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Abstract

Languages with logographic writing sys-
tems present a difficulty for traditional
character-level models. Leveraging the
subcharacter information was recently
shown to be beneficial for a number of in-
trinsic and extrinsic tasks in Chinese. We
examine whether the same strategies could
be applied for Japanese, and contribute a
new analogy dataset for this language.

1 Introduction

No matter how big a corpus is, there will always be
rare and out-of-vocabulary (OOV) words, and they
pose a problem for the widely used word embed-
ding models such as word2vec. A growing body
of work on subword and character-level represen-
tations addresses this limitation in composing the
representations for OOV words out of their parts
(Kim et al., 2015; Zhang et al., 2015).

However, logographic writing systems consist
of thousands of characters, varying in frequency
in different domains. Fortunately, many Chinese
characters (called kanji in Japanese) contain se-
mantically meaningful components. For exam-
ple,木 (a standalone kanji for the word tree) also
occurs as a component in 桜 (sakura) and 杉
(Japanese cypress).

We investigate the effect of explicit inclusion of
kanjis and kanji components in the word embed-
ding space on word similarity and word analogy
tasks, as well as sentiment polarity classification.
We show that the positive results reported for Chi-
nese carry over to Japanese only partially, that the

gains are not stable, and in many cases character
ngrams perform better than character-level mod-
els. We also contribute a new large dataset for
word analogies, the first one for this relatively low-
resourced language, and a tokenizer-friendly ver-
sion of its only similarity dataset.

2 Related Work

To date, most work on representing subcharacter
information relies on language-specific resources
that list character components1. A growing list
of papers address various combinations of word-
level, character-level and subcharacter-level em-
beddings in Chinese (Sun et al., 2014; Li et al.,
2015; Yu et al., 2017). They have been successful
on a range of tasks, including similarity and anal-
ogy (Yu et al., 2017; Yin et al., 2016), text classi-
fication (Li et al., 2015) sentiment polarity classi-
fication (Benajiba et al., 2017), segmentation, and
POS-tagging (Shao et al., 2017).

Japanese kanjis were borrowed from Chinese,
but it remains unclear whether these success sto-
ries could also carry over to Japanese. Chinese
is an analytic language, but Japanese is aggluti-
native, which complicates tokenization. Also, in
Japanese, words can be spelled either in kanji or
in phonetic alphabets (hiragana and katakana),
which further increases data sparsity. Numerous
homonyms make this sparse data also noisy.

To the best of our knowledge, subcharacter in-
formation in Japanese has been addressed only by
Nguyen et al. (2017) and Ke and Hagiwara (2017).

1Liu et al. (2017) showed the possibility of learning this
information for any language through visual feature recogni-
tion.
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Figure 1: Incorporating subcharacter information in Japanese

The former consider the language modeling task
and compare several kinds of kanji decomposition,
evaluating on model perplexity. Ke and Hagiwara
(2017) propose to use subcharacter information in-
stead of characters, showing that such a model per-
forms on par with word and character-level mod-
els on sentiment classification, with considerably
smaller vocabulary.

This study explores a model comparable to that
proposed by Yu et al. (2017) for Chinese. We
jointly learn a representation of words, kanjis, and
kanjis’ components, and we evaluate it on similar-
ity, analogy, and sentiment classification tasks. We
also contribute jBATS, the first analogy dataset for
Japanese.

3 Incorporating Subcharacter
Information

Kanji analysis depends on its complexity. Kan-
jis consisting of only 2-4 strokes may not be de-
composable, or only containing 1-2 simple com-
ponents (bushu). The more complex kanjis can
usually be decomposed in analyzable bushu. This
is referred to as shallow and deep decomposition
(Figure 1a).

Nguyen et al. (2017) compared several decom-
position databases in language modeling and con-
cluded that shallow decomposition yields lower
perplexity. This is rather to be expected, since
many “atomic” bushu are not clearly meaningful.
For example, Figure 1a shows the kanji劣 (“to be
inferior”) as decomposable into 少 (“little, few”)
and 力 (“strength”). At the deep decomposition,
only bushu 小 (“small”) can be clearly related to
the meaning of the original kanji劣.

Hence, we use shallow decomposition. The

bushu are obtained from IDS2, a database that per-
formed well for Nguyen et al. (2017). IDS is gen-
erated with character topic maps, which enables
wider coverage3 than crowd-sourced alternatives
such as GlyphWiki.

In pre-processing each kanji was prepended the
list of bushu (Figure 1b). Two corpora were used:
the Japanese Wikipedia dump of April 01, 2018
and a collection of 1,859,640 Mainichi newspa-
per articles (Nichigai Associate, 1994-2009). We
chose newspapers because this domain has a rela-
tively higher rate of words spelled in kanji rather
than hiragana.

As explained above, tokenization is not a triv-
ial task in Japanese. The classic dictionary-based
tokenizers such as MeCab or Juman, or their
more recent ports such as Kuromoji do not han-
dle OOV very well, and the newer ML-based tok-
enizers such as TinySegmenter or Micter are also
not fully reliable. We tokenized the corpora with
MeCab using a weekly updated neologism dictio-
nary4, which yielded roughly 357 million tokens
for Mainichi and 579 for Wiki5. The tokeniza-
tion was highly inconsistent: for example,満腹感
(“feeling full”) is split into満腹 (“full stomach”)
and感 (“feeling”), but恐怖感 (“feeling fear”) is
a single word, rather than 恐怖 + 感 (“fear” and
“feeling”). We additionally pre-processed the cor-
pora to correct the tokenization for all the affixes

2http://github.com/cjkvi/cjkvi-ids
3A limitation of IDS is that it does not unify the represen-

tations of several frequent bushu, which could decrease the
overall quality of the resulting space (e.g. 心 “heart” is being
pictured as心,忄 and㣺 depending on its position in kanji).

4http://github.com/neologd/
mecab-ipadic-neologd

5The Wikipedia tokenized corpus is available at http:
//vecto.space/data/corpora/ja

http://github.com/cjkvi/cjkvi-ids
http://github.com/neologd/mecab-ipadic-neologd
http://github.com/neologd/mecab-ipadic-neologd
http://vecto.space/data/corpora/ja
http://vecto.space/data/corpora/ja
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Figure 2: Model architecture of SG, SG+kanji, and SG+kanji+bushu. Example sentence: いつも 忙し
い 仲間 と やっと 会え た (“I have finally met with my busy colleague.”), window size 2.

in jBATS (section 5).

4 Model architecture

4.1 Baselines

Original SG. Skip-Gram (SG) (Mikolov et al.,
2013) is a popular word-level model. Given a tar-
get word in the corpus, SG model uses the vector
of this target word to predict its contextual words.

FastText. FastText (Bojanowski et al., 2017) is
a state-of-the-art subword-level model that learns
morphology from character n-grams. In this
model, each word is considered as the sum of all
the character n-grams.

4.2 Characters and subcharacters

Characters (kanji). To take individual kanji into
account we modified SG by summing the target
word vector w with vectors of its constituent char-
acters c1, and c2. This can be regarded as a spe-
cial case of FastText, where the minimal n-gram
size and maximum n-gram size are both set to 1.
Our model is similar to the one suggested by Yu
et al. (2017), who learn Chinese word embeddings
based on characters and sub-characters. We refer
to this model as SG+kanji.

Subcharacters (bushu). Similarly to charac-
ters, we sum the vector of the target word, its con-
stituent characters, and their constituent bushu to

incorporate the bushu information. For example,
Figure 3 shows that the vector of the word 仲間,
the vectors of characters 仲 and 間, and the vec-
tors of bushu亻,中,門,日 are summed to predict
the contextual words. We refer to this model as
SG+kanji+bushu.

Expanding vocabulary. FastText, SG+kanji
and SG+kanji+bushu models can be used to com-
pute the representation for any word as a sum of
the vectors of its constituents. We collect the vo-
cabulary of all the datasets used in this paper, cal-
culate the vectors for any words missing in the em-
bedding vocabulary, and add them. Such models
will be referred to as MODEL+OOV.

4.3 Implementation
All models were implemented in Chainer frame-
work (Tokui et al., 2015) with the following pa-
rameters: vector size 300, batch size 1000, neg-
ative sampling size 5, window size 2. For per-
formance reasons all models were trained for 1
epoch. Words, kanjis and bushu appearing less
than 50 times in the corpus were ignored. The op-
timization function was Adam (Kingma and Ba,
2014). The n-gram size of FastText6 is set to 1, for

6The original FastText code7 has some inherent differ-
ences from our Chainer implementation, as it was designed
for CPU only. On each CPU thread, it directly updates the
weight parameters after evaluation of each sample. To take
the advantage of GPU, we use mini-batch (size 1000) to par-
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Relation Example Relation Example
In

fle
ct

io
ns

I01 Verb: u-form >a-form 使う:使わ

L
ex

ic
og

ra
ph

y

L01 hypernyms (animals) カメ: 爬虫/脊椎動物/
I02 Verb: u-form >o-form 受ける:受けよ L02 hypernyms (misc.) 椅子:支え/器具/道具/人工物...
I03 Verb: u-form >e-form 起きる:起きれ L03 hyponyms (misc.) 肉:牛肉/牛/ビーフ/鳥肉/...
I04 Verb: u-form >te-form 会う :会っ L04 meronyms (substance) バッグ: 革/生地/布/プラスチック
I05 Verb: a-form >o-form 書か :書こ L05 meronyms (member) 鳥: 群れ/家畜
I06 Verb: o-form >e-form 歌お:歌え L06 meronyms (part) アカデミア: 大学/大学院/学院...
I07 Verb: e-form >te-form 勝て: 勝っ L07 synonyms (intensity) つまらない,退屈/くだらない/...
I08 i-Adj.: i-form >ku-form 良い:良く L08 synonyms (exact) 赤ちゃん:赤ん坊/ベビー
I09 i-Adj: i-form >ta-form 良い:良かっ L09 antonyms (gradable) 大きい:小さい/ちび/ちっちゃい...
I10 i-Adj.: ku-form >ta-form 良く:良かっ L10 antonyms (binary) 出口: 入り口/入口

D
er

iv
at

io
n

D01 na-adj + ”化” 活性: 活性化

E
nc

yc
lo

pe
di

a

E01 capital: country ロンドン: イギリス/英国
D02 i-adj + ”さ” 良い:良さ E02 country: language フランス : フランス語
D03 noun + ”者” 消費: 消費者 E03 jp. prefecture: city 沖縄県: 那覇/那覇市
D04 ”不” + noun 人気: 不人気 E04 name: nationality アリストテレス: ギリシャ人
D05 noun + ”会” 運動:運動会 E05 name: occupation アリストテレス: 哲学者
D06 noun/na-adj. + ”感” 存在: 存在感 E06 onomatopoeia : feeling ドキドキ: 緊張/恐怖
D07 noun/na-adj. + ”性” 可能: 可能性 E07 company: product 日産: 車/自動車
D08 noun/na-adj. + ”力” 影響: 影響力 E08 object: usage ギター : 弾く
D09 ”大”+ noun/na-adj. 好き:大好き E09 polite terms おっしゃる:申し上げる
D10: (in)transitive verb 起きる:起こす E10 object: color カラス: 黒/黒い

Table 1: jBATS: structure and examples

reliable comparison with our character model. We
experimented with 1/2 of Mainichi corpus while
developing the models, and then trained them on
full Mainichi and Wikipedia. All sets of embed-
dings are available for download8.

For SG+kanji+bushu model there were 2510
bushu in total, 1.47% of which were ignored in the
model since they were not in the standard UTF-8
word (“w) encoding. This affected 1.37% of to-
kens in Wikipedia.

5 Evaluation: jBATS

We present jBATS9, a new analogy dataset for
Japanese that is comparable to BATS (Gladkova
et al., 2016), currently the largest analogy dataset
for English. Like BATS, jBATS covers 40 linguis-
tic relations which are listed in Table 1. There are
4 types of relations: inflectional and derivational
morphology, and encyclopedic and lexicographic
semantics. Each type has 10 categories, with 50
word pairs per category (except for E03 which has
47 pairs, since there are only 47 prefectures). This
enables generation of 97,712 analogy questions.

The inflectional morphology set is based on the
traditional Japanese grammar (Teramura, 1982)
which lists 7 different forms of godan, shimoichi-
dan and kamiichidan verbs, as well as 5 forms of
i-adjectives. Including the past tense form, there

allelize training.
8http://vecto.space/data/embeddings/ja
9http://vecto.space/projects/jBATS

are 8 and 6 forms for verbs and adjectives respec-
tively. All categories were adjusted to the MeCab
tokenization. After excluding redundant or rare
forms there were 5 distinctive forms for verbs and
3 for adjectives, which were paired to form 7 verb
and 3 adjective categories.

The derivational morphology set includes 9
highly productive affixes which are usually rep-
resented by a single kanji character, and a set of
pairs of transitive and intransitive verbs which are
formed with several infix patterns.

The encyclopedic and lexicographic semantics
sections were designed similarly to BATS (Glad-
kova et al., 2016), but adjusted for Japanese.
For example, UK counties were replaced with
Japanese prefectures. The E09 animal-young cat-
egory of BATS would be rendered with a prefix
in Japanese, and was replaced with plain: hon-
orific word pairs, a concept highly relevant for the
Japanese culture.

All tokens were chosen based on their frequen-
cies in BCCWJ10 (Maekawa, 2008), the Balanced
Corpus of Contemporary Written Japanese, and
the Mainichi newspaper corpus described in Sec-
tion 3. We aimed to choose relatively frequent
and not genre-specific words. For broader cate-
gories (adjectives and verbs) we balanced between
BCCWJ and Mainichi corpora, choosing items
of mean frequencies between 3,000 and 100,000

10http://pj.ninjal.ac.jp/corpus_center/
bccwj/en/freq-list.html

http://vecto.space/data/embeddings/ja
http://vecto.space/projects/jBATS
http://pj.ninjal.ac.jp/corpus_center/bccwj/en/freq-list.html
http://pj.ninjal.ac.jp/corpus_center/bccwj/en/freq-list.html


32

whenever possible.

6 Results

6.1 Word similarity

The recent Japanese word similarity dataset
(Sakaizawa and Komachi, 2017) contains 4,851
word pairs that were annotated by crowd work-
ers with agreement 0.56-0.69. Like MEN (Bruni
et al., 2014) and SimLex (Hill et al., 2015), this
dataset is split by parts of speech: verbs, nouns,
adjectives and adverbs. We refer to this dataset as
jSIM.

The division by parts of speech is relevant for
this study: many Japanese adverbs are written
mostly in hiragana and would not benefit from
bushu information. However, some pairs in jSIM
were misclassified. Furthermore, since this dataset
was based on paraphrases, many pairs contained
phrases rather than words, and/or words in forms
that would not be preserved in a corpus tokenized
the Mecab style (which is the most frequently used
in Japanese NLP). Therefore, for embeddings with
standard pre-processing jSIM would have a very
high OOV rate. The authors of jSIM do not ac-
tually present any experiments with word embed-
dings.

We have prepared 3 versions of jSIM that are
summarized in Table 2. The full version con-
tains most word pairs of the original dataset (ex-
cept those which categories were ambiguous or
mixed), with corrected POS attribution in 2-5%
of pairs in each category11: for example, the pair
苛立たしい - 忌ま忌ましい was moved from
verbs to adjectives. The tokenized version con-
tains only the items that could be identified by
a Mecab-style tokenizer, and had no more than
one content-word stem: e.g. this would exclude
phrases like　早く来る. However, many of the
remaining items could become ambiguous when
tokenized: 終わった would become 終わっ た
– and終わっ could map to終わった,終わって,
終わっちゃう, etc., and therefore be more diffi-
cult to detect in the similarity task. Thus we also
prepared the unambiguous subset which contains
only the words that could still be identified unam-
biguously even when tokenized (for example, 迷

11Division between adjectives and adverbs is problematic
for the Japanese adverbial forms of adjectives, such as安い
→　安く. There were 228 such pairs in total. Since we focus
on the kanji, we grouped them with the adjectives, as in the
original dataset.

う remains 迷う). All these versions of jSIM are
available for download12.

Table 3 shows the results on all 3 datasets on all
models, trained on the full Mainichi corpus, a half
Mainichi corpus, and Wikipedia. The strongest ef-
fect for inclusion of bushu is observed in the OOV
condition: in all datasets the Spearman’s correla-
tions are higher for SG+kanji+bushu than for other
SG models, which suggests that this information is
indeed meaningful and helpful. This even holds
for the full version, where up to 90% vocabu-
lary is missing and has to be composed. For in-
vocabulary condition this effect is noticeably ab-
sent in Wikipedia (perhaps due to the higher ratio
of names, where the kanji meanings are often ir-
relevant).

Version Adj. Adv. Nouns Verbs Total

Original 960 902 1103 1464 4429
Full 879 893 1104 1507 4383
Tokenized 642 774 947 427 2790
Unambiguous 448 465 912 172 1997

Table 2: The size of the original and modified
Japanese similarity datasets (in word pairs)

However, in most cases the improvement due to
inclusion of bushu, even when it is observed, is not
sufficient to catch up with the FastText algorithm,
and in most cases FastText has substantial advan-
tage. This is significant, as it might warrant the
review of the previous results for Chinese on this
task: of all the studies on subcharacter information
in Chinese that we reviewed, only one explicitly
compared their model to FastText (Benajiba et al.,
2017), and their task was different (sentiment anal-
ysis).

In terms of parts of speech, the only clear ef-
fect is for the adjectives, which we attribute to the
fact that many Japanese adjectives contain a sin-
gle kanji character, directly related to the meaning
of the word (e.g.惜しい). The adjectives category
contains 55.45% such words, compared to 14.78%
for nouns and 23.71% for adverbs in the full jSIM
(the ratio is similar for Tokenized and Unambigu-
ous sets). On the other hand, all jSIM versions
have over 70% of nouns with more than one kanji;
some of them may not be directly related to the
meaning of the word, and increase the noise. Ac-

12http://vecto.space/projects/jSIM

http://vecto.space/projects/jSIM
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Model
Full Tokenized Unambiguous

adj adv noun verb adj adv noun verb adj adv noun verb

M
ai

ni
ch

i1
/2

FastText .366 .190 .331 .355 .392 .285 .333 .381 .377 .232 .328 .337
SG .321 .346 .274 .311 .352 .364 .280 .341 .340 .362 .274 .304

SG+kanji .339 .290 .280 .294 .371 .330 .285 .345 .369 .305 .279 .302
SG+kanji+bushu .355 .300 .276 .391 .380 .356 .279 .375 .384 .326 .274 .393

OOV rate per category .659 .616 .328 .934 .506 .295 .232 .372 .462 .318 .235 .436

FastText+OOV .435 .153 .213 .241 .416 .185 .259 .359 .434 .124 .252 .373
SG+kanji+OOV .344 .195 .152 .210 .279 .235 .192 .307 .309 .211 .179 .327

SG+kanji+bushu+OOV .329 .220 .146 .230 .272 .261 .188 .318 .311 .242 .177 .372

M
ai

ni
ch

i

FastText .399 .277 .336 .345 .436 .296 .337 .355 .397 .310 .328 .345
SG .345 .336 .280 .246 .362 .333 .282 .295 .367 .359 .274 .246

SG+kanji .366 .321 .269 .334 .391 .354 .272 .363 .399 .348 .262 .334
SG+kanji+bushu .405 .318 .288 .315 .427 .311 .291 .353 .444 .341 .282 .315

OOV rate per category .582 .586 .272 .922 .389 .260 .164 .262 .384 .288 .166 .320

FastText+OOV .448 .184 .245 .242 .438 .222 .286 .410 .453 .202 .275 .405
SG+kanji+OOV .323 .195 .175 .210 .293 .262 .210 .353 .341 .250 .197 .363

SG+kanji+bushu+OOV .348 .171 .178 .201 .318 .231 .223 .330 .373 .249 .210 .315

W
ik

ip
ed

ia

FastText .405 .296 .333 .341 .440 .298 .334 .348 .402 .330 .325 .341
SG .309 .298 .299 .320 .312 .315 .299 .382 .307 .345 .296 .320

SG+kanji .334 .298 .270 .326 .331 .327 .275 .380 .324 .334 .271 .326
SG+kanji+bushu .321 .285 .282 .270 .312 .295 .287 .364 .326 .315 .279 .270

OOV rate per category .578 .591 .225 .909 .393 .269 .112 .192 .384 .301 .112 .203

FastText+OOV .451 .186 .242 .243 .442 .225 .281 .400 .455 .219 .270 .402
SG+kanji+OOV .296 .179 .146 .185 .240 .240 .191 .325 .270 .239 .184 .278

SG+kanji+bushu+OOV .313 .183 .159 .171 .249 .238 .208 .315 .292 .254 .197 .243

Table 3: Spearman’s correlation with human similarity judgements. Boldface indicates the highest result
on a given corpus (separately for in-vocabulary and OOV conditions). Shaded numbers indicate the
highest result among the three Skip-Gram models.

cordingly, we observe the weakest effect for inclu-
sion of bushu. However, the ratio of 1-kanji words
for verbs is roughly the same as for the adjectives,
but the pattern is less clear.

Adverbs are the only category in which SG
clearly outperforms FastText. This could be due
to a high proportion of hiragana (about 50% in all
datasets), which as single-character ngrams could
not yield very meaningful representations. Also,
the particlesと andに, important for adverbs, are
lost in tokenization.

6.2 jBATS

In this paper, we consider two methods for the
word analogy task. 3CosAdd (Mikolov et al.,
2013) is the original method based on linear off-
set between 2 vector pairs. Given an analogy a:a′

:: b:b′ (a is to a′ as b is to b′), the answer is cal-
culated as b′ = argmax d∈V (cos(b

′, b− a+ a′)),
where cos(u, v) = u·v

||u||·||v||

LRCos (Drozd et al., 2016) is a more recent
and currently the best-performing method. It is
based on a set of word pairs that have the same
relation. For example, given a set of pairs such as
husband:wife, uncle:aunt, all right-hand words are
considered to be exemplars of a class (“women”),
and logistic regression classifier is trained for that
class. The answer (e.g. queen) is determined as
the word vector that is the most similar to the
source word (e.g. king), but is likely to be a
woman:

b′ = argmax b′∈V (P (b′∈class) ∗ cos(b′, b))
Figure 3 shows that the overall pattern of accu-

racy for jBATS is comparable to what Gladkova
et al. (2016) report for English: derivational and
inflectional morphology are much easier than ei-
ther kind of semantics. In line with the results
by Drozd et al. (2016), LRCos significantly out-
performs 3CosAdd, achieving much better accu-
racy on some encyclopedic categories with which
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Figure 3: Accuracy on jBATS with 3CosAdd and LRCos methods (see Table 1 for the codes on x-axis).

3CosAdd does not cope at all. Lexicographic se-
mantics is a problem, as in English, because syn-

Model inf. der. enc. lex.

M
ai

ni
ch

i1
/2

FastText .902 .770 .237 .075
SG .785 .452 .318 .110

SG+kanji .892 .771 .314 .102
SG+kanji+bushu .912 .797 .253 .083

OOV rate per category .070 .076 .408 .256
FastText+OOV .846 .758 .146 .090
SG+kanji+OOV .856 .747 .181 .102

SG+kanji+bushu+OOV .883 .768 .163 .088

M
ai

ni
ch

i FastText .883 .648 .232 .093
SG .853 .496 .370 .133

SG+kanji .912 .676 .330 .123
SG+kanji+bushu .926 .710 .318 .118

OOV rate per category .022 .056 .346 .204
FastText+OOV .861 .746 .173 .114
SG+kanji+OOV .912 .676 .330 .123

SG+kanji+bushu+OOV .893 .705 .215 .094

W
ik

ip
ed

ia

FastText .881 .663 .242 .088
SG .743 .457 .484 .170

SG+kanji .834 .638 .422 .112
SG+kanji+bushu .851 .694 .425 .100

OOV rate per category .036 .060 .322 .142
FastText+OOV .846 .750 .158 .127
SG+kanji+OOV .794 .639 .297 .098

SG+kanji+bushu+OOV .833 .671 .293 .102

Table 4: Word analogy task accuracy (LRCos).
Boldface indicates the highest result for a corpus,
and the shaded numbers indicate the highest result
among three Skip-Gram models.

onyms or antonyms of different words do not con-
stitute a coherent semantic class by themselves.

Table 4 shows the average results per relation
type for the better-performing LRCos (the pattern
of results was similar for 3CosAdd). The morphol-
ogy categories behave similarly to adjectives in the
similarity task: the SG+kanji beats the original SG
by a large margin on inflectional and derivational
morphology categories, and bushu improve accu-
racy even further. In this task, these models also
win over FastText. However, these are the cat-
egories in which the words either contain a sin-
gle kanji, or (in derivational morphology) a single
kanji affix needs to be identified. Semantic cate-
gories contain a variety of nouns, mostly consist-
ing of several kanjis with various morphological
patterns. Moreover, many proper nouns as well
as animal species are written in katakana, with no
kanjis at all. This could be the reason why infor-
mation from kanjis and bushu are not helpful or
even detrimental in the semantic questions.

There is a clear corpus effect in that the encyclo-
pedic semantic questions are (predictably) more
successful with Wikipedia than with Mainichi, but
at the expense of morphology. This could be in-
terpreted as confirmation of the dependence of
the current analogy methods on similarity (Rogers
et al., 2017): all words cannot be close to all other
words, so a higher ratio of some relation type has
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Error type Example Predicted Percentage
correct stem, wrong form 買う :買え :: 借りる : [借りれ] 借り 28.0%
same semantic category アメリカ : 英語 :: イラン : [ペルシア語] トルコ語 25.0%
antonym, correct form 深い :深さ :: 低い : [低さ] 高さ 10.0%
antonym, wrong form 面白い :面白さ :: 高い : [高さ] 低い 3.0%
related to target pair アンドラ :　カタルーニャ語 :: アメリカ : [英語] 米国 8.5%
wrong stem, correct form 持つ : 持て :: 借りる : [借りれ] 買え 5.5%
duplicated token もらう :あげる :: 内（うち） : [外] うち 5.0%
synonym, correct form 悪い :悪さ :: すごい : [すごさ] 器用さ 1.0%
synonym, wrong form ほしい :ほしさ :: 固い : [固さ] 堅い 1.5%
orthography related 減る :増える :: オン : [オフ] フォー 1.0%
related to the source pair 前 :次 :: 内 : [外] 下記 0.5%
alternative spelling イスラエル : ヘブライ語 :: イラン : [ペルシア語] ペルシャ語 0.5%
unrelated 痛い :痛さ :: 大きい : [大きさ] 仮種皮 10.5%

Table 5: jBATS: error analysis.

to come with a decrease in some other.

6.3 Sentiment analysis

The binary sentiment classification accuracy was
tested with the Rakuten reviews dataset by Zhang
and LeCun (2017). Although Benajiba et al.
(2017) report that incorporating subcharacter in-
formation provided a boost in accuracy on this task
in Chinese, we did not confirm this to be the case
for Japanese. Table 6 13 shows that the accuracy
for all models ranged between 0.92-0.93 (consis-
tent with the results of Zhang and LeCun (2017)),
so no model had a clear advantage.

Model Main.1/2 Mainichi Wiki

FastText .919 .921 .920
SG .921 .920 .921

SG+kanji .921 .924 .919
SG+kanji+bushu .918 .920 .921

OOV rate per category .220 .220 .212

FastText+OOV .926 .927 .922
SG+kanji+OOV .929 .930 .922

SG+kanji+bushu+OOV .925 .927 .922

Table 6: Sentiment analysis accuracy

The lack of positive effect for inclusion of kanji
and bushu is to be expected, as we found that
most of the dataset is written informally, in hi-
ragana, even for words that are normally written
with kanjis. Once again, this shows that the re-
sults of incorporating (sub)character information
in Japanese are not the same as in Chinese, and
depend on the task and domain of the texts.

Interestingly, the accuracy is just as high for all
OOV models, even though about 20% of the vo-

13The Chainer framework (Tokui et al., 2015) is used to
implement the CNN classifier with default settings.

cabulary had to be constructed.

7 Discussion

7.1 Error analysis

We conducted manual analysis of 200 mispredic-
tions of 3CosAdd method in I03, D02, E02 and
L10 categories (50 examples in each). The per-
centage of different types of errors is shown in Ta-
ble 5. Overall, most mistakes are interpretable,
and only 10.5% of mispredicted vectors are not
clearly related to the source words.

The most frequent example of mis-classification
was predicting the wrong form but with the cor-
rect stem, especially in morphological categories.
This is consistent with what Drozd et al. (2016)
report for English and was especially frequent in
the I03 and D02 categories (76% and 36% of er-
rors per category respectively). It is not surprising
since these categories consist of verbs (I03) and
adjectives (D02). Furthermore, in 25% of cases
the assigned item was from the same semantic cat-
egory (for example, colours) and in 13% of case an
antonym was predicted. Other, though relatively
less frequent mistakes include semantic relations
like predicting synonyms of the given word, words
(or single kanji) related to either target or source
pair, or simply returning the same token. Words
which were not related in any way to any source
word were very rare.

7.2 Vector neighborhoods

Table 7 shows that the shared semantic space of
words, kanjis and bushu is indeed shared. For ex-
ample, the bushu疒 (yamaidare “the roof from ill-
ness”) is often used in kanjis which are related to a
disease. Therefore kanji like症 (“disease”) would,
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疒 yamaidare (the roof from illness) 豸 najina-hen (devine beast, insect without legs)
患(sickness)症(disease)妊 (pregnancy)
臓 (internal organs, bowels)腫 (tumor)

爭(to fight, to compete)蝶(butterfly)
皃(shape)貌(shape, silhouette)豹(leopard)

インフルエザ (influenza)
関節リウマチ (articular rheumatism)

リューマチ (rheumatism)リウマチ(rheumatism)
メタボリックシンドローム (metabolic syndrome)

獅子 (lion, king of beasts)
同流 (same origin, same school)
本性(true nature, human nature)

弥勒(Maitreya Buddha)無頼 (villain, scoundrel)

Table 7: Example bushu: closest single kanji (upper row) and multiple kanji/katakana (lower row) for
SG+kanji+bushu model.

of course, be similar to疒 in the vector space. In-
terestingly, we also find that its close neighbors
include kanjis that do not have this bushu, but are
related to disease, such as 腫 and 患. Further-
more, even words written only in katakana, likeイ
ンフルエザ, are correctly positioned in the same
space. Similar observations can be made for bushu
豸(mujina-hen) which represents a divine beast,
insects without legs, animals with long spine, or
a legendary Chinese beast Xiezhi.

7.3 Stability of the similarity results

Our similarity experiments showed that in many
cases the gain of any one model over the other
is not very significant and would not be repro-
duced in a different run and/or a different corpus.
This could be due to skewed frequency distribu-
tion or the general instability of embeddings for
rare words, recently demonstrated for word2vec
(Wendlandt et al., 2018).

One puzzling observation is that sometimes the
smaller corpus yielded better embeddings. Intu-
itively, the larger the corpus, the more informa-
tive distributional representations can be obtained.
However, Table 3 shows that for adverbs and verbs
the full and tokenized versions of jSIM a half of
Mainichi was actually significantly better than the
full Mainichi. It is not clear whether it is due to a
lucky random initialization or some other factors.

8 Conclusion

This study presented the first evaluation of
subcharacter-level distributional representations
of Japanese on similarity, analogy and sentiment
classification tasks. We show that the success
of this approach in Chinese is transferable to
Japanese only partly, but it does improve the per-
formance of Skip-Gram model in kanji-rich do-
mains and for tasks relying on mostly single-kanji
vocabulary or morphological patterns. The effect
may be stronger with a better sent of model hyper-

parameters, which we have not explored here, or in
some other task. However, in our experiments we
found that even enhanced Skip-Gram was consis-
tently inferior to single-character ngram FastText,
which has not been used as a baseline in most work
on Chinese subcharacter-level embeddings.

We also contribute jBATS, the first analogy
dataset for this relatively low-resourced language,
and a revision of its only similarity dataset that can
now be used with standard tokenized corpora. All
models, datasets and embeddings are available in
the Vecto14 library.
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