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Abstract

Word vector space specialisation models
offer a portable, light-weight approach to
fine-tuning arbitrary distributional vector
spaces to discern between synonymy and
antonymy. Their effectiveness is drawn
from external linguistic constraints that
specify the exact lexical relation between
words. In this work, we show that a care-
ful selection of the external constraints can
steer and improve the specialisation. By
simply selecting appropriate constraints,
we report state-of-the-art results on a suite
of tasks with well-defined benchmarks
where modeling lexical contrast is crucial:
1) true semantic similarity, with highest re-
ported scores on SimLex-999 and Sim Verb-
3500 to date; 2) detecting antonyms; and 3)
distinguishing antonyms from synonym:s.

1 Introduction

Representation models grounded in the distribu-
tional hypothesis (Harris, 1954) generally fail to
distinguish highly contrasting words (anfonyms)
from highly similar ones (synonyms), due to similar
word co-occurrence signatures in text corpora (Tur-
ney and Pantel, 2010; Mohammad et al., 2013).!
In addition to antonymy and synonymy being fun-
damental lexical relations that are central to the
organisation of the mental lexicon (Miller and Fell-
baum, 1991; Murphy, 2010), this undesirable prop-
erty of distributional word vector spaces has grave
implications on their application in NLP reasoning
and understanding tasks. As shown in prior work
(Pham et al., 2015; Mrksié et al., 2016; Kim et al.,

! As pointed out by Cruse (1986), antonyms have a paradox-
ical nature: on the one hand, they constitute the two opposites
of a meaning continuum, and therefore could be seen as seman-
tically remote; on the other hand, they are paradigmatically
similar, having almost identical distributions.
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2016; Nguyen et al., 2017b; MrkSi¢ et al., 2017,
i.a.), explicitly modeling the lexical contrast bene-
fits text entailment, dialogue state tracking, spoken
language understanding, language generation, etc.’

A popular solution to address the limitation con-
cerning lexical contrast is to move beyond stand-
alone unsupervised learning. Post-processing pro-
cedures have been designed that leverage exter-
nal lexical knowledge available in human- and
automatically-constructed lexical resources (e.g.,
PPDB, WordNet): these methods fine-tune input
word vectors to satisfy linguistic constraints from
the external resources (Faruqui et al., 2015; Jauhar
et al., 2015; Rothe and Schiitze, 2015; Wieting
etal., 2015; Mrksic et al., 2016; Mrksi¢ et al., 2017,
Vuli¢ et al., 2017b, i.a.). This process has been
termed retrofitting or vector space specialisation.

As one advantage, the post-processing methods
are applicable to arbitrary input vector spaces. They
are also “light-weight”, that is, they do not require
large corpora for (re-)training, as opposed to joint
specialisation models (Yu and Dredze, 2014; Kiela
etal., 2015; Pham et al., 2015; Nguyen et al., 2016)
which integrate lexical knowledge directly into dis-
tributional training objectives.’

The main driving force of the retrofitting models
are the external constraints, which specify which
words should be close to each other in the spe-
cialised vector space (i.e., the so-called ATTRACT
constraints), and which words should be far apart
in the space (REPEL). By manipulating the con-
straints, one can steer the specialisation goal: e.g.,
Vuli€ et al. (2017a) use verb relations from Verb-
Net (Kipper, 2005) to accentuate VerbNet-style
syntactic-semantic relations in the vector space.

2Using a simple example, users asking for a cheap pub
in northern Seattle do not want a virtual personal assistant to
recommend an expensive restaurant in southern Portland.

3 An additional advantage of post-processors is their better

overall performance across a range of tasks when compared
to the “heavy-weight” joint models (Mrksi¢ et al., 2016).
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Figure 1: An illustration of specialisation for lexical contrast with toy examples. The specialisation model
operates with two sets of external linguistic constraints: 1) ATTRACT word pairs, which have to be as
close as possible in the fine-tuned vector space (e.g., irritating and annoying); and 2) REPEL word pairs,
which have to be as far away from each other as possible (e.g., expensive and inexpensive).

Contributions. In this work, we investigate how
different constraints affect specialisation. We show
that a careful selection of external constraints can
guide specialisation models to emphasise lexical
contrast in the fine-tuned vector space: e.g., we in-
dicate that direct (i.e., 1-step) WordNet hypernymy-
hyponymy pairs are useful for boosting lexical con-
trast. Our specialised word vector spaces yield state-
of-the-art results on a range of tasks where mod-
eling lexical contrast is crucial: 1) true semantic
similarity; 2) antonymy detection; and 3) distin-
guishing antonyms from synonyms. Our SimLex-
999 (Hill et al., 2015) and SimVerb-3500 (Gerz
et al., 2016) scores are the highest reported results
on these datasets to date: the result on SimLex-
999 is the first result on the dataset surpassing the
ceiling of mean inter-annotator agreement.

2 Methodology

Specialisation Model. Post-processing models
are generally guided by two broad sets of con-
straints: 1) ATTRACT constraints (AC) specify
which words should be close to each other in
the fine-tuned vector space; 2) REPEL (RC) con-
straints describe which words should be pulled
away from each other. The nomenclature is adopted
from MrkSi¢ et al. (2017). Earlier post-processors
(Faruqui et al., 2015; Jauhar et al., 2015; Wiet-
ing et al., 2015) operate only with ATTRACT con-
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syn (AC) hypl (AC) antexp (RC)

(outburst, outbreak)
(safe, secure)

(cordial, warmhearted)
(answer, response)

(discordance, dissonance)
(postmen, deliverymen)
(employee, worker)
(swap, exchange)

(smooth, shake)
(clear, obscurity)
(relief, pressure)
(half, full)

Table 1: Examples of linguistic constraints.

straints, and are therefore not suited to model both
aspects of lexical contrast. In this work, we em-
ploy the state-of-the-art specialisation model of
Mrksié et al. (2017) which integrates both sets of
constraints into its fine-tuning process. Here, we
provide only a high-level description of the model,
also illustrated by Figure 1, while we refer the in-
terested reader to the original paper for a full (tech-
nical) description.

In short, the model trains over batches of AT-
TRACT and REPEL pairs and contains three terms
in its objective function. First, the ATTRACT term
pushes two words from each ATTRACT constraint
closer to each other (in terms of the cosine similar-
ity) than to any other word present in the current
batch by a margin §,4. Second, the REPEL term
pulls away two words from each REPEL constraint
so that they are further away from each other than
from any other word present in the current batch
(again, by a margin 9,.,): see Figure 1 again. Third,
a regularisation term is used to preserve the useful
semantic content originally present in the distribu-



tional space, as long as this information does not
contradict the injected external knowledge.

Linguistic Constraints. The constraints are in
fact word pairs (z;,z;), z5,2; € V, where V
is the vocabulary represented in the input distri-
butional space. First, the conflation of synonymy
and antonymy relations in the input space can be
obviously mitigated by assigning synonymy pairs
(syn) to the ATTRACT set, and antonymy pairs
(ant) to the REPEL set. Further, similar to Ono
et al. (2015), it is possible to extend the (typically
less exhaustive) list of antonyms by combining the
available knowledge from syn and ant word pairs.
If (x;, x;) are a pair of synonyms, and (x;, z,) are a
pair of antonyms, one can add another pair (z;, )
to the expanded list of antonyms: this yields a larger
set (antexp) to serve as REPEL constraints.
Finally, as the analysis of Hill et al. (2015) shows,
the taxonomic hypernymy-hyponymy 1S-A relation
is often mistaken by true synonymy by humans.
Therefore, we also experiment with direct (i.e. 1-
step) IS-A pairs (hypl) from Wordnet as another
set included in the ATTRACT pairs for lexical con-
trast specialisation. To the best of our knowledge,
the hypl pairs were not used before for lexical
contrast modeling. A selection of constraints from
different sets is shown in Table 1. In what follows,
we test how these different configurations of con-
straints influence the specialisation process.

3 Experimental Setup

Training Setup and Constraints. We train the
state-of-the-art specialisation model of Mrksi¢ et al.
(2017) using suggested settings:* Adagrad (Duchi
et al., 2011) is used for stochastic optimisation,
batch size is 50, and we train for 15 epochs. To
emphasise lexical contrast in the specialised space
we set the respective ATTRACT and REPEL margins
dqtt and d,; to the same value: 1.0. We use large
300-dim skip gram vectors with bag-of-words con-
texts and negative sampling (SGNS-GN) (Mikolov
et al., 2013), pre-trained on the 100B Google News
corpus. As all other components of the model are
kept fixed, the difference in performance can be
attributed to the difference in the constraints used.

We experiment with external constraints em-
ployed in prior work (Zhang et al., 2014; Ono
et al., 2015): these were extracted from Word-
Net (Fellbaum, 1998) and the Roget thesaurus

*https://github.com/nmrksic/attract-repel
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(Kipfer, 2009), and comprise 1,023,082 synonymy
(syn) pairs and 380,873 ant pairs. The expanded
antexp set of antonyms contains a total of
10,334,811 word pairs. Finally, the hypl set ex-
tracted from WordNet contains 326,187 word pairs.

We evaluate all specialised spaces in three stan-
dard tasks with well-defined benchmarks where
modeling lexical contrast is beneficial: 1) semantic
similarity, 2) antonymy detection, and 3) distin-
guishing antonyms from synonyms. For each task,
we compare against a representative selection of
baselines, currently holding peak scores on the re-
spective benchmarks. Due to a large space of mod-
els in our comparison, we refer the interested reader
to the original papers for their full descriptions.

Task 1: Word Similarity. We evaluate all mod-
els on the SimLex-999 dataset (Hill et al., 2015),
and SimVerb-3500 (Gerz et al., 2016), a recent verb
pair similarity dataset with 3,500 verb pairs.> The
evaluation metric is Spearman’s p rank correlation.

Task 2: Antonymy Detection. For this task, we
rely on the widely used Graduate Record Examina-
tion (GRE) dataset (Mohammad et al., 2008, 2013).
The task, given an input cue word, is to select the
best antonym from five options. Given a word vec-
tor space, we take the word with the largest cosine
distance to the cue as the best antonym. The GRE
dataset contains 950 questions in total. We report
balanced F} scores on the entire dataset.

Task 3: Synonymy vs. Antonymy. In this bi-
nary classification task, the system must decide
whether the relation between two words is syn-
onymy or antonymy. We use the recent dataset of
Nguyen et al. (2017b), comprising 1,020 noun (N)
test pairs, 908 verb (V) pairs, and 1,986 adjective
(A) pairs, with the equal number of synonymy and
antonymy pairs in each test subset. A classification
threshold decides on the relation: all word pairs
with their cosine similarity above the threshold are
considered synonyms, all the others are antonyms.°

SUnlike WordSim-353 (Finkelstein et al., 2002) or MEN
(Bruni et al., 2014), SimLex and SimVerb provide explicit
guidelines to discern between true semantic similarity and
(more broad) conceptual relatedness, so that related but non-
similar words (e.g. tiger and jungle) have a low rating.

8Similar to the work on hypernymy detection (Santus et al.,
2014; Nguyen et al., 2017a; Vuli¢ and Mrksi¢, 2018), we tune
the threshold on a validation set of 206 N pairs, 182 V pairs,
and 398 A pairs, also used by Nguyen et al. (2017b).



MODEL SimLex SimVerb
SGNS-GN (Mikolov et al., 2013) 0414 0.348
Symmetric Patterns (Schwartz et al., 2015) 0.563 0.328
" Non-distributional (Faruqui and Dyer, 2015) ~ 0.578 ~ 0.596
Joint Specialisation (Nguyen et al., 2016) 0.590 0.516
Paragram-SL999 (Wieting et al., 2015) 0.690 0.540
Counter-fitting (Mrksic¢ et al., 2016) 0.740 0.628
AR: BabelNet (Mrksic¢ et al., 2017) 0.751 0.674
RC: ant 0.596 0.589
RC: antexp 0.606 0.551
AC: syn 0.748 0.728
AC: hypl 0.546 0.387
AC: syn, RC: ant 0.778 0.767
AC: syn, RC: antexp 0.736 0.708
AC: syn+hypl, RC: ant 0.791 0.770
AC: syn+hyp1l, RC: antexp 0.751 0.710
Mean inter-annotator agreement 0.779 0.864

Table 2: Task 1. Results on two word similarity
benchmarks (Spearman’s p). Best-scoring baseline
models from the literature are reported. The dashed
line separates purely distributional models from the
ones leveraging external lexical knowledge.

MODEL GRE: F
Constraints Lookup (ANT) 0.62
SGNS-GN (Mikolov et al., 2013) 0.48
Polarity LSA (Yih et al., 2012) 0.81

Bayesian Tensor Factor. (Zhang et al., 2014) 0.82
Joint Specialisation Model (Ono et al., 2015) 0.89

RC: ant 0.79
RC: antexp 0.80
AC: syn 0.33
AC: hypl 0.44
AC: syn, RC: ant 0.90
AC: syn, RC: antexp 0.83
AC: syn+hyp1, RC: ant 0.92
AC: syn+hypl, RC: antexp 0.85

Table 3: Task 2. Results (F} scores) on the full
GRE multiple-choice antonymy detection dataset.

4 Results and Discussion

Task 1: Word Similarity. A summary of the re-
sults is provided in Table 2. The most striking find-
ings are new state-of-the-art correlation scores on
both benchmarks: both are obtained by combin-
ing syn and hyp1 into ATTRACT constraints, and
using the unexpanded list of antonyms as REPEL
constraints. This suggests that: 1) both ATTRACT
and REPEL constraints are required to provide the
synergistic effect during specialisation; 2) a larger
(and noisier) set of antonymy pairs is not neces-
sarily more effective; 3) the hyp1 pairs are useful
for modeling lexical contrast. When included as
ATTRACT constraints, these pairs lead to small but
consistent gains across all three tasks (see also Ta-
bles 3-4).

MODEL A \'% N

Symmetric Patterns (Schwartz et al., 2015)  0.718 0.584 0.482

(Roth and Schulte im Walde, 2014) 0.717 0.788 0.832
AntSynNET (Nguyen et al., 2017b) 0.784 0.777 0.855
RC: ant 0.956 0.938 0.854
RC: antexp 0.899 0915 0.809
AC: syn 0.876 0.845 0.773
AC: hypl 0.678 0.678 0.681
AC: syn,RC: ant 0.959 0.969 0.872
AC: syn, RC: antexp 0.951 0.955 0.871
AC: syn+hypl, RC: ant 0.969 0.975 0.879
AC: syn+hypl, RC: antexp 0.953 0.947 0.872

Table 4: Task 3. Results (F}) on the synonymy-vs-
antonymy evaluation set (Nguyen et al., 2017b).

The reported high score on SimLex of 0.791 is
the first correlation score moving beyond mean hu-
man performance on the dataset (0.779), thus ques-
tioning the further usability of the benchmark in se-
mantic modeling evaluation. The gain on SimVerb
is even more substantial: from the previous high
score of 0.674 (Mrksi¢ et al., 2017) to 0.770.” The
difference is again attributed to the use of higher-
quality constraints: Mrksic¢ et al. (2017) relied on
a noisier and smaller set from BabelNet, verify-
ing the importance of guiding specialisation by the
correct choice of constraints. In short, the speciali-
sation model simply encodes the provided external
knowledge into the input vector space, and as such
it is critically tied to the constraints.

Task 2: Antonymy Detection. A summary of
the results is provided in Table 3. The results sug-
gest that antonymous REPEL constraints are more
beneficial for this task, which is easily explained
by the nature of the task, but the synergistic ef-
fect is again observed: both types of constraints
are essential to boost the scores. The best perform-
ing configuration of constraints outperforms two
strong baselines (Zhang et al., 2014; Ono et al.,
2015) which also rely on the same external lexical
knowledge (minus hyp1l pairs). Importantly, the
results also suggest that the specialisation model
indeed learns useful relationships in the specialised
space beyond a simple baseline model that lookups
into constraints: large gains over this baseline are
reported with a variety of configurations. Distribu-
tional SGNS-GN vectors coalesce antonymy and
synonymy: as a consequence, they are not a compet-
itive baseline in any of the three evaluation tasks.

"We have also verified that the specialisation process is
robust to the chosen distributional vector space. The best con-
figuration of constraints from Table 2 with two other starting
spaces, GLOVE (Pennington et al., 2014) and FASTTEXT (Bo-
janowski et al., 2017), yields respective correlation scores of
0.787 and 0.774 on SimLex and 0.764 and 0.744 on SimVerb.
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The model which uses a large set of ANTEXP
again cannot match performance of the model
which relies on the original ANT. We see this as
an interesting finding which suggests that the mas-
sive expansion of lexical constraints decreases the
strength of originally provided word relationships,
which were hand-crafted by linguistic experts.

Task 3: Synonymy vs. Antonymy. A summary
of the results with strongest baselines from prior
work is provided in Table 4: specialisation again
outperforms the competitors.® The score differ-
ences between best-performing configurations are
not as pronounced as in the other two tasks: we
attribute this to the reduced task complexity. How-
ever, the results again indicate that: 1) both types
of constraints are important for distinguishing be-
tween the coalesced relations of synonymy and
antonymy, with the synergistic effect again ob-
served; 2) the noisy and large ANTEXP set of
antonyms falls short of the smaller, more accurate
ANT set; and 3) the same configuration as in the
two other tasks (AC: SYN+HYP1, RC: ANT) again
leads to peak performance.

5 Conclusion

We have demonstrated that post-processing special-
isation models serve as a powerful tool for inject-
ing lexical contrast knowledge into distributional
word vector spaces. We have verified the hypothe-
sis that a careful selection of external constraints
is crucial for guiding the specialisation by improv-
ing state-of-the-art scores on three standard tasks
used for evaluation of lexical contrast modeling:
detecting antonyms, distinguishing antonyms from
synonyms, and word similarity.

The post-processing specialisation models such
as ATTRACT-REPEL fine-tune only vectors of words
present in the external constraints. In the follow-up
work, we have proposed a method which can prop-
agate the useful external signal also to the full vo-
cabulary (Vuli¢ et al., 2018), leading to additional
gains with specialised vectors in downstream lan-
guage understanding applications. In future work,
we will further investigate the full-vocabulary spe-
cialisation approaches.

$However, note that the specialization model cannot be
directly and fairly compared to the baselines in this task, which
do not use any supervision signal. The reported performance
of the specialisation model can be seen as an upper bound to
such distributional approaches.
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