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Abstract

This paper presents a left-corner parser for

minimalist grammars. The relation be-

tween the parser and the grammar is trans-

parent in the sense that there is a very sim-

ple 1-1 correspondence between deriva-

tions and parses. Like left-corner context-

free parsers, left-corner minimalist parsers

can be non-terminating when the grammar

has empty left corners, so an easily com-

puted left-corner oracle is defined to re-

strict the search.

1 Introduction

Minimalist grammars (MGs) (Stabler, 1997)

were inspired by proposals in Chomskian syn-

tax (Chomsky, 1995). MGs are strictly more

expressive than context free grammars (CFGs)

and weakly equivalent to multiple context free

grammars (MCFGs) (Michaelis, 2001; Harkema,

2001a). The literature presents bottom-up and top-

down parsers for MGs (Harkema, 2001b), which

differ in the order in which derivations are con-

structed, and consequently they may differ in their

memory demands at each point in the parse. But

partly because of those memory demands, parsers

that mix top-down and bottom-up steps are often

regarded as psycholinguistically more plausible

(Hale, 2014; Resnik, 1992; Abney and Johnson,

1991).

Among mixed strategies, left-corner

parsing (LC) is perhaps the best known

(Rosenkrantz and Lewis, 1970). A left-corner

parser does not begin by guessing what’s in the

string, as a top-down parser does. But it also does

not just reduce elements of the input, as a bottom-

up parser does. A left-corner parser looks first

at what is in the string (completing the left-most

constituent, bottom-up) and then predicting the

sisters of that element (top-down), if any. The

following CFG trees have nodes numbered in the

order they would be constructed by bottom-up,

left-corner and top-down strategies:
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LC parsing is bottom-up on the leftmost leaf, but

then proposes a completed parent of that node on

condition that its predicted sister is found.

For CFGs, LC parsing is well understood

(Aho and Ullman, 1972; Rosenkrantz and Lewis,

1970). In a CF rule A → B C , the left cor-

ner is of course always B. Johnson and Roark

(2000) generalize from CFGs to unification-based

grammars and show how to allow some selected

categories to be parsed left-corner while others

are parsed top-down. Extending these ideas to

MGs, we must deal with movements, with rules

that sometimes have their first daughter on the

left and sometimes on the right, and with cate-

gories that are sometimes empty and sometimes

not. Left corner parsers were developed for some

other discontinuous formalisms with similar prop-

erties (van Noord, 1991; Dı́az et al., 2002) but in

all cases these parsers fall in the category of

the arc-standard left corner parsing. Here we

present a left corner parser that is of arc-eager

type which is argued to be more cognitively plau-

sible due to its higher degree of incrementality

(Abney and Johnson, 1991; Resnik, 1992).

A first approach to left-corner MG parsing, de-

signed to involve a kind of psycholinguistically

motivated search, has been presented (Hunter,

2017), but that proposal does not handle all MGs.

In particular, remnant movement presents the main

challenge to Hunter’s parser. The parser proposed

here handles all MGs, and it is easily shown to be

sound and complete via a simple 1-1 correspon-
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dence between derivations and parses. (However,

as mentioned in the conclusion, the present pro-

posal does not yet address the psycholinguistic is-

sues raised by Hunter.) Following similar work

on CFGs (Pereira and Shieber, 1987, §6.3.1), we

show how to compute a left-corner oracle that can

improve efficiency. And probabilities can be used

in a LC beam-parser to pursue the most proba-

ble parses at each step (Manning and Carpenter,

1997).

2 Minimalist grammars

We present a succinct definition adapted from

Stabler (2011, §A.1) and then consider a sim-

ple example derivation in Figure 1. An MG

G=〈Σ, B, Lex,C, {merge,move}〉, where Σ is the

vocabulary, B is a set of basic features, Lex is a

finite lexicon (as defined just below), C ∈ B is the

start category, and {merge,move} are the gener-

ating functions. The basic features of the set B are

concatenated with prefix operators to specify their

roles, as follows:

categories, selectees = B

selectors = {=f | f ∈ B}
licensees = {-f | f ∈ B}
licensors = {+f | f ∈ B}.

Let F be the set of role-marked features, that is,

the union of the categories, selectors, licensors and

licensees. Let T={::, :} be two types, indicat-

ing ‘lexical’ and ‘derived’ structures, respectively.

Let C = Σ∗ × T × F ∗ be the set of chains. Let

E = C
+ be the set of expressions. An expression

is a chain together with its ‘moving’ sub-chains,

if any. Then the lexicon Lex ⊂ Σ∗ × {::} × F ∗

is a finite set. We write ǫ for the empty string.

Merge and move are defined in Table 1. Note that

each merge rule deletes a selection feature =f and

a corresponding category feature f, so the result

on the left side of the rule has 2 features less than

the total number of features on the right. Simi-

larly, each move rule deletes a licensor feature +f

and a licensee feature -f. Note also that the rules

have pairwise disjoint domains; that is, an instance

of a right side of a rule is not an instance of the

right side of any other rule. The set of structures,

everything you can derive from the lexicon using

the rules, S(G)=closure(Lex,{merge,move}). The

sentences L(G) = {s| s ·C ∈ S(G) for some type

· ∈ {:, ::}}, where C is the ‘start’ category.

Example grammar G1 with start category c uses

features +wh and -wh to trigger wh-movements:

ǫ :: =v c knows :: =c =d v

ǫ :: =v +wh c likes :: =d =d v

Aca :: d what :: d -wh

Bibi :: d

These 7 lexical items define an infinite language.

An example derivation is shown in Figure 1.

Grammar G1 is simple in a way that can be

misleading, since the mechanisms that allow sim-

ple wh-movement also allow remnant movements,

that is, movements of a constituent out of which

something has already moved. Without remnant

movements, MGs only define context-free lan-

guages (Kobele, 2010). So remnant movements

are responsible for deriving copying and other

sorts of crossing dependencies that cannot be en-

forced in a CFG. Consider G2:

⊥ :: T -r -l ⊤ :: =T +r +l T

a :: =A +l T -l a :: =T +r A -r

b :: =B +l T -l b :: =T +r B -r

With T as the start category, this grammar defines

the copy language ⊥XX⊤ where X is any string

of a’s and b’s. Bracketing the reduplicated string

with ⊥ and ⊤ allows this very simple grammar

with no empty categories, and makes it easy to

track how the positions of these elements is de-

fined by the derivation tree on the left in Figure 2,

with 6 movements numbered 0 to 4, with TP(0)

moving twice.

This example shows that simple mechanisms

and simple lexical features can produce sur-

prising patterns. Some copy-like patterns

are fairly easy to see in human languages

(Bresnan et al., 1982; Shieber, 1985), and many

proposals with remnant derivations have become

quite prominent in syntactic theory, even where

copy-like patterns are not immediately obvious

(den Besten and Webelhuth, 1990; Kayne, 1994;

Koopman and Szabolcsi, 2000; Hinterhölzl, 2006;

Grewendorf, 2015; Thoms and Walkden, 2018).

Since remnant-movement analyses seem appropri-

ate for some constructions in human languages,

and since grammars defining those analyses are

often quite simple, and since at least in many

cases, remnant analyses are easy to compute, it

would be a mistake to dismiss these derivations too

quickly. For present purposes, the relevant and ob-

vious point is that a sound and complete left corner

parser for MGs must handle all such derivations.
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Aca knows what Bibi likes:c

ǫ::=v c
1

Aca knows what Bibi likes:v

knows what Bibi likes:=d v

knows::=c =d v
3

what Bibi likes:c

Bibi likes:+wh c,what:-wh

ǫ::=v +wh c
55

Bibi likes:v,what:-wh

likes:=d v,what:-wh

likes::=d =d v
7

what::d -wh
4

Bibi::d
6

Aca::d
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ǫ
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v
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c

ǫ
5
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v’

v
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7
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Figure 1: Derivation tree from G1 on the left, and corresponding X-bar derived tree on the right. In

the derivation tree, the binary internal nodes are applications of merge rules, while the unary node is an

application of move1. Computing the derived X-bar structure from the derivation is briefly described in

§5 below. Note that in the X-bar tree, P is added to each category feature when the complex is the ‘max-

imal projection’ of the head, while primes indicate intermediate projections, and the moved constituent

is ‘coindexed’ with its origin by marking both positions with (0). For the LC parser, the derivation tree

(not the derived X-bar tree) is the important object, since the derivation is what shows whether a string

is derived by the grammar. But which daughter is ‘leftmost’ in the derivation tree is determined by the

derived string positions, counted here from 1 to 7, left to right. Derived categories become left corners

when they are completed, so for the nodes in the derivation tree, the leftmost daughter, in the sense

relevant for LC parsing, is the one that is completed first in the left-to-right parse of the derived string.

⊥ a b a b ⊤:T

a b ⊤:+l T,⊥ a b:-l

⊤:+r +l T,⊥ a b:-l,a b:-r

⊤::=T +r +l T ⊥ a b:T -l,a b:-r

b:+l T -l,a b:-r,⊥ a:-l

b::=B +l T -l a b:B -r,⊥ a:-l

b:+r B -r,⊥ a:-l,a:-r

b::=T +r B -r ⊥ a:T -l,a:-r

a:+l T -l,a:-r,⊥:-l

a::=A +l T -l a:A -r,⊥:-l

a:+r A -r,⊥:-r -l

a::=T +r A -r ⊥::T -r -l

TP
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T

⊤
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Figure 2: Derivation tree from G2 on the left, and corresponding derived tree on the right. Note that the

empty TP(0) moves twice, first with MOVE2 and then landing with MOVE1. That TP is just the empty

head, the only element of G2 with 2 licensees. Graf et al. (2016) show that all MG languages can be

defined without moving any phrase more than once, but G2 is beautifully small and symmetric.



68

merge is the union of the following 3 rules, each with 2 elements on the right,

for strings s, t ∈ Σ∗, for types · ∈ {:, ::} (lexical and derived, respectively),

for feature sequences γ ∈ F ∗, δ ∈ F+, and for chains α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l)

(MERGE1) lexical item s selects non-mover t to produce the merged st

st : γ, α1, . . . , αk ← s :: =fγ t · f, α1, . . . , αk

(MERGE2) derived item s selects a non-mover t to produce the merged ts

ts : γ, α1, . . . , αk, ι1, . . . , ιl ← s : =fγ, α1, . . . , αk t · f, ι1, . . . , ιl

(MERGE3) any item s selects a mover t to produce the merged s with chain t

s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl ← s · =fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl

move is the union of the following 2 rules, each with 1 element on the right,

for δ ∈ F+, such that none of the chains α1, . . . , αi−1, αi+1, . . . , αk has -f as its first feature:

(MOVE1) final move of t, so its -f chain is eliminated on the left

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk ← s : +fγ, α1, . . . , αi−1, t : -f, αi+1, . . . , αk

(MOVE2) nonfinal move of t, so its chain continues with features δ

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk ← s : +fγ, α1, . . . , αi−1, t : -fδ, αi+1, . . . , αk

Table 1: Rules for minimalist grammars from (Stabler, 2011, §A.1). Where a CFG has →, these

rules have ← as a reminder that they are usually used ‘bottom-up’, as functions from the elements on

their right sides to the corresponding value on the left. To handle movements, MGs show the strings

s, t explicitly. And where CFG rules have categories, these rules have complexes, i.e. comma-separated

chains. Intuitively, each chain is a string with a type and syntactic features, and each constituent on either

side of these rules is a sequence of chains, an initial head chain possibly followed by moving chains.

3 Left corner MG parsing

A left corner parser uses an MG rule when the left-

most element on the right side is complete, where

by leftmost element we do not mean the one that

appears first in the rules of Table 1. Rather, the

leftmost element is the one that is completed first

in the left-to-right parse. For MOVE rules, there

is just one element on the right side, so that ele-

ment is the left-corner. When the right side of a

MOVE rule is complete, it is replaced by the corre-

sponding left side. But matters are more interest-

ing for MERGE rules, which have two constituents

on their right sides. Because the first argument s

of MERGE1 is lexical, it is always the left corner

of that rule. But for MERGE2 and MERGE3, either

argument can have moved elements that appear to

the right, so which argument is the left corner de-

pends on the particular grammar and even some-

times on the particular derivation.

In the derivation shown in Figure 1, for exam-

ple, there is one application of MERGE3, to com-

bine likes with what, and in that case, the selectee

lexical item what is the left corner because it is the

4th terminal element, while its sister in the deriva-

tion tree is terminal element 7. In Figure 2, we

can see that ⊥ occurs first in the input, and is pro-

cessed in the very first step of the successful left

corner parse, even though it is the deepest, right-

most element in the derivation tree.

The MERGE3 rule of MGs raises another tricky

issue. After the output of this rule with the pre-

dicted right corner is computed, we need to re-

member it, sometimes for a number of steps, since

left and right corners can be arbitrarily far apart.

Even with the simple G1, we can get Aca knows

what Bibi knows Aca knows Bibi knows. . . Aca

likes. We could put the MERGE3 output into a

special store, like the HOLD register of ATNs

(Wanner and Maratsos, 1978), but here we adopt

the equivalent strategy of keeping MERGE3 pre-

dictions in the memory that holds our other com-

pleted left corners and predicted elements. We call

this memory a queue, since it is ordered like a

stack, but the parser can access elements that are

not on top, as explained below. Queue could be

treated as a multiset (since elements can be ac-

cessed even if they are not on the top) but treating

queue as an ordered structure allows easier defini-
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tion of oracle and easier definition of which con-

stituent is triggering the next parser’s operation.

It will be convenient to number string positions

as usual: 0 Aca 1 knows 2 what 3 Bibi 4 likes 5.

Substrings can then be given by their spans, so Aca

in our example is represented by 0-1, knows is 1-2,

and an initial empty element would have the span

0-0.

So the parser state is given by

(remaining input, current position, queue),

and we begin with

(input, 0, ǫ).

For any input of length n, we then attempt to apply

the LC rules to get

(ǫ, n, 0-n·c),

where · is any type and c is the start category. The

LC rules are these:

(0) The SHIFT rule takes an initial (possibly

empty) element w with span x-y from the begin-

ning of the remaining input, where the lexicon has

w :: γ, and puts x-y::γ onto the queue.

(1) For an MG rule R of the form A ← B C

with left corner B, if an instance of B is on top of

the queue, lc1(R) removes B from the top of the

queue and replaces it with an element C ⇒ A.

Since any merge rule can have the selector as its

left corner, we have the LC rules LC1(MERGE1),

LC1(MERGE2), and LC1(MERGE3).

Let’s be more precise about being ‘an instance’.

When R is A ← B C , the top element B′ of

the queue is an instance of B iff we can find a

(most general) substitution θ such that B′θ = Bθ.

In that case, lc(R) replaces B′ with (C ⇒ A)θ.

This computation of substitutions can be done by

standard unification (Lloyd, 1987). For example,

looking at MERGE1 in Table 1, note that the first

constituent on the right specifies the feature f , the

sequence γ, and the string s, but not the string t

or the 0 or more moving chains α1, . . . , αk. So

when LC1(MERGE1) applies, the unspecified el-

ements are left as variables, to be instantiated by

later steps. So when s :: =fγ (for some particu-

lar s, f, γ) is on top of the queue, LC1(MERGE1)

replaces it by

(t · f, α1, . . . , αk ⇒ st : γ, α1, . . . , αk).

where underlined elements are variables.

(2) For an MG rule R of the form A ← B C ′

with completed left corner C and Cθ = C ′θ,

lc2(R) replaces C on top of the queue by (B ⇒
A)θ. For this case, where the second argument on

the right side is the left corner, we have the LC

rules LC2(MERGE2) and LC2(MERGE3).

(3) Similarly for MG rules A ← B, the

only possible leftcorner is a constituent B where

Bθ = B′θ, replacing B′ by Aθ. So we have

LC1(MOVE1) and LC1(MOVE2) in this case.

(4) We have introduced 8 LC rules so far. There

is SHIFT, and there are 7 LC rules corresponding

to the 5 MG rules in Table 1, because of the fact

that the left corner of MERGE2 and MERGE3 can

be either the first or second element on the right

side of the rule. Each LC rule acts to put some-

thing new on top of the queue. The ‘arc-eager’

variant of LC parsing, which we will define here,

adds additional variants of those 8 rules: instead of

just putting the new element on top of the queue,

the element created by a rule can also be used to

complete a prediction on the queue, ‘connecting’

the new element with structure already built.1 Im-

portantly, the following completion variants of the

LC rules can search below the top element to find

connecting elements:

c(R) If LC rule R creates a constituent B, and

the queue has B′ ⇒ A, where Bθ = B′θ, then

c(R) removes B′ ⇒ A puts Aθ onto the queue.

c1(R) If LC rule R creates B ⇒ A and we al-

ready have C ⇒ B′ on the queue, where Bθ =
B′θ, then c1(R) removes C ⇒ B′ and puts (C ⇒
A)θ onto the queue.

c2(R) If LC rule R creates C ⇒ B and we al-

ready have B′ ⇒ A on the queue, where Bθ =
B′θ, c2(R) removes B′ ⇒ A and puts (C ⇒ A)θ
onto the queue.

c3(R) If LC rule R creates a constituent C ⇒ B

and we already have B′ ⇒ A and D ⇒ C ′ on the

queue, where Bθ = B′θ and Cθ = C ′θ c3(R)

removes B′ ⇒ A and D ⇒ C ′ and puts (D ⇒
A)θ onto the queue.

These completion rules are similar to the ‘com-

position’ rules of combinatory categorial grammar

(Steedman, 2014).

1Instead of requiring completions to happen when an ele-
ment is added to the queue, the ‘arc-standard’ variant of LC
parsing uses separate complete rules, which means that a con-
stituent need not (and sometimes cannot) be connected to pre-
dicted structure at the time when it is first proposed.
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That completes the specification of an arc-eager

left corner parser for MGs. The rules are non-

deterministic; that is, at many points in a parse,

various different LC rules can apply. But for each

n-node derivation tree, there is a unique sequence

of n LC rule applications that accepts the derived

string. This 1-1 correspondence between deriva-

tions and parses is unsurprising given the defini-

tion of LC. Intuitively, every LC rule is an MG

rule, except that it’s triggered by its left corner, and

it can ‘complete’ already predicted constituents.

This makes it relatively easy to establish the cor-

rectness of the parsing method (§5, below).

The 14 node derivation tree in Figure 1 has this

14 step LC parse, indicating the rule used, the

remaining input, and queue contents from top to

bottom, with variables M and N for chain se-

quences, Fs for features, for span positions, and

[] represents the remaining input ǫ in the last 2

steps of the listing:

1. shift [Aca,knows,what,Bibi,likes]

0-0::=v c

2. lc1(merge1) [Aca,knows,what,Bibi,likes]

(0-_.v _M => 0-_:c _M)

3. shift [knows,what,Bibi,likes]

0-1::d

(0-_.v _M => 0-_:c _M)

4. c1(lc2(merge2)) [knows,what,Bibi,likes]

(1-_:=d v _M => 0-_:c _M)

5. shift [what,Bibi,likes]

1-2::=c =d v

(1-_:=d v _M => 0-_:c _M)

6. c1(lc1(merge1)) [what,Bibi,likes]

(2-_.c _M => 0-_:c _M)

7. shift [Bibi,likes]

2-3::d -wh

(2-_.c _M => 0-_:c _M)

8. lc2(merge3) [Bibi,likes]

(_-_.=d _Fs_M => _-_:_Fs,2-3:-wh )

(2-_.c _M => 0-_:c _M)

9. shift [Bibi,likes]

3-3::=v +wh c

(_-_.=d _Fs => _-_:_Fs,2-3:-wh )

(2-_.c _M => 0-_:c _M)

10. lc1(merge1) [Bibi,likes]

(3-_.v _M => 3-_:+wh c _M)

(_-_.=d _Fs => _-_:_Fs,2-3:-wh )

(2-_.c _N => 0-_:c _N)

11. shift [likes]

3-4::d

(3-_.v _M => 3-_:+wh c _M)

(_-_.=d _Fs => _-_:_Fs,2-3:-wh )

(2-_.c _N => 0-_:c _N)

12. c3(lc2(merge2)) [likes]

(4-_.=d =d v => 3-_:+wh c ,2-3:-wh )

(2-_.c _M => 0-_:c _M)

13. c(shift) []

3-5:+wh c ,2-3:-wh

(2-_.c _M => 0-_:c _M)

14. c(lc1(move1)) []

0-5:c

The derivation tree in Figure 2 has 17 nodes,

and so there is a corresponding 17 step LC parse.

For lack of space, we do not present that parse

here. It is easy to calculate by hand (especially

if you cheat by looking at the tree in Figure 2), but

much easier to calculate using an implementation

of the parsing method.2

4 A left corner oracle

The description of the parsing method above spec-

ifies the steps that can be taken, but does not spec-

ify which step to take in situations where more

than one is possible. As in the case of CFG parsing

methods, we could take some sequence of steps

arbitrarily and then backtrack, if necessary, to ex-

plore other options, but this is not efficient, in gen-

eral (Aho and Ullman, 1972). A better alternative

is to use ‘memoization’, ‘tabling’ – that is, keep

computed results in an indexed chart or table so

that they do not need to be recomputed – compare

(Kanazawa, 2008; Swift and Warren, 2012). An-

other strategy is to compute a beam of most prob-

able alternatives (Manning and Carpenter, 1997).

But here, we will show how to define an ora-

cle which can tell us that certain steps cannot

possibly lead to completed derivations, following

similar work on CFGs (Pereira and Shieber, 1987,

§6.3.1). This oracle can be used with memoizing

or beam strategies, but as in prior work on CFG

parsing, we find that sometimes an easily com-

puted oracle makes even backtracking search effi-

cient. Here we define a simple oracle that suffices

for G1 and G2. For each grammar, we can effi-

ciently compute a link relation that we use in this

way: A new constituent A′ or B′ ⇒ A′ can be put

onto the queue only if A′ stands in the LINK rela-

tion to a predicted category, that is, where the start

category is predicted when the queue is empty, and

a category B is predicted when we have B ⇒ A

on top of the queue. For many grammars, this

use of a LINK oracle eliminates many blind alleys,

sometimes infinite ones.

Let LINK(X,Y ) hold iff at least one of these

conditions holds: (1) X is a left corner of Y , (2)

Y contains a initial licensee -f and the first feature

of Y is +f, or (3) X and Y are in the transitive

closure of the relation defined by (1) and (2). To

keep things finite and simple, the elements related

by LINK are like queue elements except the mover

2An implementation of this parser and our example
grammars is provided at https://github.com/stanojevic/Left-
Corner-MG-parser
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lists are always variables, and spans are always un-

specified. Clearly, for any grammar, this LINK re-

lation is easy to compute. Possible head feature se-

quences are non-empty suffixes of lexical features,

suffixes that do not begin with -f. The possible left

corners of those head sequences are computable

from the 7 left corner rules above. This simple

LINK relation is our oracle.

5 Correctness, and explicit trees

We sketch the basic ideas needed to demonstrate

the soundness of our parsing method (every suc-

cessful parse is of a grammatical string) and its

completeness (every grammatical string has a suc-

cessful parse). Notice that while the top-down MG

parser in Stabler (2013) needed indices to keep

track of relative linear positions of predicted con-

stituents, no such thing is needed in the LC parser.

This is because in LC parsing, every rule has a

bottom-up left corner, and in all cases except for

MERGE3, that left corner determines the linear or-

der of any predicted sisters.

For MERGE3, neither element on the right side

of the rule, neither the selector nor the selectee,

determines the relative position of the other. But

the MERGE3 selectee has a feature sequence of the

form: fγ-g, and this tells us that the linear posi-

tion of this element will be to the left of the cor-

responding +g constituent that is the left corner

of move1. That is where the string part of the -g

constituent ‘lands’. The Shortest Move Constraint

(SMC) guarantees that this pairing of the +g and -g

constituents is unique in any well formed deriva-

tion, and the well-formedness of the derivation is

guaranteed by requiring that constituents built by

the derivation are connected by instances of the 5

MG rules in Table 1.

Locating the relevant +g move1 constituent also

sufficiently locates the MERGE3 selector with its

feature sequence of the form =fγ. It can come

from anywhere in the +g move1 constituent’s

derivation that is compatible with its features.

Consequently, when predicting this element, the

prediction is put onto the queue when the +g con-

stituent is built, where the compose rules can use

it in any feature-compatible position.

With these policies there is a 1-1 correspon-

dence between parses and derivations. In fact,

since all variables are instantiated after all subsi-

tutions have applied, we can get the LC parser to

construct an explicit representation of the corre-

sponding derivation tree simply by adding tree ar-

guments to the syntactic features of any grammar,

as in (Pereira and Shieber, 1987, §6.1.2). For ex-

ample, we can augment G1 with derivation tree

arguments as follows, writing R/L for trees where

R is root and L a list of subtrees, where • is merge

and ◦ is move, and single capital letters are vari-

ables:

ǫ :: =v(V) c(•/[ǫ::=v c/[],V])
ǫ :: =v(V) +wh c(◦/[•/[ǫ::=v c/[],V]])
knows :: =c(C) =d(D) v(•/[•/[knows::=c =d v/[],C],D])
likes :: =d(E) =d(D) v(•/[•/[likes::=d =d v/[],E],D])
Aca :: d(Aca::d/[])
Bibi :: d(Bibi::d/[])
what :: d(what::d -wh/[]) -wh

Without any change in the LC method above, with

this grammar, the final start category in the last

step of the LC parse of Aca knows what Bibi likes

will have as its argument an explicit representation

of the derivation tree of Figure 1, but with binary

internal nodes replaced by • and unary ones by ◦.

A slightly different version of G1 will build the

the derived X-bar tree for the example in Figure 1,

or any other string in the infinite language of G1:

ǫ :: =v(V) c(cP/[c/[ǫ/[],V]])
ǫ :: =v(V) +wh(W) c(cP/[W,c’/[c/[ǫ/[]],V]])
knows :: =c(C) =d(D) v(vP/[D,v’/[v/[knows/[]],C]])
likes :: =d(E) =d(D) v(vP/[D,v’/[v/[likes/[]],E]])
Aca :: d(dP/[Aca/[]])
Bibi :: d(dP/[Bibi/[]])
what :: d(dP(I)/[]) -wh(dP(I)/[what/[]])

Notice how this representation of the grammar

uses a variable I to coindex the moved element

with its original position. In the X-bar tree of Fig-

ure 1, that variable is instantiated to 0. Note also

how the variable W gets bound to the moved ele-

ment, so that it appears in under cP, that is, where

the moving constituent ‘lands’. See e.g. Stabler

(2013, Appendix B) for an accessible discussion

of how this kind of X-bar structure is related to the

derivation, and see Kobele et al. (2007) for techni-

cal details. (See footnote 2 for an implementation

of the approach presented here.)

6 Conclusions and future work

This paper defines left-corner MG parsing. It is

non-deterministic, leaving the question of how to

search for a parse. As in context free LC pars-

ing, when there are empty left corners, backtrack-

ing search is not guaranteed to terminate. So we

could use memoization or a beam or both. All of

these search strategies are improved by discard-

ing intermediate results which cannot contribute
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to a completed parse, and so we define a very sim-

ple oracle which does this. That oracle suffices to

make backtrack LC parsing of G1 and G2 feasible

(see footnote 2). For grammars with empty left

corners, stronger oracles can also be formulated,

e.g. fully specifying all features and testing spans

for emptiness. But for empty left corners, prob-

ably the left corner parser is not the best choice.

Other ways of mixing top-down and bottom-up

can be developed too, for the whole range of gen-

eralized left corner methods (Demers, 1977), some

of which might be more appropriate for models

of human parsing than LC (Johnson and Roark,

2000; Hale, 2014).

As noted earlier, Hunter (2017) aims to define

a parser that appropriately models certain aspects

of human sentence parsing. In particular, there is

some evidence that, in hearing or reading a sen-

tence from beginning to end, humans are inclined

to assume that movements are as short as possi-

ble – “active gap-filling”. It looks like the present

model has a structure which would allow for mod-

eling this preference in something like the way

Hunter proposes, but we have not tried to capture

that or any other human preferences here. Our

goal here has been just to design a simple left-

corner mechanism that does exactly what an arbi-

trary MG requires. Returning to Hunter’s project

with this simpler model will hopefully contribute

to the project of moving toward more reasonable

models of human linguistics performance.

There are many other natural extensions of

these ideas:

- The proposed definition of LC parsing is de-

signed to make correctness transparent, but

now that the idea is clear, some simplifica-

tions will be possible. In particular, it should

be possible to eliminate explicit unification,

and to eliminate spans in stack elements.

- The LC parser could also be extended to

other types of MG rules proposed for head-

movement, adjunction, coordination, copy-

ing, etc. (Torr and Stabler, 2016; Fowlie,

2014; Gärtner and Michaelis, 2010; Kobele,

2006).

- Our LC method could also be adapted to mul-

tiple context free grammars (MCFGs) which

are expressively equivalent, and to other

closely related systems (Seki et al., 1991;

Kallmeyer, 2010).

- Stanojević (2017) shows how bottom-up

transition-based parsers can be provided for

MGs, and those allow LSTMs and other

neural systems to be trained as oracles

(Lewis et al., 2016). It would be interesting

to explore similar oracles for slightly more

predictive methods like LC, and trained on

recently built MGbank (Torr, 2018).

- For her ‘geometric’ neural realizations

of MG derivations (Gerth and beim Graben,

2012), Gerth (2015, p.78) says she would

have used an LC MG parser in her neural

modeling if one had been available, so that

kind of project could be revisited.

We leave these to future work.
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