusions

In this paper we explore the properties of a
Sequence-to-Sequence model for identifying and
labeling PropBank roles. This is motivated by the
fact that using a seq2seq model gives more flexi-
bility for further tasks such as constrained gener-
ation and cross-lingual label projection. Another
advantage is that our model is a very lean architec-
ture compared to the deep Bi-LSTM of the recent
SRL models.

To our knowledge, this is the first attempt to
perform SRL using a seq2seq approach. Specific
challenges emerged by formulating the problem
in this way, such as: (i) the decoding of labels
and words within a single sequence; (ii) generat-
ing balanced labeled brackets at the correct posi-
tion; (iii) avoiding repetition of tokens, and espe-
cially, (iv) generating labeled sequences that per-
fectly match the source sentence in order to make
the labeled sequence absolutely comparable.

Despite these difficulties, we could show that
a sequence-to-sequence model with attention and
copying achieves quite respectable labeling per-
formance with a lean architecture and without yet
considering structural constraints. For future work
we consider extensions towards joint semantic role
labeling and constrained generation, to produce
new variations of existing labeled data.
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